SIS:A SHELL FOR

Atsuo KAWAGUCHI,

INTERVIEW SYSTEMS

Riichiro MIZOGUCHI,

Takahira YAMAGUCH1 and Osamu KAKUSHO

The Institute of Scientific and
Ibaraki, Osaka 567, Japan

University, 8-1 Mihogaoka,

Abstract

An interviewer has two kinds of knowledge. One
is about a domain under consideration and the other
is knowledge for interview itself which makes the
interviewer an expert of interview. The Ilatter
seems to be independent of the domain because an
experienced interviewer, such as a TV interviewer,
can carry on his tasks in many fields. Furthermore,
we believe that the interview knowledge consists of
several interview knowledge primitives. Based on
this idea, we are developing SIS, a Shell for
Interview Systems which has seven question strategy
primitives as the knowledge for interviewing.
Generality and effectiveness of SIS are shown
through two implementation examples of interview
systems, I1’s and MORE. The seven primitives are

shown to be efficient for the two system whose
domains and tasks are entirely different.
1+ Introduction

Interviewing plays a crucial role in many
fields to make ambiguous knowledge clear. In
building expert systems, for instance, the
heuristics are generally obtained through interview
of a knowledge engineer with a domain expert. In

software specification, interview is indispensable
to extraction of requirements from customers.

The authors have been investigating interview as
a discourse aiming at transferring (ambiguous)
knowledge. The purpose of this research is to
uncover the knowledge and mechanism necessary for
interview, to discuss the question strategies used
in interview and to develop a framework for
interview systems. The authors have developed 128
(an Intelligent Interview System) whose task is to
interview a data base customer and to design
logical structure of the data base as a part of
this study so far[ll.

An experienced knowledge engineer can interview
domain experts and construct expert systems in
various domains. A TV interviewer can also
interview persons in many fields. These observation
suggest that they have domain independent skills
(knowledge) for interviewing. In the development of
123, it was an important point to distinguish the
domain-independent interview knowledge for logical
design of data base from domain-dependent one and
four domain-independent question strategies were
obtained.

Moreover,
interviewing

such domain-independent knowledge for
dependent on the task consists of
several primitives independent of the task. For
example, a careful comparison between the four
question strategies of 1°S and those of a knowledge

Industrial Research, Osaka

acquisition system, MORE[2}, reveals some knowledge
common to the both. This allows us to consider an
interviewer as an expert system and suggests the
possibility of a general framework for interview
systems. This paper describes a Shell for Interview
Systems, SIS for short, based on this idea. Of
course, there are many other aspects of interview
systems and knowledge acquisition systems such as
ROGET[3], ETS[4], etc. The authors are especially
interested in discussion on interviewer's question
strategies inherent in interviewing.

Various interview systems can be constructed by
using SIS with description of the meta knowledge of

the domain and task. SIS has seven question
strategy primitives. One can define various
question strategies (dependent on the task) by

specifying the combination of the primitives.

2. SIS: Shell for Interview Systems

SIS is a shell for constructing interview
systems. A general flow of interviewing consists of
three stages. First, an interviewer requires an

interviewee of initial information which becomes a
cue for the following interview. The interviewer
constructs an incomplete domain model in this
stage. And he usually has many questions at this

time. We call such questions ‘'attentions'. In the
second stage, the interviewer asks the interviewee
additional questions according to the attentions.

Finally the interviewer produces an output of the
interview.
In order to carry out interviewing, an interview

system must have the following functions and
knowledge for them:
(a) to construct a domain model from

information extracted from an interviewee,

(b) to make attentions in the first and second
stages,
(c) to infer about the attentions and to ask

the interviewee questions based on them,
(d) to make an output from the domain model and
(e) to analyze and generate sentences.

On the basis of the above discussions, we have
designed an architecture of SIS. It consists of
four modules such as parser, generator, memory and
inference engine. The parser analyzes input
sentences, while the generator generates sentences
for the interviewee. They employ a demon-based
mechanism. The memory contains knowledge for
interviewing described by a system developer and
information obtained through interview. Seven
modules for question strategy primitives (QPs)
built in the memory. They check the information
obtained from the interviewee and generate
attentions. The inference engine is essentially a

Kawaguchi, Mizoguchi, Yamaguchi, and Kakusho = 359

production system and processes the attention.

