
S U B S T A N T I A L C O N S T R U C T I V E I N D U C T I O N
U S I N G L A Y E R E D I N F O R M A T I O N C O M P R E S S I O N :
T R A C T A B L E F E A T U R E F O R M A T I O N I N S E A R C H

Larry Rendell
Department of Computer Science,

University of Illinois at Urbana-Champaign,
1304 West Springfield Avenue, Urbana, Illinois 61801

A B S T R A C T

This paper addresses a problem of induction (generalization
learning) which is more difficult than any comparable work
in AI . The subject of the present research is a hard problem
of new terms, a task of realistic constructive induction.

While the approach is quite general, the system is
analyzed and tested in an environment of heuristic search
where noise management and incremental learning are neces­
sary. Here constructive induction becomes feature formation
from data represented in elementary form. A high-level
attribute or feature such as "piece advantage" in checkers is
much more abstract than an elementary descriptor or primi­
tive such as contents of a checkerboard square. Features
have often been used in evaluation functions; primitives are
usually too detailed for this.

To create abstract features from primitives (i.e. to res-
tructure data descriptions), a new form of clustering is used
which involves layering of knowledge and invariance of util­
ity relationships related to data primitives and task goals.
The scheme, which is both model- and data-driven, requires
little background, domain-specific knowledge, but rather
constructs it. The method achieves considerable generality
with superior noise management and low computational
complexity. Although the domains addressed are difficult,
initial experimental results are encouraging.1

I I N T R O D U C T I O N

A fundamental problem in AI is the automation of inductive
inference [3,15,25].2 Induction can be described as generali­
zation from particular cases [2,0,15], as learning categoriza­
tions from examples or observation [15,18,10], as intelligent
compression of massive data [25,30,31], or as discovering
regular, coherent characterizations of events or objects
[15,22 25].3 Whatever the interpretation, induction begins
either with objects or with partially formed groupings, and
creates one or more classes. These meaningful sets are also
called categories or concepts. A concise representation of

1. This work was supported in part by an operating grant
from the Natural Sciences and Engineering Research Council of Ca­
nada.

2. The problem of induction is also a basic study outside of
AI. It has occupied scholars in philosophy [5], psychology [13], pat­
tern recognition [2,3,0,20,31], and other fields [30].

3. Formally: Given a set S of individual objects, induction is
the inference of a larger class or hypothesis T, such that S C T.
Since T is a generalization it may not be true; associated with T is
its credibility, the estimated veracity of the induction.

knowledge is imperative for reasons of space and time
efficiency: in practical application, detailed information is
simply too expensive either to store or to acquire, while
induction of classes allows prediction of details [6,23,25,30].

Automated induction is crucial. For example, in an
expert system, computer generalization means mechanized
knowledge acquisition, which may reduce costs. Present
expert systems are prone to unexpected error, whereas induc­
tion would increase reliability and obviate maintenance.
Even in its primitive state, automated induction has outper­
formed knowledge engineering approaches [17].

A. Views of Induct ive Di f f icul ty

Unfortunately, induction is inherently difficult [1,6,30].
Noisy and sparsely distributed data offer little help in distin­
guishing hypothetical classes or concepts, and there are many
hypotheses which are plausible, useful, sensible, or credible.

Inductive multiplicity can be understood in various
ways. First, a credible hypothesis may be sought in a space
of category descriptions. In this view of induction, search is
conducted through a set of expressions which are systemati­
cally related to one another to facilitate their explicit forma­
tion (such expressions are otherwise only implicit, because of
their immense number) [2,6,30]. In this search formaliza­
tion, exploration of plausible hypotheses must cope with
exponential growth of their explicit representations.

The most abstract view of the inductive problem
involves classification [30,31]. The number of ways of com­
bining objects into classes is extreme. If a small 10X10 grid
of bits encodes letters of the alphabet, the number of
different classes is 27[2 l00], and very few of these are credible.
A view of induction which is intuitively close to the
classification perspective is the feature space representation,
illustrated in Fig. 1.

