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ABSTRACT 
In recent years knowledge-based techniques like 

explanation-based learning, qualitative reasoning and case-based 
reasoning have been gaining considerable popularity in AI. Such 
knowledge-based methods face two difficult problems: 1) the 
performance of the system is fundamentally limited by the 
knowledge initially encoded into its domain theory 2) the encod­
ing of just the right knowledge to enable the system to function 
properly over a wide range of tasks and situations is virtually 
impossible for a complex domain. This paper describes research 
directed towards the construction of a system that wi l l detect 
and correct problems with domain theories. This wi l l enable 
knowledge-based systems to operate with imperfect domain 
theories and automatically correct the imperfections whenever 
they pose problems. This paper discusses the classification of 
imperfect theory problems, strategies for their detection and an 
approach based on experiment design to handle different types of 
imperfect theory problems. 

I INTRODUCTION 
This paper addresses the problem of imperfect theories in 

Al systems. It is increasingly apparent that knowledge is essen­
tial for intelligent behavior. This has led to a new trend in Al 
towards knowledge-intensive methods like explanation-based 
learning [ l . 2]. qualitative reasoning [3]. and case-based reason­
ing [4. 5]. 

The primary shortcoming of these approaches is not in the 
representation of the knowledge - a task that is relatively well 
understood - but in the subtleties of selecting the appropriate 
knowledge. The expert who is handcoding the knowledge has to 
anticipate the rich variety of tasks and the wide range of situa­
tions for which the knowledge may be used in order to insure 
that the system wil l function properly. Also, all AI systems 
that rely on a programmer-specified domain theory are funda­
mentally limited by their initial knowledge. For example. [6] 
shows how the knowledge built into a learning system drasti­
cally influences its learning capability. 

What is needed is a system that wil l automatically detect 
and correct problems with its domain theory. This wil l free the 
expert from the tedious and often impossible task of handcoding 
all the relevant knowledge. It wil l enable the use of "quick and 
dirty" methods to facilitate the construction of operational but 
imperfect domain theories. These domain theories can then be 
automatically debugged and corrected by the system. 

Mitchell et al. [ l ] have briefly classified problems with 
imperfect domain theories into three categories: 
(1) the incomplete theory problem: the deductions required can­

not be computed because relevant information is missing. 
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(2) the inconsistent theory problem: the system can derive 
inconsistent statements from its theory. 

(3) the intractable theory problem: the deductions are computa­
tionally prohibitive and hence cannot be completed. 
However, the underlying issues are too murky and subtle 

for the above categories to be cleanly separable. For example, 
inconsistencies and incompleteness in domain theories may be 
due to abstractions and approximations which make the theory 
tractable [7]. Inconsistent theory problems can be due to an 
incomplete theory if information necessary to nullify one of the 
inconsistent statements is missing. Inconsistent statements can 
also result from the incomplete theory problem if the system is 
operating under the closed world assumption and does not con­
sider the possibility of new information influencing its computa­
tions [8]. Apart from the above problems of interacting 
categories, the classification of Mitchell el al. also ignores certain 
kinds of incompleteness and inconsistencies. 

A complete taxonomy of imperfect theory problems 
includes two types of incompleteness and inconsistencies. The 
first type of incompleteness is the one discussed above in 
which a deduction cannot be completed because some relevant 
knowledge is missing. The second type of incompleteness is 
due to the lack of sufficient detail in the relevant knowledge. 
Unlike the first case, deductions can be constructed leading to a 
conclusion. However, the lack of detail results in the system 
having to make assumptions and leads to the problem of multi­
ple mutually inconsistent proofs for a conclusion. This type of 
incompleteness also results in large search spaces because the 
system does not have the required control knowledge to select 
the correct path at each choice point. The first type of incon­
sistency involves wrong knowledge that has to be identified and 
retracted. The second type of inconsistency involves missing 
knowledge that would have defeated the deduction leading to 
one of the inconsistent statements. 

There are two aspects to the imperfect theory problems -
detection of the imperfections and the revision of the domain 
theory - and both of these present difficulties. This paper 
describes various strategies for delecting problems with the 
domain theory and a uniform approach based on experiment 
design to handle each type of problem. The system is assumed 
to start with an initially imperfect but operational theory. This 
is a psychologically motivated assumption since people also use 
simplified domain theories to make conclusions computationally 
tractable and they are still able to operate satisfactorily. During 
the course of the system's operation, problems with its domain 
theory are identified and corrected. No changes are made until a 
problem is detected. 

