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ABSTRACT 

This paper is concerned with the problem of generaliza­
tion heuristics, which are incorporated into our verification sys­
tem for Prolog programs. Two kinds of generalization are dis­
cussed, that is, a mechanical generalisation and an intelligent 
generalization. We show that the mechanical generalization 
used in Boyer-Moore*s theorem prover (BMTP) can be per­
formed by the simplification rule of our verification system, 
as well as in the case of cross-fertilization. To the intelligent 
generalization heuristic, which is not employed in BMTP, we 
give a generalization scheme which is naturally incorporated 
into our inference system of the extended-execution style of 
the Prolog interpreter, and which proves to be effective also 
for flawed induction schemes. 

I. INTRODUCTION 

This paper is concerned with a verification system for 
Prolog programs which is currently under development, as 
one of the subprojects of the FGCS "Intelligent Programming 
System" [1]. 

Logic programming is often advocated as a desirable 
choice for the verification problem because of its clear seman­
tics (e.g., [2]). In the design of our verification system, we have 
tried to take advantage of Prolog's characteristics and present 
first order inference in an extended execution style of a Prolog 
interpreter (3). Not only first order inference but induction 
is indispensable as a means of proving interesting properties 
of Prolog programs such as termination and correctness. In 
the case of functional language, Boyer-Moore's theorem prover 
(BMTP) [4] is famous for its automatic application of induc­
tion and many sophisticated heuristics constructing inductive 
proofs. Into our verification system, various kinds of heuristics 
have been integrated, most of which are inspired by BMTP 
and are developed to suit the verification of Prolog programs 
(e.g-,[5]). 

In this paper, special attention is paid to "Generalization 
Heuristics" which are applied when a theorem to be proved is 
too weak and it is necessary and easier to prove a theorem that 
is stronger than the original weak one. We deal with two kinds 
of generalization heuristics. The first generalization heuristic 
(we call it mechanical generalisation in this paper) corresponds 
to the one used in BMTP, and the second (called intelligent 
generalisation ) is one that is not employed in BMTP but is 
left to the user. Some work has been done with respect to 
functional language to mechanize the intelligent generalisation 
heuristic (e.g.,[6],[7)). Our main purpose lies in an attempt to 
clarify how these two kinds of generalization heuristics can be 

incorporated into the verification of Prolog programs. 
After summarizing some preliminary materials in section 

II, we present our verification methods for Prolog programs in 
section III. In section IV, we explain two kinds of generalization 
heuristics ; first, we illustrate that the mechanical generaliza­
tion is naturally incorporated by the simplification rule of 
our verification system ; secondly, we show some examples 
which cannot be proved by simply applying first order inference 
and induction, and therefore motivate us to incorporate the 
intelligent generalization heuristic. In section V, we discuss 
in detail how the intelligent generalization is performed in 
the framework of our verification system of Prolog programs. 
Lastly in section VI, we discuss the relation to other work and 
some implementation issues. 
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(iii) When G^H or GvH is a positive (negative) subformula 
of F, then G and H are positive (negative) subformulas of 
F. 

(iv) When is a positive (negative) subformula of F, then 
G is a negative (positive) subformula of F and H it a positive 
(negative) subformula of F. 

Next, variables which appear in a specification are distin­
guished in the following way. Let F be a closed first order 
formula. When is a positive subformula or is a 
negative subformula of F, then X is called a free variable of 
F. On the other hand, when is a negative subformula 
or is a positive subformula of F, then Y is called an un­
decided variable of F. In other words, when F is transformed 
into prenex normal form, free variables are variables quantified 
universally, and undecided variables are those quantified exist-
entially. 

A goal formula is a formula which is obtained from an 
5-formula by replacing each undecided variable Y with ?Y 
and deleting all quantifications. Furthermore, a substitution o 
for a goal formula G is called a deciding substitution when a 
instantiates no free variable in G. 

A replacement of an occurrence of a term t in a formula F 
by s is denoted by Ft[s], and a replacement of all occurrences 
of a term t in a formula F by s is denoted by Ft(s). Formula 
F is said to be in a reduced form [10] with respect to logical 
constants true and false, if F is either (i) true or (ii) false, or 
(iii) if neither true nor false occur in F. The reduced form of 
a formula F is denoted by F i. 