A third way of analyzing the difficulty of induction con­
siders the quantitative problem as a qualitative one
[15,18,23]. Class formation often requires restructuring of
data: objects must be reorganized by transforming descrip-
tion variables. This means a change of knowledge represen­
tation (constructive induction, the problem of new terms),
which is particularly difficult to automate [6,25]. F ig. l com­
pares constructive induction with the simpler selective induc­
tion which needs no reorganization.4

4. By selective induction we mean a case in which one or a
few neighborhoods in feature space can easily be partitioned.
Michalski's definition of this term [15] is more precise, but it ex­
cludes some cases we would want to call simple, such as classes
discriminated by linear decision functions.

L Rendell 651

To structure data, an expressive language such as predi­
cate logic is required, bu t there are tradeoffs between expres-
siveness and efficiency (at least w i t h current models).8

Greater expressive power causes a worse combinator ia l explo­
sion in search.

B . Resea rch D i r e c t i o n s

One approach to the combinator ia l problem of induc­
t ion is to l imi t hypotheses by imposing constraints on their
expression [15,25,32]. These constraints may take various
forms. A st ra ight forward tactic is simply to l im i t the
descript ion language w i thou t conf ining its power too much.
For example, many methods permi t conjunct ions but not dis­
junct ions [7). Another way of restr ict ing candidate descrip­
tions is to use some cr i ter ion to narrow search. Examples of
cr i ter ia include "s impl ic i ty" , qual i ty of " f i t " to the data
[15,18], and " invariance" under t ransformat ion of task ele­
ments [8]. A relaxed form of invariance has long been used
in statistics and pattern recognit ion, viz. "s imi lar i ty" in clus­
ter analysis [1]. The author 's scheme involves a special k ind
of s imi lar i ty constraint based on the domain environment.
The precise form of this simi lar i ty has to do w i t h success or
"u t i l i t y " in the performance of some task [21,23,24,25].6

Overal l , constraining search for abstract knowledge has seen
only l imi ted success in terms of efficiency, effectiveness, and
extensibi l i ty [7,15,32].

Generalization algori thms have been designed either for
selective induct ion [6,7,15,19,21,28] or for quite simple con­
struct ive induct ion [10,15]. The t rue nature of this AI work
has sometimes been obscure because l i t t le a t tent ion has been
given to the usual methods of science: del ineation of abstract
phenomena, detection of relevant variables, measurement of
precise relationships, and development of guid ing principles.
Unif ied views of inductive systems are scarce (though there
are [6,7,15,25]). Fur thermore, AI research often ignores ear­
lier germane results, including [2,30]. Consequently no stan­
dard exists for answering impor tan t questions such as: How
di f f icul t is the inductive task being studied? How much
knowledge is acquired autonomously, versus the amount
given by the user? Similar questions have recently been con­
sidered elsewhere [11,26].

C . Q u a n t i t a t i v e A n a l y s i s

Whi le the current state of induct ion in AI is under­
standable (the field being new and di f f icul t) , the t ime may
have come for a more rigorous approach. (See [5,12,15,26]
for similar sentiments.) In keeping w i t h this goal, the author
has begun to pursue a means for compar ing induct ive tasks
and systems. Based on [30,31], this involves a quant i f icat ion
of inductive difficulty, both for task domains and for learning
systems. This a t tempt began in [22,23,25].

5. See [23] for a discussion of representation languages. Im­
portant issues include equivalences of superficially different
representations, and the distinction between languages appropriate
for expression of concepts and languages useful for concept forma­
tion. The current paper and [25] examine structures for mediation
between data and concepts.

6. Task-related utility is used as the criterion for clustering in
the original probabilistic learning system PLSL This system has
produced unique results such as convergence to optimal heuristics
[21,24,25]. PLS1 can handle noisy environments and incremental
learning. The system is efficient.