Domain model in SIS is a kind of network
composed of domain_constituents (DCs) as nodes and
domain_links (DLs) as arcs. DGCs are represented in
terms of frames, while knowledge for inference
about attention is represented by rules in SIS, An
interview system developer can describe the
knowledge (a), (d) and (e) discussed above by
defining prototypes of these frames with associated
demons for parsing and generating, and knowledge
(c) by defining rules with some extra information
for controlling the system.

Whenever any information is given to the memory,
it scans the domain model to check if any part of
the model satisfies the conditions for making
attentions. The conditions correspond to the
knowledge (c). They are defined by specifying the
objects of application of QPs,

QPs have their own conditions when to make
attentions. They apply the conditions to all
objects defined by the system developer and make

attentions when the conditions are satisfied. The
attentions indicate important issue underlying in
domain model to be discussed with the interviewee.
By defining inference rules for the attentions, the
system developer can control the behavior of the
system to the questions.

The detailed description of the QP conditions
are shown below.

(1) planner (see Figure 1)

For paths and DCs obtained by tracing DLs

from a DC,

(a) there are prototypes which could be
chained to the paths,

(b) there are more than one path to reach one
DC or

(c) there are paths from the same DC to
different one.

The chainability

intersection

in (1) is determined from
of predefined slot sets of each

frame.
(2) script_tracer
There is a script for asking questions in

a prototype corresponding to a DC
(3) unknown_object_detector
Information which is not
prototypes are entered,
(4) discord__detector
Slot values of the DCs
each other are not the same,
(5) ambiguity _detector
There are more than one value in a slot,
(6) certainty_manager
A certainty factor assigned to a DL is out
of the range the system developer defined.
(7) constraint__checker
A DCs slot value violates its constraint.
diffrent

pa.ths @- "A
ézclmnahle
--D
D frame

m source
o !! : attentlon

defined in

corresponding to

..-—--..

Fig. 1 Planner's conditions.

360 KNOWLEDGE ACQUISITION

QPs can be used to detect many patterns which
suggest the necessity of asking questions for more
information.

3+« Examples
This section describes implementation of two
interview systems, which are entirely different in

their tasks and domains. Effectiveness and
generality of QPs will be shown through these
examples.
3.1 1°S[1]

I’S (Intelligent Interview System for logical

design of data base) interviews a data base
customer and designs logical structure of data base
according to the following steps:

(1) It asks questions of the customer
(interviewee) to get requirements of a target
data base as initial information,

(2) It constructs a domain model
structure and refines it
customer some questions,

(3) It makes conceptual schema of the target data
base from the plan-structure as its output.

I’S employs the concept of plan to represent a
domain. In the domain model called plan-structure,
each noun or verb is represented as a frame. A noun
frame contains several attributes which the
corresponding entity has, while a verb frame has
description of its activity represented in terms of
the concept of plan.

Various question strategies are used by I°S to

called plan-
by asking the

refine a plan-structure and design conceptual

schema. We have obtained four kinds of strategies

as follows:

(1) planning,

(2) making the detailed level of description
equal,

(3) using scripts for nouns and

(4) interrupting when an interviewee mentioned
'time’.

While all of these strategies can be described in

terms of QPs, we will show an example concerning

planning strategy.

IS “reasons about activities to get unknown
activities or relations between them based on the
current plan-structure and shows the interviewee
the results. We call this process planning.
Suggestions presented by this planning strategy are
very effective because it is rather difficult for a
customer to prepare all data items necessary for
his data base in advance. For instance, suppose a
customer said a fact shown in Figure 2(a). A plan-
structure corresponding to this fact is shown in
(b). If a dlctlonary of I°S contalns semantic
description of 'stock' as Figure 2(c), I1°S finds it
and asks an interviewee some questions as shown in
(d) because the precondition of 'construct' can be
satisfied by the goal of 'stock’

In order to implement this strategy by SIS, a
system developer defines prototype frames of verbs
with appropriate demons for translating English
sentences into DGCs and vice versa. Then he
implements the planning strategy by using planner's
condition (1) to search candidate verbs.
'Found_candidate' attention will be generated when
one of the following conditions are satisfied:

(1) there are some prototypes (DCs)
whose goals are equivalent to precondition of

a DC (prototype).
(2) there are some DGCs whose goals are equivalent
to precondition of a DC,
And finally, he describes the knowledge of how to
process the attention for planning strategy in rule

form. After defining all of these strategies, SIS
will automatically parse initial information into
plan-structure, apply QPs, make attention, infer
about them, and make question and answer with the
interviewee.

