
TOWARDS A MODEL OF CONCEPTUAL KNOWLEDGE ACQUISITION 
THROUGH DIRECTED EXPERIMENTATION 

Shankar Rajamoney 
Gerald DeJong 
Boi Faltings 

Coordinated Science Laboratory 
University of I l l inois at Urbana-Champaign 

Urbana, IL 61801 

ABSTRACT 

Most current Art i f ic ial Intelligence systems require a complete 
and correct model of their domain of application. However, for any 
domain of reasonable size, it is not feasible to construct such a 
model. The main thrust of this project is to bu i ld a system that can 
continuously update its model through a constant monitoring of the 
real wor ld . The project involves the development of a system that 
starts w i t h an incomplete and incorrect model of the wor ld . Whi le 
performing its tasks the system is occasionally confronted by obser­
vations which are inconsistent w i t h its current beliefs. It attempts 
to explain these observations by hypothesizing reasons for the 
inconsistencies and devising experiments to pinpoint the flawed 
belief. Based on the results of the experiments the system revises its 
beliefs to accommodate the previously inconsistent observations. 

I I N T R O D U C T I O N 

Machine Learning is of increasing importance in Art i f ic ia l 
Intelligence [Carbonell82, Michalski83, Mitchel ls3, SchankS2, 
Winston83j. In this paper, we shall describe a new fo rm of 
explanation-based learning which involves designing and conduct­
ing experiments in the "rear wor ld to help w i t h the explanation of 
some observation. When human learning behavior is considered, it 
seems that there are two classes of explanatory learning to be dis­
tinguished. The first is the acquisition of schematic knowledge, U. 
the high-level learning of plans and scripts (e.g„ how to behave at a 
restaurant). This form of learning does not, in principle, enhance 
the power of the knowledge that is already there, but makes its 
application more efficient via chunking w i t h schemata. The second 
is the acquisition of conceptual knowledge. This form of learning 
adds new capabilities that the previous knowledge did not provide. 

Note that there are marked differences between the two 
forms. Schematic knowledge may be learned f rom a single observa­
t ion. For example, the basic structure of a script for kidnapping 
might be clear f rom a single observation, provided there is enough 
knowledge to understand the dependencies between the indiv idual 
events in that situation. This has been demonstrated in work on 
explanatory schema acquisition [DeJong82l 

Acquir ing new concepts, on the other hand, is more difficult. 
When people discovered radioactivity, it took them a long time to 
formulate the proper concept. This is a case where the previous 
knowledge is not sufficient to explain the observations and thus rea­
soning has to be replaced by experimentation. Another point to 
observe in this example is that new concepts are not discovered by a 
search for them, but by noticing discrepancies between the wor ld 
model predictions and the way the wor ld behaves. New concepts 
arise out of the necessity to explain these discrepancies whi le main­
taining a knowledge base consistent w i t h the earlier observations. 
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II THE SYSTEM 

A. System O v e r v i e w 

Our system has a wor ld model of its domain that drives its 
reasoning. A number of beliefs are impl ici t in the structure of the 
wor ld model. When situations arise that cannot be explained w i t h 
the current wor ld model thereby leading to a contradiction, the 
system starts questioning its beliefs. It first questions beliefs 
directly l inked to the contradiction. Only if these fa i l to give a con­
sistent explanation does it question secondary causes of the con­
tradiction, beliefs on which the primary beliefs rested, and the 
beliefs behind the questioning and investigation process. The 
underlying assumption is that the number of errors in the model is 
small. The system performs a series of experiments directed at 
finding the belief at faul t . Once the belief has been identified it is 
revised to give a model consistent w i t h the current observations. 

The planner used by the system predicts the observations the 
system w i l l make when the plans are executed. The system con­
stantly compares these predictions w i t h the actual observations. 
Whenever it finds changes in the wor ld that were not a conse­
quence of some plan, it tries to explain them as an effect of processes 
running independently f rom the system (for example, evaporation). 

One of the system's impl ic i t beliefs is that liquids cannot pass 
through solids. Whi le carrying out its normal activities, the sys­
tem inadvertently encounters an example of osmosis, a process unk-
nown to the system. Osmosis is a natural phenomenon that occurs 
when two solutions are separated by a permeable solid. If the con­
centrations of the two solutions are different then a flow of solvent 
through the solid takes place in such a way as to minimize the 
difference in concentrations. 

The system's observation of osmosis cannot be explained w i t h 
its current knowledge of the wor ld . The information deduced f rom 
the contradiction enables the system to devise experiments to deter­
mine which of its beliefs is wrong and to discover some charac­
teristics of the osmosis process. 

The observation of the phenomenon of osmosis results in the 
system revising its wor ld model. It modifies its belief to al low for 
liquids to pass through solids under special circumstances. In the 
process, it discovers the concept of permeability of solids and a new 
form of f low which we know as osmosis. 

B. The Osmosis Example 

The system is given a goal of forming a mixture of specific 
amounts of solutions, #$Solutionl and #$Solution2, of known con­
centrations, concl and conc2 (concl > conc2). In order to achieve 
this goal it generates a subgoal of temporarily storing the specified 
amounts of the two solutions in containers, As it happens the only 
suitable container has two compartments separated by a permeable 
membrane. The planner, not realizing the significance of the part i ­
t ion, plans to pour the two solutions of differing concentrations into 
the two compartments. As a part of its monitoring of the real 
wor ld , it expects a number of observations including a decrease in 
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the amount of solutions in the two original containers, and the 
appearance of specified amounts of solution in the two compart­
ments of the selected container. 

C. Con t rad i c t i on Detect ion 

The system verifies the predictions made by the planner by 
comparing the predictions w i th its input observation stream. 
Immediately alter execution of the plan it finds that al l the predic­
tions made by the planner are confirmed However the next time it 
examines the container it finds that the amounts of the two solu­
tions have changed. This change was not predicted by the planner. 

