
INCORPORATING GENERALIZATION HEURISTICS

INTO VERIFICATION OF PROLOG PROGRAMS

Hirohisa SEKI

Mitsubishi Electric Corporation
Central Research Laboratory
Tsukaguchi-Honmachi 8-1-1

Amagasaki,Hyogo,JAPAN 661

ABSTRACT

This paper is concerned with the problem of generaliza­
tion heuristics, which are incorporated into our verification sys­
tem for Prolog programs. Two kinds of generalization are dis­
cussed, that is, a mechanical generalisation and an intelligent
generalization. We show that the mechanical generalization
used in Boyer-Moore*s theorem prover (BMTP) can be per­
formed by the simplification rule of our verification system,
as well as in the case of cross-fertilization. To the intelligent
generalization heuristic, which is not employed in BMTP, we
give a generalization scheme which is naturally incorporated
into our inference system of the extended-execution style of
the Prolog interpreter, and which proves to be effective also
for flawed induction schemes.

I. INTRODUCTION

This paper is concerned with a verification system for
Prolog programs which is currently under development, as
one of the subprojects of the FGCS "Intelligent Programming
System" [1].

Logic programming is often advocated as a desirable
choice for the verification problem because of its clear seman­
tics (e.g., [2]). In the design of our verification system, we have
tried to take advantage of Prolog's characteristics and present
first order inference in an extended execution style of a Prolog
interpreter (3). Not only first order inference but induction
is indispensable as a means of proving interesting properties
of Prolog programs such as termination and correctness. In
the case of functional language, Boyer-Moore's theorem prover
(BMTP) [4] is famous for its automatic application of induc­
tion and many sophisticated heuristics constructing inductive
proofs. Into our verification system, various kinds of heuristics
have been integrated, most of which are inspired by BMTP
and are developed to suit the verification of Prolog programs
(e.g-,[5]).

In this paper, special attention is paid to "Generalization
Heuristics" which are applied when a theorem to be proved is
too weak and it is necessary and easier to prove a theorem that
is stronger than the original weak one. We deal with two kinds
of generalization heuristics. The first generalization heuristic
(we call it mechanical generalisation in this paper) corresponds
to the one used in BMTP, and the second (called intelligent
generalisation) is one that is not employed in BMTP but is
left to the user. Some work has been done with respect to
functional language to mechanize the intelligent generalisation
heuristic (e.g.,[6],[7)). Our main purpose lies in an attempt to
clarify how these two kinds of generalization heuristics can be

incorporated into the verification of Prolog programs.
After summarizing some preliminary materials in section

II, we present our verification methods for Prolog programs in
section III. In section IV, we explain two kinds of generalization
heuristics ; first, we illustrate that the mechanical generaliza­
tion is naturally incorporated by the simplification rule of
our verification system ; secondly, we show some examples
which cannot be proved by simply applying first order inference
and induction, and therefore motivate us to incorporate the
intelligent generalization heuristic. In section V, we discuss
in detail how the intelligent generalization is performed in
the framework of our verification system of Prolog programs.
Lastly in section VI, we discuss the relation to other work and
some implementation issues.

738 H. Seki

(iii) When G^H or GvH is a positive (negative) subformula
of F, then G and H are positive (negative) subformulas of
F.

(iv) When is a positive (negative) subformula of F, then
G is a negative (positive) subformula of F and H it a positive
(negative) subformula of F.

Next, variables which appear in a specification are distin­
guished in the following way. Let F be a closed first order
formula. When is a positive subformula or is a
negative subformula of F, then X is called a free variable of
F. On the other hand, when is a negative subformula
or is a positive subformula of F, then Y is called an un­
decided variable of F. In other words, when F is transformed
into prenex normal form, free variables are variables quantified
universally, and undecided variables are those quantified exist-
entially.

A goal formula is a formula which is obtained from an
5-formula by replacing each undecided variable Y with ?Y
and deleting all quantifications. Furthermore, a substitution o
for a goal formula G is called a deciding substitution when a
instantiates no free variable in G.

A replacement of an occurrence of a term t in a formula F
by s is denoted by Ft[s], and a replacement of all occurrences
of a term t in a formula F by s is denoted by Ft(s). Formula
F is said to be in a reduced form [10] with respect to logical
constants true and false, if F is either (i) true or (ii) false, or
(iii) if neither true nor false occur in F. The reduced form of
a formula F is denoted by F i.

III. INFERENCE RULES

In this section, we give a brief description of our
verification procedure for a specification (for a detailed ex­
planation, see [3]).

A. Extended Execution

Since a specification is not restricted in a Horn clause but
is expressed in an 5-formula, we need some extension of the
usual Prolog interpreter. For this purpose, our verification
system uses the following four inference rules.

These four inference rules are repeatedly applied to a given
goal formula until it is reduced to true or false. If these rules
cannot be applied any more, then we appeal to the following
induction.