III. INFERENCE RULES 

In this section, we give a brief description of our 
verification procedure for a specification (for a detailed ex­
planation, see [3]). 

A. Extended Execution 

Since a specification is not restricted in a Horn clause but 
is expressed in an 5-formula, we need some extension of the 
usual Prolog interpreter. For this purpose, our verification 
system uses the following four inference rules. 

These four inference rules are repeatedly applied to a given 
goal formula until it is reduced to true or false. If these rules 
cannot be applied any more, then we appeal to the following 
induction. 

B. Induction 

Our verification system utilizes inductive proofs which 
are based on structural induction schemes. Those induction 
schemes are also used in [12),[13],[14] for the verification of 
Prolog programs. For example, the following is an induction 
scheme for list X : 

IV. GENERALIZATION HEURISTICS 

In the following, we discuss two kinds of generalization 
heuristics incorporated into our verification system. 

A. Mechanical Generalization 

The generalization employed in BMTP is a heuristic by 
which a term in a formula is replaced by a variable under an 
appropriate condition [4]. For example, when the generaliza­
tion heuristic is applied to a formula in functional language : 
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where term reverse(L) in the first formula it replaced by a new 
variable N and thus a more general formula is obtained. On 
the other hand, let G be a goal formula : 

When we apply the simplification rule to the above un­
derlined positive and negative rever$t(L, M) in G, then we 
generate the following AND-goals : 

which are immediately reduced to : 

and true, respectively. This inference exactly corresponds 
to the above-mentioned generalization heuristic employed in 
BMTP. 

Likewise, the inference of cross-fertilization in BMTP also 
corresponds to the one performed by simplification [3]. In this 
way, generalization and cross-fertilization, which are treated as 
different heuristics in BMTP, are performed in a unified way 
by the simplification rule in our verification system. 

Furthermore, the heuristic of eliminating destructors in 
BMTP can be considered as a kind of generalization heuristic. 
For example, selectors for data structure like ear(L) and cdr(L) 
appearing in the goals of BMTP are eliminated and replaced 
by variables. In Prolog programs, we usually don't use such 
selectors explicitly ; we do without them by using unification. 
Hence, Prolog programming style sometimes makes unneces­
sary such a generalization heuristic as eliminating destructors. 

B Intelligent Generalization 

The second generalization heuristic differs from the above 
one, and BMTP intentionally does not employ it because it 
requires "creative* insight (chap.XII in [4]). In the verification 
of Prolog programs, however, there are also some cases where, 
in proving an induction step goal, we cannot use its induction 
hypothesis because of mismatching with its conclusion. As an 
example of such a case, consider the proof of the following 
theorem. 
theorem (rever se-rever se). 

end. 

where program reverse is defined as follows : 

First, we try to prove the above theorem by induction and 
the induction scheme in section I I l - B is generated for list: X, 
where 

The proof of its base case, Q([ ]), is trivial. The proof 
of the induction step goal, however, is not easily performed 

because of those underlined mismatched literals shown below : 

Here, since we cannot apply simplification because of mis­
matching between *[ ]" and ''[A]'' in the above underlined 
parts, there is no way to use the induction hypothesis. These 
"phenomena" often happen to the verification of Prolog pro­
grams containing a "accumulator" [6] like the second argu­
ment of reverse, which, though they make the computation 
linear order, cause at the same time mismatching between an 
induction hypothesis and its conclusion. Hence, in order to 
solve these kinds of mismatching, it is necessary to incorporate 
some heuristics in order to generate a generalized goal. Our 
verification system generates the following goal mechanically : 

We call such kind of generalization an 'intelligent 
generalisation." It is easily known that the above theorem is 
actually a generalised goal of Go and its proof can be rather 
straightforwardly performed. 

