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ABSTRACT 
This paper describes a natural language system which 

improves its own performance through learning. The system 
processes short English narratives and is able to acquire, f rom a sin­
gle narrative, a new schema for a stereotypical set of actions. Dur­
ing the understanding process, the system attempts to construct 
explanations for characters' actions in terms of the goals their 
actions were meant to achieve. When the system observes that a 
character has achieved an interesting goal in a novel way, it gen­
eralizes the set of actions they used to achieve this goal into a new 
schema. The generalization process is a knowledge-based analysis of 
the causal structure of the narrative which removes unnecessary 
details whi le maintaining the val id i ty of the causal explanation. 
The resulting generalized set of actions is then stored as a new 
schema and used by the system to correctly process narratives 
which were previously beyond its capabilities. 

I INTRODUCTION 
A natural language system requires extensive knowledge 

about the w o r l d Clearly, if a computer system is to summarize, 
translate, or answer questions about a text, it must have knowledge 
about the concepts expressed in the text. Imagine t ry ing to process a 
narrative describing a bank robbery wi thout knowledge of money 
and why people want i t . This is a conceptual rather than linguistic 
requirement, and it means that at the heart of a natural language 
processor there must be a problem solver to infer missing but 
important concepts, to insure that the narrative phrases are causally 
related in an appropriate way, and perhaps to guide the linguistic 
processing [DeJong82l 

Schema-based problem solvers [Charniak77, Minsky75, 
Schank77] have proven themselves more workable for natural 
language processing applications than their heuristic search counter­
parts. In order to process a wide range of text, a schema-based 
natural language processor must possess many schemata, perhaps 
hundreds of thousands. This presents both practical and theoretical 
problems. Somehow these schemata must find their way into the 
system. They cannot al l be bui l t in by hand; there are simply too 
many. Furthermore, hand coding does not al low for dynamic aug­
mentation of wor ld knowledge. This is an important facet of 
language processing. For example, the word i iSkyjacking," is now 
an accepted newspaper term but was unheard of twenty years ago. 
Readers have learned it as a by-product of their normal newspaper 
reading and natural language processing systems must be able to do 
the same. 

We have taken the first steps in this direction at the Univer­
sity of Il l inois. A natural language processing system called 
GENESIS (for GENeralizing Explanations of Stories Into Schemata) 
has been designed and implemented which acquires new schemata 
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in the normal course of processing narratives.1 After acquiring new 
schemata, the system is able to correctly process narratives that 
were previously beyond its capabilities. 

We call the learning process used by GENESIS explanatory 
schema acquisition [DeJong8 3). It is a form of explanation-based 
learning [DeJong85l which can be briefly defined as learning a new 
problem solving method by analyzing the causal structure of a 
problem solution. The system is f u l l y implemented and an example 
sequence demonstrating the system's learning is given later in the 
paper. A longer version of this paper appears as [Mooney85l 

D GENERAL SYSTEM ORGANIZATION 
The general organization of the GENESIS narrative processing 

system is shown in figure 1. First, English input is processed by a 
parser into a conceptual representation (CRep), a case-frame 
representation which uses some conceptual dependency primitives 
[Schank75] as we l l as predicates for complex schemata. Currently, 
we are using an adaptation of Dyer's McDYPAR [Dyer83] for this 
purpose; however, since the focus of our research is learning, we 
make no claims about parsing and alternative approaches could be 
used for this task (eg. [Marcus80, Waltz84]). 

The basic task of the understander is to construct a causally 
complete representation called the model A model for a narrative 
has explicit representations for al l the inputs as wel l as the many 
inferences that must be made to causally connect them together. 
There are four types of causal l inks for connecting assertions in the 
model of a narrative. These are: 
precondition: A l ink between a state and an action it enables. 
effect. A l i nk between an action and a resulting state. 

lThe use of the term " i tory" in natural language preening ha* been controver 
t ial (Brewer82] Therefore, In this paper we have adopted the term "narrative" to 
refer to connected text which may tack a plot or other defining aspect of a "Story." 
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motivation: A l ink between a volit ional action and the beliefs 
and goals of the actor which motivated him to per­
fo rm the action. 

inference: A l ink between a state and another state which it 
implies. 