The system works in an interview as shown in
Figure 3. Suppose an interviewee mentioned the fact
shown in Figure 2(a) as a requirement. First, the
parser makes constituents of plan-structure from
interviewee's input (1). Then, they are stored in
the memory. QPs are applied to the constituents and
in this example, the 'construct' DC and 'stock*
prototype satisfy the condition for making
found_candidate attention. The attention is stored
in the attention list.

After obtaining the initial information, the
system begins to process the attentions. Attentions
are taken out from the attention list one by one
(4) and sent to the inference engine. In this
example, the system asks the interviewee questions
as shown in Figure 2(a).

3.2 MOREJ2]

MXE is a knowledge acquisition system for
constructing diagnostic expert systems. It first
asks a domain expert about hypothesis, symptoms and

other conditions (as initial information), then
constructs a domain model. A domain model
constructed by MR is a network in which

hypotheses, symptoms and conditions are represented
as nodes and linked together by 'links' or 'paths'.
Next, MCRE applies eight question strategies to the

model, asks the expert and refines it. Finally, it
makes a rule set for the expert system from the
model.

the eight question strategies,
'differentiation’ is one of the most basic ones. A
symptom S is said to differentiate hypothesis HI
from H2 when there is a path from H1to S, and no
path from H2 to S. When there is a pair of
hypotheses for which there is no differentiating
symptom, MCRE asks a domain expert about it.

Some parts are constructed from other parts
which are supplied from other companyies.
() Fact.

@) Fact
ronstruct supply
goal PArt rompany (Foal stori‘k
exist rxist gﬁ:ist
partl part] Object
action artijon action
make_exita change_where ne _rhapge
precondi tion | Part] culpanylprecgnditinn precosdition
exist part2 exist exist
part2 part] Object
company]
b} Plan structure, {e) 'stock’.

1S; | think you should store the information abour 'stock'.
Do you agree 7

Customer: Yes.

I*S: Please enter an information requirement about 'stuck'.

.

(di Q & A,
Fig.2 Planning strategy.

{2)apply planner

(l)domain_constituents
conatruct
suppiy

* CoBpany. part

{3Yattention
found_candidate

“Yes” //’F#‘
{4)attention

(R task process attention
attention found candidate

"Yes or No?"

tnerencr

. M:7 modules.
engine

P:plan-structure.
Fig.3 Processing example of planning stragety.

generator

'Differentiation' strategy can be implemented in
SIS by using planner's condition (c) to detect not-
differentiated hypotheses. The planner is directed
to start tracing from a symptom and to find paths
from a symptom to different hypotheses. A domain-
model will be automatically constructed by defining
prototype frames of symptoms and hypotheses with

for translating input information into
frames linked each other. A system developer also
describes rules for checking if there are really
not differentiating symptoms when ‘'same_source'
attention is made, and asking an expert new
symptoms.

In an interview, when the pair of hypotheses to

which there are same paths from a symptom are
found, the attention ‘'same_sources will be
generated. Then the system will infer how to treat

the attention using the rules described by the
system developer and ask an expert for a new
additional symptoms.
4.. Conclusion

We have described SIS, a shell for interview

systems. SIS has seven question strategy primitives
for representing domain-dependent knowledge for
interviewing. They are essentially detectors of
problems in the network representing domain model
and can be used as drivers for interviewing. The
generality and effectiveness of the primitives have
been evaluated through the_implementation examples
of two interview systems, 12S and MORE

SIS is under implementation on Hewlett-Packard's
HP-9000 model 320 using C_Prolog.

References:
[1] Kawaguchi, A., et al., "An Intelligent
Interview System for Conceptual Design of

Database," Proc. ECAI'86, 1986.

[2] Kahn, G., Nowlan, S. and McDermott, J.,
"Strategies for Knowledge Acquisition," I|EEE
PAMI, Vol.PAMI-7, No. 5, 1985.

[3] Bennett, J. S., '"ROGET: A Knowledge-Based
System for Acquiring the Conceptual Structure
Of a Diagnostic Expert System," Journal of
Automated Reasoning, 1, 1985.

[4] Boose, J. H., Expertise Transfer for
System Design. Elsevier, 1986.

Expert

Kawaguchi, Mizoguchi, Yamaguchi, and Kakusho 361