V. INTELLIGENT GENERALIZATION HEURISTIC 

In this section, we state how the intelligent generalization 
heuristic is applied to the proof of an induction step goal and 
give the intelligent generalization scheme which mechanically 
generates its generalised goal. We then go on to show that its 
scheme is also effective for flawed induction schemes [4]. 

A Intelligent Generalisation Scheme 

At first, for ease of understanding, we illustrate the intel­
ligent generalization heuristic by using the previous example. 

The first step of intelligent generalization is to find those 
mismatching arguments which make it impossible to use the 
induction hypothesis. In the above example, those mismatch­
ing arguments are "[ ]" and "(A)" in rever$e(X,{ ),?Yo) and 
reverse(X, [A],Y), respectively. 

Next, we replace the mismatching arguments in the in­
duction conclusion by new variables. In the above, "[A]" is 
replaced by a new variable, say, T. We call those variables 
contained in the mismatching arguments "mismatching vari-
ab/ei," and those arguments in the induction conclusion which 
contain mismatching variables are called "arguments relating 
to mismatching." In this case, "A" is a mismatching variable 
and ''[A|X]" is an argument relating to mismatching. These 
arguments relating to mismatching are also replaced by new 
distinct variables. In this case, we replace ''[A|Xj" by a new 
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To sum up, the intelligent generalization scheme consists 
of the following 4 steps : 

(1) Find out mismatching arguments in literals to which 
the induction has been applied. 

(2) Replace those arguments relating to the mismatching 
by new variables in the induction conclusion (and obtain 
an "over-generalised goal"). 

(3) On the over-generalized goal, impose an appropriate 
constraint relation by generalization condition and by 
the pseudo verification. 

(4) From the restrictions derived in (3), infer the constraint 
relation. 

As for the inference method in step (4) above, our cur­
rent implementation deals only with those constraint relations 
which can be reduced into Horn clauses as mentioned in the 
examples. 

B Application to Flawed Induction Schemes 

The application of the intelligent generalization scheme is 
not restricted to the above-mentioned proofs, but it is some­
times effective also for a "flawed" induction scheme [4]. For 
example, consider the following example which is a corollary 
of the associativity of Append. 

theorem(corollary-of-append-associativity) 
VXDR append{X, X, D)Aappend(X, D, R) D append(D, X, R) 
end. 

From the definition of append, we note that the predi­
cate append{X,Y,Z) recursively changes its first and third 
argument and leaves its second argument fixed. If we use 
the terminology of BMTP, the first and third arguments are 
changing variables and the second argument is an unchang­
ing variable. The above example shows a case where an in­
duction scheme suggested by an atom and another induction 
scheme suggested by a different atom, are mutually flawed. 
That is, the induction scheme suggested by appendix, D,R) 
recursively changes X, which is an unchanging variable in 
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VI. CONCLUDING REMARKS & RELATED WORK 

This paper has shown how generalization heuristics are 
incorporated into the verification system of Prolog programs. 
'Two kinds of generalization, mechanical generalization and in­
telligent generalization, are discussed. We have shown that the 
mechanical generalization used in BMTP can be performed by 
simplification in our verification system, as well as in the case 
of cross-fertilization. To the intelligent generalization heuristic 
we have given a generalization scheme which is naturally in­
corporated into our inference system of the extended-execution 
style, and which has proved to be effective also for flawed in­
duction schemes. 

We owe our heuristics to BMTP and other related work by 
Moore [6) and Aubin [7], although there is a difference in target 
languages and deduction methods. As for the inferring con­
straint relation mentioned in section V, we find some relevance 
to Shapiro's [15] Model Inference System which is a general 
theory to infer a Prolog predicate satisfying given facts. Our 
intelligent generalization scheme differs in that it gives a Prolog 
predicate some constraint relations to be satisfied. 

The generalization heuristics presented here have been ex­
amined by numerous hand proofs and their first versions have 
been implemented in DEC-10 Prolog on DEC-2060 as one of 
the heuristics of our verification system for Prolog programs. 
We intend to implement our verification system on PSI [16] as 
a basis for "Intelligent Programming Environment- for Prolog 
programming on which we can perform various kinds of ex­
periments such as program transformation and synthesis. 
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