To avoid confusion, such "causal" l inks between assertions in the 
model w i l l be called support l inks, since a precondition of an action 
supports the performance of that action but does not cause it The 
closely related term data dependency link [Doyle78] is not used 
since it is normal ly reserved for the support of inferences, not for 
the support of both inferences and actions. Inferr ing causal connec-
tions necessarily employs a large amount of background knowledge 
which is stored in the schema library. The techniques and 
representations used in this process are similar to those used in past 
work in narrative understanding [Charniak77, Cul l ingford78, 
DeJong82, Dyer83, Wilensky83] and are discussed in sections IV 
and V. 

In order to demonstrate the abilities of the understander, a 
simple question answering system is used to inspect the model. 
Since our interests lie in guiding the generalization process through 
the use of causal relationships, this subsystem is pr imar i ly used for 
accessing the reasons why an actor performed a certain action or 
why a particular state exists. This information is easily retrieved 
by inspecting the support l inks between the various states and 
actions in the model. Of course, there are many issues involved in 
retrieving the most appropriate answers to questions (see 
lLehnert78]) wh ich we do not f u l l y confront in this subsystem. A 
simple natural language generator for translating replies into 
English is also included as part or the system. 

if an actor in a narrative achieves an important goal through 
a novel combination of actions, the explanation fo r how the goal 
was achieved is generalized into a new schema. The combination of 
actions which supports the achieved goal state is generalized as far 
as possible w i thout breaking any of the connecting support l inks or 
violating the well-formedness of individual actions and states. 
This generalized structure is then stored as a new schema in the 
l ibrary where it is used to facilitate the processing of future narra­
tives. This generalization process is discussed in section VI and is the 
key to the learning technique of explanatory schema acquisition. 

I l l A N E X A M P L E 

Current ly , GENESIS has acquired two new schemata. In one 
example, the system learns a schema for someone kidnapping an 
individual and holding them for ransom. In the other, it learns a 
schema for someone burning his own bui lding to collect the 
insurance. Here we w i l l show the performance of the system on 
the kidnapping example. Before processing the fo l lowing narratives, 
GENESIS contains information in its schema l ibrary about bargain­
ing, capturing and confining individuals, threatening, and many 
other concepts; however, it does not have a schema for kidnapping 
for ransom. First it receives the fo l lowing "tesT narrative: 

INPUT: Ted is the husband of Alice, He won $ 100000 in the lot­
tery. Bob imprisoned Alice in his basement Bob got 
$75000 and released Alice, 

Processing S t o r y . 
Finished processing. 

No thematic goals achieved by a novel combination of actions: no 
generalization. 

Ready for questions: 

? (Who gave Bob the money) 
Answer unknown. 

? ( W h y d id Bob lock Alice in his basement) 
Cannot find sufficient reason fo r his action. 

? (Why did Bob release Alice) 
Cannot find sufficient reason for his action. 

Notice that in this narrative it is not mentioned how Bob got the 
money or w h y Bob imprisoned Alice and then released her. Since 
the system does not have a schema for kidnapping, it cannot infer 
the missing information and construct a causally complete explana­
tion of the narrative. Next, it is given the fo l lowing narrative. 

INPUT: Fred is the father of Mary and is a mil l ionaire. John ap­
proached Mary. She was wearing blue jeans. John pointed 
a gun at her and to ld her he wanted her to get into his 
car. He drove her to his hotel and locked her in his room. 
John called Fred and told h im John was holding Mary 
captive. John told Fred if Fred gave him $ 250000 at 
Trenos then John wou ld release Mary. Fred gave him the 
money and John released Mary . 

Processing S to ry -
Finished processing. 

John achieved the thematic goal: John has $ 250000. 
Generalizing- Assembling new schema: CAPTURE-BARGAIN. 