B. Induction

Our verification system utilizes inductive proofs which
are based on structural induction schemes. Those induction
schemes are also used in [12),[13],[14] for the verification of
Prolog programs. For example, the following is an induction
scheme for list X :

IV. GENERALIZATION HEURISTICS

In the following, we discuss two kinds of generalization
heuristics incorporated into our verification system.

A. Mechanical Generalization

The generalization employed in BMTP is a heuristic by
which a term in a formula is replaced by a variable under an
appropriate condition [4]. For example, when the generaliza­
tion heuristic is applied to a formula in functional language :

H. Seki 739

where term reverse(L) in the first formula it replaced by a new
variable N and thus a more general formula is obtained. On
the other hand, let G be a goal formula :

When we apply the simplification rule to the above un­
derlined positive and negative rever$t(L, M) in G, then we
generate the following AND-goals :

which are immediately reduced to :

and true, respectively. This inference exactly corresponds
to the above-mentioned generalization heuristic employed in
BMTP.

Likewise, the inference of cross-fertilization in BMTP also
corresponds to the one performed by simplification [3]. In this
way, generalization and cross-fertilization, which are treated as
different heuristics in BMTP, are performed in a unified way
by the simplification rule in our verification system.

Furthermore, the heuristic of eliminating destructors in
BMTP can be considered as a kind of generalization heuristic.
For example, selectors for data structure like ear(L) and cdr(L)
appearing in the goals of BMTP are eliminated and replaced
by variables. In Prolog programs, we usually don't use such
selectors explicitly ; we do without them by using unification.
Hence, Prolog programming style sometimes makes unneces­
sary such a generalization heuristic as eliminating destructors.

B Intelligent Generalization

The second generalization heuristic differs from the above
one, and BMTP intentionally does not employ it because it
requires "creative* insight (chap.XII in [4]). In the verification
of Prolog programs, however, there are also some cases where,
in proving an induction step goal, we cannot use its induction
hypothesis because of mismatching with its conclusion. As an
example of such a case, consider the proof of the following
theorem.
theorem (rever se-rever se).

end.

where program reverse is defined as follows :

First, we try to prove the above theorem by induction and
the induction scheme in section I I l - B is generated for list: X,
where

The proof of its base case, Q([]), is trivial. The proof
of the induction step goal, however, is not easily performed

because of those underlined mismatched literals shown below :

Here, since we cannot apply simplification because of mis­
matching between *[]" and ''[A]'' in the above underlined
parts, there is no way to use the induction hypothesis. These
"phenomena" often happen to the verification of Prolog pro­
grams containing a "accumulator" [6] like the second argu­
ment of reverse, which, though they make the computation
linear order, cause at the same time mismatching between an
induction hypothesis and its conclusion. Hence, in order to
solve these kinds of mismatching, it is necessary to incorporate
some heuristics in order to generate a generalized goal. Our
verification system generates the following goal mechanically :

We call such kind of generalization an 'intelligent
generalisation." It is easily known that the above theorem is
actually a generalised goal of Go and its proof can be rather
straightforwardly performed.

V. INTELLIGENT GENERALIZATION HEURISTIC

In this section, we state how the intelligent generalization
heuristic is applied to the proof of an induction step goal and
give the intelligent generalization scheme which mechanically
generates its generalised goal. We then go on to show that its
scheme is also effective for flawed induction schemes [4].

A Intelligent Generalisation Scheme

At first, for ease of understanding, we illustrate the intel­
ligent generalization heuristic by using the previous example.

The first step of intelligent generalization is to find those
mismatching arguments which make it impossible to use the
induction hypothesis. In the above example, those mismatch­
ing arguments are "[]" and "(A)" in rever$e(X,{),?Yo) and
reverse(X, [A],Y), respectively.

Next, we replace the mismatching arguments in the in­
duction conclusion by new variables. In the above, "[A]" is
replaced by a new variable, say, T. We call those variables
contained in the mismatching arguments "mismatching vari-
ab/ei," and those arguments in the induction conclusion which
contain mismatching variables are called "arguments relating
to mismatching." In this case, "A" is a mismatching variable
and ''[A|X]" is an argument relating to mismatching. These
arguments relating to mismatching are also replaced by new
distinct variables. In this case, we replace ''[A|Xj" by a new

740 H.Seki

To sum up, the intelligent generalization scheme consists
of the following 4 steps :

(1) Find out mismatching arguments in literals to which
the induction has been applied.

(2) Replace those arguments relating to the mismatching
by new variables in the induction conclusion (and obtain
an "over-generalised goal").

(3) On the over-generalized goal, impose an appropriate
constraint relation by generalization condition and by
the pseudo verification.

(4) From the restrictions derived in (3), infer the constraint
relation.

As for the inference method in step (4) above, our cur­
rent implementation deals only with those constraint relations
which can be reduced into Horn clauses as mentioned in the
examples.

B Application to Flawed Induction Schemes

The application of the intelligent generalization scheme is
not restricted to the above-mentioned proofs, but it is some­
times effective also for a "flawed" induction scheme [4]. For
example, consider the following example which is a corollary
of the associativity of Append.

theorem(corollary-of-append-associativity)
VXDR append{X, X, D)Aappend(X, D, R) D append(D, X, R)
end.

