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ABSTRACT 

This paper describes the design of an a lgor ­
i thm which learns a class of theor ies in the l i m i t 
in a sublanguage of a f i r s t order language. The 
languages chosen are r i cher than those handled 
previously - needing a more e f f i c i e n t search 
through the vers ion space. The language is not 
i n i t i a l l y known to the system, but is learned 
together w i th the theory. 

1 INTRODUCTION AND BACKGROUND 

The word " l ea rn ing " w i l l be used here to 
mean "developing class descr ip t ions from examples 
of the members of the c lass" . The work described 
here is a cont inuat ion of a ser ies of e f f o r t s 
[1,2,3,4] [ to simulate the kind of learn ing where 
the e f f i c i ency of the learned descr ip t ion i n ­
creases w i th increase in knowledge. This needs 
the a b i l i t y to use the name of one class in the 
descr ip t ion of another. Such a process is of ten 
ca l led " M u l t i l e v e l Learn ing" , since the where­
w i t h a l for the descr ip t ion grows from the i n i t i a l 
features of the language to include the names of 
previously learned concepts as we l l as names of 
i n t e r n a l l y generated concepts used as add i t i ona l 
features. The concepts as we l l as the features 
can be re la t i ons as we l l as classes. The des­
c r i p t i ons of r e l a t i ons can be learned using the 
same technique as is used in learn ing the des­
c r i p t i ons of c lasses. 

The formal basis for t h i s work is the concept 
of "Learning in the L i m i t " (developed by Gold [6] 
as a model for learn ing languages and extended by 
Shapiro [5] to the learn ing of theor ies from facts 
in f i r s t order l o g i c ) . Since the descr ip t ions of 
classes can be looked upon as sets of Horn Clauses, 
Shapiro's general technique is appl icable to the 
learn ing of the descr ip t ions of classes and 
r e l a t i o n s . The technique does not need that the 
examples be presented to the learn ing mechanism by 
a h e l p f u l teacher, as was assumed by some of the 
authors mentioned here. 

In t h i s present work wo have used a more 
general language than those usod in Shapiro's 
experiments. The language chosen here seems more 
su i tab le to the purpose of concept learn ing. 
Certa in improvements to the technique have been 
made for pruning the search for descr ip t ions in 
the chosen language. Also, un l ike Shapiro's work, 
it has not been assumed that the language is 

ava i lab le to the learn ing a lgor i thm: the a lgor ­
ithm learns the language as it learns the descr ip­
t i ons . Apart from t h i s , the work fo l lows Shapiro's 
guidel ines qu i te f a i t h f u l l y . 

In what fo l lows we s h a l l assume acquaintance 
w i th Shapiro's approach and describe our language 
and a lgor i thm in b r i e f . 

II THE CLASS OF LANGUAGES 

In the f i r s t order languages used here fo r 
forming descr ip t ions , there are va r i ab les , 
constants and unary func t ion symbols. No binary 
or higher a r i t y func t ion symbols are used. An 
atomic sentence or atom consists of a term 
fol lowed by an equals s ign fol lowed by a constant. 
A term is e i t he r a var iab le or a func t ion symbol 
fol lowed by a term enclosed in parentheses. A 
predicate is e i t he r an atom or consists of a 
predicate l e t t e r of a r i t y n, fo l lowed by n terms 
separated by commas. Such a predicate is ca l led 
a defined pred ica te . I f a l l the terms occuring in 
a defined predicate are va r i ab les , then the pred­
icate is ca l led a l e f t s i d e . A sentence consists of 
a Horn clause, whose head is a l e f t s i d e and whose 
body contains pred icates. 

For the purposes of t h i s work, some of the 
predicate l e t t e r s are considered to be in a 
specia l c lass : these are ca l led concept l e t t e r s . 
A l e f t s i d e formed w i th a concept l e t t e r is ca l led 
a de f in lend. 