Ready for questions: 
9 (Why did John imprison Mary in his room) 
So John and Fred could make a bargain in which John released 
Mary and Fred gave John 250000 dollars at Trenos restaurant 

? (Why did John make the bargain w i t h Fred) 
Because John wanted to have 25000 dollars more than he wanted 
to hold Mary captive. 
9 (Why did Fred make the bargain w i t h John) 
Because Fred wanted Mary to be free more than he wanted to have 
250000 dollars. 

? (Why did Fred want Mary free) 
Because Fred was Mary's father. 

Unl ike the first narrative, this one is detailed enough to allow 
GENESIS to causally connect the indiv idual actions. The resulting 
causal structure is then generalized into a new schema of kidnap­
ping for ransom (which GENESIS calls CAPTURE BARGAIN). Next, 
the system is given the first narrative again, and using the schema 
it has just acquired, it is able to infer the missing information and 
causally connect the actions. Consequently, it is able to answer the 
questions which previously it could not answer. 

INPUT: Ted is the husband of Alice. He won $ 100000 in the lot­
tery. Bob imprisoned Alice in his basement Bob got 
$75000 and released Alice. 

Processing S to ry -
Finished processing. 

No thematic goals achieved by a novel combination of actions no 
generalization. 

Ready for questions: 

? (Who gave Bob the money) 
Ted gave Bob 75000 dollars. 

? ( W h y d id Bob lock Alice in his basement) 
So Bob and Ted could make a bargain in which Bob released Al ice 
and Ted gave Bob 75000 dollars. 

? ( W h y d id Bob release Alice) 
Because Bob and Ted made a bargain in which Bob released Al ice 
and Ted gave Bob 75000 dollars. 

I V K N O W L E D G E REPRESENTATION 

GENESIS* knowledge is represented in a l ibrary of schemata: 
packets of general informat ion about stereotypical objects, situa-
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tions, and actions. A l l schemau in the library are arranged in a 
hierarchical inheritance net under the three major classes of 
ACTION, STATE, and OBJECT (the highest level class is simply called 
SCHEMA). Each schema has a set of roles associated w i t h it wh ich 
can be filled by other schemata to create an insunce of the schema. 
The type of information associated w i t h a schema depends on 
whether it is an ACTION. STATE, or OBJECT so each of these w i l l be 
discussed in turn. 

ACTION schemau represent dynamic events which change the 
sute of the world. The fo l lowing pieces of information are atuched 
to ACTION schemau. In addition to the information atuched 
directly to a particular schema, each ACTION inherits the informa­
tion atuched to ACTIONS above it in the abstraction hierarchy. 

Role Constraints: Each role is marked wi th the type of 
schema which can legally fill i t . 

Defaults Default fillers can be specified for each 
role. 

Preconditions: States which must be true in order for 
the action to u k e place. 

Motivations: Sutes (BELIEFS and GOALS) which explain 
w h y an actor would perform this action. 

Effects: Sutes which are true after the action is 
performed. 

Terminations: Sutes which are no longer true after the 
action is performed. (These are similar to 
the delete-lists in STRIPs but sutes are 
temporally marked as no longer holding 
instead of being deleted f rom the model.) 

Expansion Schemau: A set of lower-level sutes and actions 
which actually make up this action along 
w i th the support relationships between 
them (similar to the body of a script). 

Suggested Schemata: Larger composite actions which this ac­
tion may be a part of. 

Determining Conditions: A set of lower-level actions and sutes 
which if al l present indicate the oc­
currence of this action. 

STATES, on the other hand, represent relatively sutic situa­
tions in the wor ld , such as an individual being someone's father or 
being in possession of some object The fo l lowing pieces of informa­
tion are atuched to STATE schemata. In addition to the information 
atuched directly to a particular schema, each STATE inherits the 
information atuched to STATES above it in the abstraction hierar­
chy. 
Role Constraints: Each role is marked w i t h the type of schema 

which can legally f i l l i t 
Defaults: Default fillers can be specified for each role. 
Inferences: Other sutes which are reasonable inferences 

to make from this sute. 
Achieving Actions: Actions which can be used to achieve this 

sute. 
OBJECTS represent types of things in the w o r l d The informa­

tion atuched to OBJECT schemau varies f rom class to class. Corn-
mon examples for physical objects would be defaults for size, shape, 
and other physical attributes. 