From the definition of append, we note that the predi­
cate append{X,Y,Z) recursively changes its first and third
argument and leaves its second argument fixed. If we use
the terminology of BMTP, the first and third arguments are
changing variables and the second argument is an unchang­
ing variable. The above example shows a case where an in­
duction scheme suggested by an atom and another induction
scheme suggested by a different atom, are mutually flawed.
That is, the induction scheme suggested by appendix, D,R)
recursively changes X, which is an unchanging variable in

H. Seki 741

VI. CONCLUDING REMARKS & RELATED WORK

This paper has shown how generalization heuristics are
incorporated into the verification system of Prolog programs.
'Two kinds of generalization, mechanical generalization and in­
telligent generalization, are discussed. We have shown that the
mechanical generalization used in BMTP can be performed by
simplification in our verification system, as well as in the case
of cross-fertilization. To the intelligent generalization heuristic
we have given a generalization scheme which is naturally in­
corporated into our inference system of the extended-execution
style, and which has proved to be effective also for flawed in­
duction schemes.

We owe our heuristics to BMTP and other related work by
Moore [6) and Aubin [7], although there is a difference in target
languages and deduction methods. As for the inferring con­
straint relation mentioned in section V, we find some relevance
to Shapiro's [15] Model Inference System which is a general
theory to infer a Prolog predicate satisfying given facts. Our
intelligent generalization scheme differs in that it gives a Prolog
predicate some constraint relations to be satisfied.

The generalization heuristics presented here have been ex­
amined by numerous hand proofs and their first versions have
been implemented in DEC-10 Prolog on DEC-2060 as one of
the heuristics of our verification system for Prolog programs.
We intend to implement our verification system on PSI [16] as
a basis for "Intelligent Programming Environment- for Prolog
programming on which we can perform various kinds of ex­
periments such as program transformation and synthesis.

Acknowledgments

The author appreciates K. Fuchi(Director of ICOT) , K.
Furukawa (Chief of ICOT 2nd Laboratory) and T. Yokoi(Chief
of ICOT 3rd Laboratory) for the chance of doing this research.
He is greatly indebted to T. Kanamori for valuable comments,
especially on the extended execution. He would also like to
thank A. Fusaoka, H. Fujita and K. Suzuki for their useful
discussions and help.

References
[1] Furukawa, K. and T. Yokoi, "Basic Software System" In

Proc FGCS-84. Tokyo, Japan, November, 1984, pp. 37-
57.

[2] Bowen, K. A. "Programming with Full First-Order Logic"

In Machine Intelligence 10 (1982) 421-440.
[3] Kanamori, T. "Verification of Prolog programs Using an

Extension of Execution," ICOT Technical Report, TR-096,
1984.

[4] Boyer, R. S. and J. S. Moore. Computational Logic, New
York: Academic Press, 1979.

[5] Kanamori, T. et al. "Formulation of Induction Formulas in
Verification of Prolog Programs," ICOT Technical Report,
TR-094,1984.

[6] Moore, J. S., "Introducing iteration into the pure LISP
theorem prover." IEEE Trans. Software Eng. 1.3 (1975)
328-338 .

[7] Aubin, R. "Some Generalisation Heuristics in
Proofs by Induction" In Proc. IRIA Colloq. on Proving
and Improving Programs, Arc et Senans, France, July,
1975, pp. 197-208.

[8] Pereira, L. M., F. C. Pereira and D. H. Warren "User's
Guide to DECsystem-10 PROLOG," Techical Report,
Univ. of Edinburgh, September 1978.

[9] Prawitz, D. Natural Deduction, A Proof-Theoreticai-Study
Stockholm: Almqvist & Wiksell, 1965.

[10] Murray, N. V., "Completely Non-Clausal Theorem
Proving", Artificial Intelligence, 18:1 (1982) 67-85.

[11] Clark, K. L. "Negation as Failure" In Logic and Database.
Gallaire. H and J. Minker. Eds., (1978) 293-322.

[12] Clark, K. L. and S-A. Tarnlund "A First Order Theory of
Data and Programs" In IFIP-77. Toronto, Canada, August,
1977, pp. 939-944.

[13] Clark, K. L. "Predicate Logic as a Computational
Formalism," Technical Report 59, Imperial College,
December 1979.

[14] Stering, L. and A. Bundy "Meta-Level Inference
and Program Verification" In 6th Conf. on Automated
Deduction. Lecture Notes in Computer Science 138, 1982,
pp. 144-150.

[15] Shapiro, E. Y. "An Algorithm that Infers Theories from
Facts" In Proc. 1JCAI-81. Vancouver, Canada, August,
1981, pp. 446-451.

[16] Yokoi, T., S. Uchida, et al. "Sequential Inference Machine
:SIM" In Proc. FGCS-84. Tokyo. Japan, November, 1984,
pp. 70-81.