Predicates formed by concept l e t t e r s are the 
ones which name concepts to be learned. Predicate 
l e t t e r s other than concept l e t t e r s can be generated 
i n t e r n a l l y by the learn ing a lgor i thm to fu r the r 
s imp l i f y complex descr ip t ions . These are what 
people o f ten c a l l " fea tu res" in pa t te rn recogn i t ion 
parlance. The processes of " fea ture e x t r a c t i o n " 
and compression w i l l be described in the sect ion 
on a lgor i thms. 

Sentences as described above form the hypoth­
esis language L of Shapiro. The observat ion 

language L consists of ground sentences, which 

are defined to be those whose head is a def in iend 
and whose body consists e n t i r e l y of atoms. 

A theory w i l l be defined to be a set of sen­
tences and the d e f i n i t i o n of proofs and the 
d e f i n i t i o n of a theory imply ing a sentence is 
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standard. Instead of defining the model of a 
theory by an abstract mathematical structure, we 
shall define the word syntactically. Given a 
theory, a ground sentence P:-B w i l l be called 
minimal in the theory if it is implied by the 
theory and no ground sentence P:-A,withA a subset 
of B, is implied by the theory. The model of the 
theory is the set of a l l ground sentences minimal in the theory. 

It can be shown that given a ground sentence 
one can predict how long a proof of it from a 
theory is going to be. This predictabi l i ty is re­
quired by Shapirofs approach to learning. Formal 
proof of this predictabi l i ty and other claims w i l l 
be published elsewhere [7]. 

For a proper application of Shapiro's approach, 
we need proofs to be in a form in which at every 
step one of the resolvents is a ground sentence. 
An algorithm has been developed by us which, given 
any proof, can convert it into one of this desired 
form. Such a proof can be used to in i t ia te a pro­
cess called "contradiction backtrace" for what is 
known as "credit assignment" in the f i e l d , i .e . to 
f ind out which sentences in a theory lead to proofs 
of false sentences. If a fact defines a certain 
ground sentence to be false and a proof for it 
exists from a theory, then the axiom to blame is 
found as follows. At each step of the proof the 
algorithm asks of the environment whether the 
ground resolvent is true (the sentence being in L , 
it is legal to ask the question). If it is false, 
one of the axioms used in i t s proof must be false. 
Else the axioms involved in the proof of the other, 
non-ground resolvent must be false. The algorithm 
asks the same question at the different steps of 
the "gu i l ty" tree t i l l it isolates the false axiom. 

The learning algorithm described in the next 
section w i l l use this algorithm as well as the 
check on provabil i ty described above. 

1ll THE ALGORITHM AND ITS CONVERGENCE 

At any point of i t s operation, the learning 
program's knowledge has two components: the know­
ledge of the language and the theory developed so 
far. The structure of the theory has been dis­
cussed already. The knowledge of the language 
associates with each concept let ter a set of atoms 
which occur in some positive examples of the con­
cept ( i . e . facts with the concept at the head and 
marked true). 

There are several major procedures used by 
thelearning algorithm. The f i r s t one i s : 

sentences P:-A, where A is one of the atoms just 
added to the language. There is one such sentence 
added for each new atom. 

(The reader w i l l note that the theory learned 
by the algorithm has a lo t of disjunctions, but the 
disjuncts are not the positive examples themselves, 
as in rote learning. Rather the disjuncts are 
alternative generalizations of the examples.) 

The next major procedure is 

(2) SHRINK: Invoked when it is found that the 
theory Implies a ground sentence which has been 
marked false. First the algorithm locates the 
(or one of the) sentences at fault in the theory 
(asking questions of the environment as described 
in the previous section). If the culpr i t is a 
ground sentence, then SHRINK adds to ( i . e . forms 
the conjunction with) the body one of the atoms in 
the language associated with the predicate at i t s 
head. In doing so care is taken that the resulting 
sentence is not implied by any other sentence of 
the theory. 

It can be shown that if the model is con­
sistent ( i . e . if no false ground sentence has a 
body which contains the body of a true ground 
sentence with the same head), then the algorithm 
given below converges to a correct theory for any 
f in i te model. However, the resulting theory can 
be unnecessarily complex. Moreover, since these 
processes only learn theories with ground sen­
tences, no in f in i te model can be explained with 
such theories. This drawback can be rect i f ied 
with the following procedure. 