V T H E UNDERSTANDING PROCESS 

Since applying explanatory schema acquisition depends on 
having a causal chain of actions to generalize, the "undemanding" 
abi l i ty of GENESIS is concentrated on constructing this chain by 
inferr ing missing information and causally connecting inputs 
together. We do not attempt to deal w i th other important issues 
which have recently occupied researchers in narrative undemand­
ing such as plot units [Lehnert82l thematic abstractions units 
[Dyer83] story points [Wi lensky83l affect [DyerS3l and integrated 

parsing [DeJong82, Dyer83). 

In accomplishing the usk of constructing causal connections, 
GENESIS, l ike FAUSTUS [Norvig83, WilenskyS3l uses a combina­
tion of top-down and bottom-up processing techniques. If a set of 
inputs in a narrative matches a schema which the system already 
has, then it uses top-down processing to fill in the expansion of this 
schema w i t h the particular inputs of this narrative, much like a 
script driven program such as SAM [Cull ingford78] or FRUMP 
(DeJong82). However, if an action in the narrative is not explained 
by a known schema, it attempts to conned it 10 other actions and 
sutes in the narrative by searching for existing sutes which fu l f i l l 
the preconditions for this action, or by hypothesizing intermediate 
actions which causally connect it to existing sutes or actions. In 
this way, it also operates in a more bottom-up fashion like plan-
based programs such as PAM [Wilensky83). 

A . Schema A c t i v a t i o n and De te rm ina t i on 

If a schema-based system is to be able to process a range of 
possible inputs, it must have access to a large number of schemata. 
Therefore, in order to avoid repeated searching through the entire 
daubase of schemata, it must also have an efficient method for 
selecting the particular schemau which are applicable to the 
current i npu t Several researchers have addressed this difficult 
problem [Charniak78, DeJong82, Norvig83) and below is a brief 
description of the approach GENESIS uses. 

When GENESIS processes an input, it adds it to the model and 
activates al l the schemau in the list of suggested schemata 
atuched to the schema class of the input. Active schemau then 
monitor subsequent inputs and check if they match parts of its 
expansion and can therefore be considered part of this active 
schema. When al l the determining conditions of an active schema 
are met, it is determined or considered to have occurred in the nar­
rative and is added to model along w i th the schemau and support 
relationships given in its expansion.2 If a determining condition is 
an action, then it is also considered to have occurred if a l l of its 
effects are in the model. 

B. Bo t tom-up Const ruc t ion of Support Relat ionships 

When a new schema insunce is added to the model (either as 
the result of an input or an inference on the part of the system), 
the system first tries to explain it as part of a known schema. How­
ever, if the new insunce does not suggest any higher-level sche­
m a u nor match part of any already active schemata, then 
GENESIS tries to causally connect it to other actions and sutes in 
the model using planning information. 

The first step in integrating a new schema insunce into the 
model is to add any primary inferences or effects. The effects and 
inferences atuched to a schema are divided into primary and 
secondary categories. Primary ones are used in a forward inferenc-
ing fashion while secondary ones are used in a backwards inferenc-
mg fashion and only added to the model if they are required by 
the explanation. 

If the new insunce is an action, then its preconditions must be 
reconciled w i th the model. This means that it first searches the 
model for each precondition and if it finds it, it adds an appropri­
ately labeled support l ink f rom it to the new action. If it does not 
f ind a precondition, it next attempts to infer it by searching for 
secondary effects or inferences which match this precondition. If 
this also fails, it hypothesizes the existence of an action which can 
be used to achieve this precondition (using the achieving actions 
atuched to this sute) and attempts to reconcile its preconditions 
w i t h the model. 

GENESIS also attempts to find motivations for volit ional 

2 The term determined is borrowed from FAUSTUS (Norvig83) which also uses 
a multi-ftep schema selection process. 
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actions. It does this by checking if the action achieves a state which 
is a goal for the actor, or if it the actor has the specific goals and 
beliefs marked as possibly motivating this action. Goals which 
arise from known themes [Schank77] can be automatically inferred 
if they wi l l motivate a character's action. Such goals wi l l be called 
thematic goals and represent the highest level goals which motivate 
a person. Goals of possessing money, satisfying hunger, and 
preserving one's health are examples of thematic goals. 