The explanation module tries to relate the change to an effect 
of one of the known processes for changing the amount of a solu­
tion. The relevant processes are evaporation, condensation, absorp­
tion ( in which the solid absorbs l iquid l ike a sponge), release ( in 
which the solid releases the absorbed l iquid), and flow. The system 
tries to explain the observations as a result of these processes by 
activating the corresponding schemata and checking if the change 
caused by running each process is compatible w i t h the observations. 
However, it finds that none of the processes can be activated since 
each of them has preconditions which cannot be satisfied. Evapora­
tion and condensation require exposure to the atmosphere and since 
the compartments are closed by lids they cannot be activated. 
Absorption and release require the container to have an absorbent 
property. Flow requires a free path from the source to the destina­
tion. These requirements are not met in the present situation. So 
the system is left w i th a contradiction in which it has observations 
for which its current wor ld model has proven inadequate (Figure 
1). 

D. Bel iefs Tested 

The explanation structure that resulted in the contradiction 
involves a number of processes. Each process seems inapplicable 
because one or more preconditions are not satisfied in the current 
situation. The beliefs on which the contradiction rests are obtained 
from the reasons for the failure of each process to run. The beliefs 
are : 

(1) The procedure for classifying solids into absorbent and non-
absorbent classes is right, 

(2) Liquids require a clear, solid-free path to flow, and 

(3) Evaporation and condensation require exposure to the atmo­
sphere. 

For the observation to be valid one of these beliefs must be 

wrong and to find out which one the system performs a series of 
experiments. Note that on the first attempt at finding an explana­
tion the system tests only the immediate causes of failure of the 
pr imary processes. 

E. The Expe r imen t Designer 

There are two stages of experimentation: 
(1) The first stage involves distinguishing among the five processes 

that would explain the contradiction, 

(2) The second stage involves constructing a series of experiments 
which are used to generalize the specific instance of the process 
observed. 

The partial ly instantiated processes, the failed preconditions, 
and the unexplained observations form the input to the experiment 
design module. The ideal experiment would reproduce the setup in 
the original observation in such a manner that only one of the 
processes is active and all the other competing processes are elim­
inated total ly. However, it is impossible to eliminate the possibility 
of some processes (for example, absorption, since one cannot build a 
container wi thout walls). Furthermore, this may be undesirable 
because the process, which is itself suspect, may continue to 
influence the observations in some hidden manner. For example, 
one might th ink that flow can be eliminated by separating the two 
compartments and moving one away from the other, but the belief 
being questioned, namely, liquids cannot flow through solids, is 
st i l l in effect; this time w i t h a longer path through more solids like 
tables and floors. 

Some means of discriminating al l the instantiations of the five 
processes simultaneously is required Note that the basis for distin­
guishing the processes cannot depend on the preconditions because 
they are suspected of not activating processes when they should 
have. One characteristic of a process is that the time rate at which 
the process progresses depends on geometrical parameters (length, 
area etc.), state variables (temperature, pressure etc), and the pro­
perties of the participants. The system bases its experiments upon 
the rate at which each process progresses. Note that a secondary 
belief, which forms the basis for the investigation, is that the pro­
portionalities of the rates on the above parameters do not change. 

Experiments are designed such that one of the processes is 
al lowed to dominate the rest by having an environment in which 
its rate is enhanced and the other competing processes' rates inhi­
bited. If the original observations are reproduced in a much shorter 
t ime period then the evidence points to the dominating process as 
the cause of the observation. The flow process rate depends on the 
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cross-sectional area and the length of the path from the source to 
the destination, the evaporation and condensation rates depend on 
the surface area of contact between the liquid and its vapor, and 
the absorption and release rates depend on the surface area of con­
tact between the absorbing solid and the absorbed liquid. By mani­
pulating the geometry of the containers it is possible to build con­
tainers in which everything else remains as in the original setup, 
but parameters like contact surface area, cross-sectional area and 
length are maximized or minimized to allow one process to dom­
inate the other competing ones. 

In our particular example the system comes up with experi­
ment specifications to distinguish each process. The set of 
specifications to distinguish the process flow is shown in Figure 2 
and an experiment that meets these specifications relative to the ori­
ginal setup is shown in Figure 3. The system requests that the 
experiments be carried out and the results returned. Based on the 
combined results the system concludes that some form of the pro­
cess flow caused the original observation. 

HI CONCLUSIONS 
We have explored a model for making experiments to explain 

inconsistencies between the system's knowledge and the real world. 
In some respects, this is similar to work described in [Langley8l] 
but our approach uses the world model to drive the experimenta­
tion. Also, some results on testing hypotheses using experiments 
have been reported in [Shapiro8l]. Shapiro's approach is, however, 
of a more theoretical nature, and is impractical because it uses a 
large number of experiments. 

The project is still in its infancy. The next step is to improve 
the experiment design, where the project addresses serious philo­
sophical issues about knowledge and the closed world hypothesis. 
Our approach to this so far has been to copy people's behavior and 
try the simple explanations first. Only if these fail are the more 
basic assumptions that underlie them retracted. 

F. Revising the World Model 
The most specific revision of the world model would be to 

create a new process that resembles the process flow in most 
respects. However this process wi l l have preconditions that permit 
flow when the two specific solutions are separated by the specific 
partition as in the example above. Our current efforts are concen­
trated on generalizing this specific case using explanation-based 
learning [DeJong85] in conjunction with a further series of experi­
ments aimed at discovering the properties of the participants that 
played a crucial role in the example. In any case, the important 
thing to note is that the system no longer believes that liquids can­
not pass through solids and has a specific example to disprove it. 
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