II DETECTION OF THE IMPERFECT THEORY PROBLEMS 
This section describes four strategies for detecting problems 

with domain theories. Though the detection strategies- are dis­
cussed in the context of explanation construction for 
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explanation-based learning [ l . 2] they are also applicable for 
other problem solving tasks like qualitative reasoning and plan­
ning. Explanation construction involves using facts and rules 
from the domain theory to show why a training instance is an 
example of the goal concept (Figure la). The problems due to 
imperfect domain theories that are encountered during explana­
tion construction are: 
Broken Explanation: There are gaps in the explanation leading 
to a broken explanation (Figure lb). The rules or facts that are 
required to complete the explanation are missing from the 
domain theory (incompleteness - type I). 
Contradiction: The system constructs explanations for conclu­
sions which are contradictory (Figure lc). This problem may be 
due to wrong rules or facts in the domain theory (inconsistency 
- type I) or due to missing rules or facts (inconsistency - type II) 
that would resolve the contradiction by defeating one of the 
explanations (el or e2) thereby leading to the withdrawal of the 
corresponding previously justified conclusion (P or (not P)). 
Multiple Explanations: The system constructs multiple expla­
nations for a conclusion when only one explanation is expected 
to be true in the real world (Figure Id). This problem is due to 
lack of knowledge which would help distinguish between the 
alternate explanations (incompleteness - type II). This problem 
is especially important for explanation-based learning as is has 
implications for the new concept definition. 
Resources Exceeded: The system exceeds the resources (time, 
memory, etc.) allotted to it while constructing an explanation. 
This type of problem can be further classified as: 
Large Search Space Problem: The system has to search a large 
space during the construction of an explanation (Figure le). 
Though the explanation may exist and its size may be compar­
able to previous successful explanations the system cannot con­
struct it since there are too many paths to explore. The system 
does not have the knowledge to decide between the alternate 

domain facts 
training example 

contradiction P 

Figure 1: (a) a typical explanation (b) a broken explanation (c) a 
contradiction (d) multiple explanations (e) large search space 
problem (f) small links problem. 

paths (incompleteness - type II) and is forced to search all paths. 
Small Links Problem: The links connecting the explanation are 
too small and too many for the system to construct the complete 
explanation within the allotted resources (Figure If) (intractable 
theory problem). This problem is independent of the large 
search space problem and may occur even when no search is 
involved. 

I l l DEALING WITH THE IMPERFECT THEORY PROBLEMS 
Dealing with the above problems requires the acquisition of 

new knowledge. This section describes ongoing research on an 
extension to an approach discussed in [8. 9] that can be used to 
deal with the above problems. 

A. A Brief Review of the Experiment Design Approach 
An approach that deals with the contradiction problem due 

to an inconsistent domain theory (type II) is described in [8. 9]. 
The approach involves: 1) Monitoring the execution of the 
system's plans. 2) Detection of contradictions if the systems 
predictions are not compatible with the observations. 3) 
Hypothesizing reasons which could resolve the contradiction. 4) 
Designing experiments to test each hypothesis. 5) Incorporating 
the information obtained by the experiments into the domain 
theory. Five classes of experiments are described in [8]. These 
experiments are used to discriminate among hypotheses, perform 
measurements, find, dependencies among parameters, classify 
objects based on their behavior with respect to a properly and 
define new properties of objects based on their behavior in a 
situation. These experiments are used to obtain new knowledge 
that is relevant to the determination of the correct hypothesis. 