Other plan-based understanding systems such as PAM [Wilen-
sky83) used planning information to predict future courses of 
actions a character might take. However, searching through a space 
of possible future actions is combinatorially explosive. Conse­
quently, such an approach is intractable if a system's knowledge of 
actions is large, which it obviously must be if it is to be able to 
understand a wide range of narratives. For example, if a PAM-like 
system were used to process the detailed kidnapping narrative, it 
would conduct an exhaustive search for an explanation of why 
John captured Mary before continuing to process the rest of the 
text. If the system had a large knowledge base of actions, it would 
be a long time before it stumbled upon the idea of using the action 
of releasing Mary as part of a bargain with another person. 

Since GENESIS does not conduct a complete search for an 
explanation, it is incapable of "understanding" narratives which 
have large gaps and do not suggest known schemata. When the 
first kidnapping narrative is processed without a schema for "kid­
napping for ransom," very little of the missing structure can be 
inferred and the only support links the system can construct are 
shown in figure 2. As a result, it is unable to answer the questions 
shown earlier. However, with the same initial knowledge, it is able 
to understand the second narrative because the gaps and missing 
information are not too severe. Consequently, the understander is 

Figure 2: Support Network for Narrative #1 Before Learning 

able to construct the support network shown in figure 3. It should 
be noted that the support networks shown in this paper (called 
highest-level support networks) contain only the highest level sche­
mata which were determined to be in the narrative. Most of ihe 
representation at the level of the inputs and their connecting infer­
ences is contained in the expansions of the CAPTURE and BARGAIN 
schemata which were activated bottom-up from the inputs. 

As indicated earlier, this structure is then generalized into a 
new schema. When the first narrative is processed again, Bob's 
action of imprisoning Alice in his basement determines a CAPTURE 
schema, and this in turn suggests the new "kidnap" schema. The 
new schema is then used in a top-down fashion to fill in missing 
information. It is finally determined when both of the effects of the 
BARGAIN: Alice becoming free again and Ted receiving money, are 
added to the model. The final support network (the expansion of 
the new schema for this narrative) is shown in figure 4. This 
causal structure allows the system to answer the questions it could 
not answer before learning the schema. 

VI THE GENERALIZATION PROCESS 
Once a causally complete explanation has been constructed 

Figure 4: Support Network for Narrative #1 After Learning 

to learn a useful new schema. If so, it generalizes the causal struc­
ture in the model into a new schema and stores it in the schema 
library where it can be used in the processing of future narratives. 

A. When to Generalize 
If every combination of actions the system encountered was 

generalized into a new schema, the system would soon become over­
loaded with rarely used schemata. Most actions would activate a 
large number of schemata and selecting among these would require 
an excessive amount of processing time. In order to avoid this prob­
lem, certain conditions must be met before a combination is general­
ized. 

Tim, the combination of actions should achieve a goal for one 
of the characters in the narrative. In the process of motivating 
actions, the understander checks if an action achieves a goal for a 
character, so finding achieved eoals is a simple matter of inspecting 
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the model. Second, this goal should be a common one which is 
l ikely t<» be encountered again. A goal is considered to be common 
enough if it is a thematic goal, for example satisfying hunger or 
acquiring money. Since in the sample narrative John achieves the 
thematic goal of possessing money, it satisfies both of these condi­
tions. 

The final condition for generalization is the obvious one of not 
already possessing a schema for the combination of actions which 
achieves the thematic goal. This simply involves checking the 
highest-level support for the achievement of the goal and making 
sure it contains a combination of actions. If the system already had 
a schema for this case, it would have used it in processing the nar­
rative and the goal would be supported by an instance of this 
schema instead of a combination of actions. Addi t ional conditions 
for generalization were discussed in [DeJong83i however, these are 
currently not implemented. 