(3) GENERALIZE: This process is invoked onlv 
after the two previous processes working in two co-
operating loops have resulted in a theory with ground 
sentences explaining a l l the known facts. GENERALIZE 
is brought into action if the previous loops have 
added to or shrunk the ground part of the theory in 
their current invocation. At this point, the algor­
ithm looks for a l l pairs of sentences in the theory in 
which the body of the f i r s t is subsumed by an instance 
of the body of the second. In this case, the involved 
part of the body of the f i r s t is replaced by the sub­
s t i tu t ion instance of the head of the second. 

One other process is invoked for compression 
of the sentences of the theory. It is called 
DREAM and is merely a generalization of an appl i ­
cation of the distr ibut ive law of Boolean logic. 
DREAM is responsible for introducing the internal ly 
generated feature names. It can be shown that 
DREAM does not change the set of sentences implied 
by a theory. 

A skeleton of the algorithm is shown in 
Figure 1. 

The algorithm works i n f i n i t e l y , verifying the 
current theory continuously, changing it only when 
facts demand i t . The point to be made here is that 
the algorithm is such that as long as a theory 
exists in the language, it can be found in a f in i te 
period of time and no modification is needed after 
that. 

(l)ADD: This procedure is invoked when the 
program encounters a positive example of a concept 
not implied by the current theory. It adds to the 
language by associating with the predicate at the 
head of the fact a l l the atoms in the body of the 
fact (unless the atom was already there). ADD 
also modifies the theory. At the f i r s t occurence 
of a positive example of the concept, the theory 
is augmented by P:-, where P is the definiend 
corresponding to the concept. The body of the 
sentence is empty, indicating that "everything is 
a P." Else it augments the theory by adding the 
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The main loop of the algorithm consists of 
two other loops, the f i r s t working with ADD and 
SHRINK and the other working with GENERALIZE and 
DREAM. It has already been indicated that the f i r s t 
loop always terminates with a ground theory for the 
f i n i t e set of facts currently available in F+ and 
F_. The second loop only introduces those general­
izations that do not imply any known false facts — 
it does not remove any true known facts. It is 
possible that the generalizations introduced w i l l 
explain true facts as well as false facts as the 
outer loop continues. It can, however be shown 
that in the kind of i n f i n i t e models that theories 
of this class of lnaguages can express, sentences 
are bound to occur which lead to generalizations 
which explain only the true facts, provided that if 
any sentence of the theory contains two defined 
predicates in i t s body, the two predicates model 
d is jo int sets of ground sentences. Thus the algor­
ithm does learn theories of i n f i n i t e models in the 
l im i t in this restr icted class of theories. Finite 
models, of course are learned as soon as a l l the 
minimal true sentences are constructed by ADD and 
SHRINK. 

IV DISCUSSION OF EFFICIENCY 

There are two dist inct phenomena that affect 
the time efficiency of the algorithm. One, there 
is the l im i t to the number of times the three 
successive inner loops to the program would be 
entered to make the theory compatible with the cur­
rently available examples. Calculation of the worst 
case complexity, as far as the inner loops are con­
cerned, leads to the conjecture that the time com­
plexity would be exponential in the number of atoms 
in the language conjecture. So the overall e f f i ­
ciency of the program real ly depends on whether it 
can develop the theory as soon as it has gathered 
the minimal number of atoms the theory needs. 

The answer to this la t ter question depends 
very heavily on the second aspect of the e f f i ­
ciency, to w i t , how many times the main loop w i l l 
have to be entered before the correct theory can be 
discovered by the algorithm. Unfortunately, the 
answer to the question is entirely dependent on the 
property of the input sequence. It is our conjec­
ture looking at some example theories that for each 
theory a minimal set of examples exist which suf­
fices to make the algorithm discover the theory. One 
can only make a probabi l ist ic estimate of how late it 
w i l l be before the crucial examples are presented 
to the algorithm. 

Presently an experiment is being carried out 
on this matter using a Markov model as source of 
examples. It is intended that this model w i l l also 
be used in the theoretical estimation of the 
average efficiency of the overall algorithm. 
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