B. Extending the Experiment Design Approach 
The experiment design approach can be applied to each of 

the problems described in section 2: 
Broken Explanation: The system must be able to hypothesize 
different ways of filling the gaps in the explanations. In [8, 9] 
the hypotheses were suggested by the system after an analysis of 
the situation that led to the failure. Alternatively such 
hypotheses may be formed by analogy to previous experiences 
[10]. Once alternate hypotheses that can complete the explana­
tion have been formulated experiments are designed to determine 
the best hypothesis. 
Contradiction: Experiments are designed to test each link in 
each explanation to isolate the faulty rule or fact that leads to 
the contradiction. Once the fault has been isolated then 
hypotheses are formulated to correct the fault. If the contradic­
tion is due to wrong rules or facts (inconsistent - type I) then 
the hypotheses can involve retraction of rules. If the contradic­
tion is due to missing knowledge (inconsistent - type II) then the 
hypotheses can involve positing rules that defeat the explana­
tion. Fxperiments are designed to identify the best hypothesis. 
Multiple Explanations: Multiple explanations arise due to the 
lack of knowledge required to distinguish between the alterna­
tive explanations (incompleteness - type II). Fxperiments are 
designed to gather the information that the system needs to 
decide which explanations cannot hold for the given situation. 
This will enable it to determine the correct explanation. 
Resources Exceeded: The large search space problem can be han­
dled by designing experiments to gather the information needed 
to make the right choice whenever alternatives develop. A 
number of approaches have been suggested for the small links 
problem [7, 11-13]. [13] shows how approximations can be used 
to make explanations tractable. [12] describes an incremental 
failure-driven technique to refine abstract theories when the 
current theory fails to provide a satisfactory explanation. The 
approach suggested by [7. l l ] involves describing the domain 
theory at different levels of abstraction. This allows the expla­
nation to be constructed using fewer higher-level links. How-
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Figure 2: An example illustrating the mult 
ever, due to the abstractions and approximations a number of 
alternate low-level explanations may be possible for one higher-
level explanation and this failure cannot be handled by examin­
ing the more detailed levels. This is the "hierarchical" multiple 
explanation problem and the experiment design approach can be 
applied to find the correct explanation. 

C. An Example 
The system is given the distillation scenario shown in Fig­

ure 2. A mixture of alcohol and water is heated and it is 
observed that an unknown liquid is formed in the second con­
tainer and that its amount is increasing. The domain theory does 
not have rules or facts that allow the system to determine which 
liquid will boil first (incomplete - type 11) and therefore it has to 
take into account all possibilities. The system constructs three 
different explanations for the increase in the amount of the 
liquid in the second container (the multiple explanation prob­
lem). For example, if the boiling point of alcohol is less than 
that of water then when the temperature of the mixture reaches 
the boiling point of alcohol the heat flow to the mixture will 
cause alcohol to boil. Boiling will produce alcohol vapor which 
will cause the pressure in the container to increase. The pressure 
will become greater than the pressure in the second container and 
there will be a flow of alcohol vapor to the second container. 
This vapor will cool and condense since the second container is at 
a very low temperature. The condensing alcohol forms the expla­
nation for the observed formation and increase in the amount of 
the unknown liquid. Similarly, if the boiling point of alcohol is 
less than or equal to that of water then water or a mixture of 
alcohol and water will condense in the second container. It is 
important to determine which explanation is correct since the 
explanation is worth generalizing and learning only if a useful 
goal is being achieved - for example, if alcohol is condensing then 
we have separated alcohol from water or obtained a purer ver­
sion of alcohol (distillation). The system identifies the correct 
explanation by designing experiments to determine whether the 
liquid formed in the second container is water, alcohol or a mix­
ture of both. This example also illustrates the large search space 
problem if the above task is part of a much larger task - like 
understanding a distillation factory - that builds in separate 
directions on each explanation. Then the above experiments help 
in pruning the search space by immediately eliminating two of 
the three choices for the unknown liquid. The system can also 
design experiments to select the correct path during explanation 
'construction by determining independently whether the boiling 
point of water is greater than, equal to or less than that of 
alcohol and applying that information to the given situation. 

IV CONCLUSIONS 
In this paper we have discussed problems with and exten­

sions of Mitchell et al.'s classification of imperfect theory prob-

pie explanations problem due to incomplete knowledge. 
lems. Four strategies for detecting imperfections in domain 
theories were described. A uniform approach for handling these 
problems based on experiment design was also described and 
illustrated by an example. These methods were discussed in the 
context of explanation construction for explanation-based learn­
ing. However the detection strategies and the experiment design 
approach are general and can be applied to other knowledge-
intensive Al areas like case-based reasoning, expert systems and 
qualitative reasoning. 
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