B. General iz ing the Support N e t w o r k 

Af ter deciding to generalize, the system extracts the explana­
tion for the goal state, isolating the actions and states which actu­
a l l y contribute to its achievement. This simply involves extracting 
the highest-level support for the achieved state. In the example, the 
achieved state is John possessing $250,000 and the support for this 
state is shown in figure 3. This step eliminates extraneous informa­
tion in the narrative which does not contribute to the achievement 
of the goal, such as the fact in the example that Mary was wearing 
blue jeans. 

Once the support network is extracted, there are several steps 
involved in constructing a generalized version of this causal struc­
ture. The overall approach is to in i t ia l ly generalize as far as possi­
ble and then re-introduce only the constraints necessary to main­
tain the causal connections between schemata and the we l l -
formedness of individual schemata. In i t ia l ly , the class of each 
schema instance is generalized to SCHEMA (the highest level in the 
hierarchy) and each role filler is replaced by a unique new parame-
ter. Constraints are then imposed on this over-generalized structure 
to make it a well-formed causal network. These constraints progres-
sively refine the class of each instance and constrain certain role 
fillers to be equal. 

First, the goal which the support network achieves is con­
strained to be a thematic goal. This is accomplished by constraining 
it to match the pattern for the thematic goal which was achieved 
in the original narrative. In the kidnapping example, this con­
strains the goal state to be the kidnapper acquiring money. 

Next the inierschema constraints are imposed. These involve 
maintaining the val id i ty of each connecting support l ink in the 
network. We w i l l use the kidnapping narrative to i l lustrate this 
process by showing how the FATHER relationship in its support net­
work is only constrained by the explanation to be a POSITIVE-IPT 
(for positive-interpersonal-theme, a superclass ofPrARENT, SPOUSE, 
etc.). Every time a support link is added during understanding, it is 
annotated wi th the pattern from the schema l ibrary used to con­
struct it and the class in the schema hierarchy where it was inher­
ited from. In the example, when GENESIS infers that Fred wants 
Mary free more than he wants to have $250000 as a secondary 
inference from the fact that he is her father, it annotates w i t h the 
corresponding inference pattern f rom the schema l ibrary and the 
fact that this inference was inherited f rom the schema POSITIVE-IPT. 
When the interschema constraints for this l ink are imposed, the 
ransom payer's GOAL-PRIORITY is constrained to match the system's 
inference pattern, and the instance which was a FATHER state in the 
original narrative is constrained to be a POSITIVE-IPT. Thus, the sys­
tem only imposes the required relationship between the individuals 
filling the roles of k idnap vict im and ransom payer. The fact that 
there was a specific father-daughter relationship in this particular 
narrative is recognized as incidental and not crucial in maintaining 
the val id i ty of the explanation. 

Next, the intraschema constraints are imposed. These concern 
maintaining the well-formedness of each individual schema 
instance. This is accomplished by imposing on the filler of each role 
the appropriate role constrain! f rom the schema l ibrary. For exam­
ple, since the role constraints specify that the SUBJECT of a POSSESS 
schema be a PERSON, the SUBJECT role filler of each POSSESS schema in 
the support network is constrained to be a PERSON. 

The final step in constructing a generalized support network is 
to merge parameterized instances which have been constrained to be 
equal. The resulting instances form a set of conceptual roles for the 
overall schema. In the example, this collects together al l the ind iv i ­
dual occurrences of the kidnapper, the v ic t im, the ransom payer, 
and the ransom money and creates a unique OBJECT for each one. 

The result of this generalization process is a general causal 
structure which achieves a common goal. The generalized support 
network generated for the kidnapping example is shown in figure 
5. 

C Packaging I n t o a N e w Schema 

The final step in acquiring a new schema is separating the 
generalized support network into preconditions, effects, expansion 
schemata, etc., which can be added to the schema library. Following 
is an outl ine of how this information is extracted 

Roles ( w i t h constraints): The subject of the achieved thematic goal 
becomes the actor of the new schema. 
New roles are created for each remaining 
person and object in the generalized sup-
port network. In the example, roles are 
created for the kidnapper, v ict im, ransom 
payer, and ransom money. 

Preconditions: STATES which are leaves of the general­
ized support network but not motivations 
of actions by the main actor. In the exam­
ple, the ransom payer possessing the ran­
som money is a precondition. 

Motivations: STATES which are leaves of the general­
ized support network and motivations of 
actions by the main actor. In the example, 
the kidnapper wanting to have money is 
a motivation. 
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Effects: Effects of a l l actions w i th in the general­
ized support network which are not ter­
minated by other internal actions. In the 
example, the kidnapper possessing the ran­
som money is an effect 

Terminations: STATES which are terminated by an action 
w i th in the generalized support network 
but not produced by another internal ac­
tion. In the example, the ransom payer no 
longer possessing the ransom money is a 
termination. 

Determining Conditions: The set of a l l ACTIONS wi th in the general­
ized support network. In the example, the 
bargain between the ransom payer and 
the kidnapper is a determining condition. 

Expansion Schemata: A l l remaining schemata in the generalized 
support network along w i th their con­
necting support relationships. 

Suggested Schemata: The schema for each action w i t h i n the 
generalized support network is marked as 
suggesting the new composite action. In 
the example, the schema CAPTURE now 
suggests the new schema. 

V I I R E L A T I O N TO OTHER WORK 

The process just described uses a database of background 
knowledge to generalize the causal structure or explanation of a 
single example. This approach differs dramatically f rom most 
approaches to learning (e.g. [Michalski83, Mitchel l78, Winston70]) 
in which generalization is accomplished by extracting features 
which are shared by a number of examples. 

GENESIS* generalization process is most similar to the method 
used by STRIPS to generalize planning sequences into new 
MACROPs [Fikes72] However, unl ike STRIPS, GENESIS generalizes 
actions and states as we l l as objects and locations, and generalizes 
the order of independent actions (since it uses a dependency net­
work instead of a linear ordering of steps). 

The general technique used by GENESIS, explanatory schema 
acquisition, is also being applied to learning theorem proving stra­
tegies [0'Rorke84l robot assembly tasks lSegre85l and concepts in 
physics problem solving [Shavlik85]. Explanatory schema acquisi-
tion is closely related to a growing body of recent work in 
explanation-based or analytic learning [Min ton 84, Mitchell83, 
Silver83, Winston82] which is characterized by learning f rom a 
single example through the analysis of its causal structure. 

However, there are also important differences between expla­
natory schema acquisition and some of the other work referenced 
above. Whi le GENESIS learns from the problem solving behavior 
of other agents, STRIPS and Mitchell 's LEX learn f rom their own 
problem solving. Al though learning f rom external behavior makes 
a system less autonomous, it allows a system to learn plans which 
are beyond its own ab i l i t y to generate. In addit ion, LEX only learns 
heuristics for applying operators it already possesses and not new 
combinations of operators which achieve important goals 
(MACROPs or schemata). Although Winston's system, l ike 
GENESIS, learns f rom short narratives, it learns i f - then rules and 
not schemata. In addit ion, Winston's system does not need to infer 
causal connections dur ing "understanding" since a l l causal connec-
tions are given expl ic i t ly in the input t e x t 

VIII CONCLUSION 
Unl ike most learning systems, explanatory schema acquisition 

does not depend on correlational evidence. Thus, it is capable of one 
t r ia l learning. Also, it avoids the problem of searching through a 
large space of features for ones which are relevant to a new con­

cept. Only features which contribute to the explanation of an 
achieved goal are considered for inclusion in the description of a 
concept. The approach is heavily knowledge-based; a great deal of 
background knowledge must be present for learning to take place. 
Final ly, the system does not increase its representation power w i th 
this k ind of learning. The learning results in greatly improved 
efficiency of processing by avoiding combinatonally explosive 
searches. 

In the future we plan to address the issue of schema 
refinement. Clearly, the system ought to have the capability of 
refining existing schemata if the svstem is presented w i th an exam­
ple which violates its expectations. We also hope to explore 
language learning. It should be possible to acquire the English 
names for these new problem solving schemata f rom context. This 
direction of parallel and interacting language and concept develop­
ment should complement existing work on inducing grammars 
[Berwick82] and learning to attach new names to known concepts 
ISelfndgeM]. 
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