The idea is simple: since induct ion creates a class T
f rom a set of objects S, the dif f iculty of the generalisation
task depends on the nature of the in format ion compression
f rom cases S to concept T . 7 First, the more cases T must
cover, the harder it is to describe T accurately whi le
di f ferent iat ing S f rom negative instances of the concept (see
the approx imat ion of conceptual knowledge as amount of
information compression in [22,25]). Secondly, if the a t t r i ­
butes describing S do not support s t ra ight forward selective
induct ion (as in Fig. l a) , but must instead be redefined by
construct ive induct ion (Fig. l b) , then inductive di f f icul ty
depends on the k ind of reconstruct ion required. When exam­
ined in the l ight of these measures, many systems (such as
[10,17,21]) perform only a moderate amount of induct ion.
In these systems, the to ta l number of possible generalizations
is confined to be relat ively small f rom the outset.

D . S u b s t a n t i a l I n d u c t i o n

In contrast to these simplif ied approaches, the cur rent
research at tempts a very dif f icult task. Not only is the
required amount of in format ion compression very large, bu t ,
more impor tan t , a large degree of constructive induct ion is
needed. In the proposed system, l i t t le domain-specific gui ­
dance is provided by the user or program. This scheme is
conceptual ly compact and appears tractable.

The method is related to a successful system for selec­
t ive induct ion PLSL 6 One aspect common to PLS1 and the
new system PLSO is the observation of a goal-oriented meas­
ure, the utility. The u t i l i t y divergence, a funct ion of
"features" of objects, and also based on data patterns, is the
cr i ter ion for induct ion. When PLS1 uses u t i l i t y for categori­
zation (conceptual clustering), various efficiencies and other
advantages ensue. The scheme has been incremental and
insensitive to noise since its inception [20,21,24].

Retain ing these valuable and unusual characteristics,
PLSO implements a new form of constructive induct ion unl ike
other systems in impor tan t respects: al though the induct ive
di f f icul ty is great, l i t t le background knowledge is given, the
language of concept expression is quite general, the algo­
r i thms have low computat ional complexi ty, and the approach
appears extensible. These claims wi l l be elaborated.

Figure 1. Degrees of inductive difficulty. A simple case of cluster­
ing successful objects (left) requires only that a few boundaries be
inserted. This is selective induction. Complex cases may involve
varying degrees of heterogeneity, which may be more concisely
described using concepts. An example is the class defined by vari­
ables f1 and f2 both being even (right). Formation of concepts is
constructive induction.

7. This is a simplification. More than one class T may be in­
volved, or the set of objects S may already be partially formed into
categories. For present purposes these details may be ignored
without affecting the essence of inductive difficulty.

652 L. Rendell

I I A N E X A M P L E I N HEURISTIC SEARCH

This section illustrates some of the above ideas and relates
them to a hard problem of constructive induction. We intro­
duce task utility for inductive guidance, and layered abstrac­
tion of task knowledge. In later sections, these terms and
those in the diagrams will be more carefully defined.

A. Goal-Directed In format ion Compression

An example of a product of induction is the concept of
pair adjacency: two diagonally juxtaposed, friendly men in
checkers (Figs. 2 & 3). In the description of such a concept,
certain spatial patterns are essential (adjacency) while other
aspects are immaterial (location of the pattern and presence
of extraneous pieces). Other "useful" concepts in checkers
are piece advantage, mobility, center control, etc. These are
useful because they relate to winning, and the ultimate con­
cept in a game is the strength or utility for one player. Util­
ity is the most abstract concept desired.

Here we may express utility using an evaluation function
H. Objects assessed by H are states or board configurations
B. To evaluate board B, H combines pair adjacency, piece
advantage, and other features. In terms of generalization,
states are elementary object descriptions, the utility value
given by H is the most concise description, and feature values
are intermediate between objects and their utilities.

B. Layers of Abst rac t ion

As it happens, a resolution of roughly 100 distinct utility
classes is sufficient to differentiate among moves in the game
of checkers (see the discussions in [22,25]). Fig. 4 reflects
this; here utility values lie in the interval [0,1] and are given
to two decimal places. In contrast, an object (board
configuration or state) is a vector of 32 primitives indicating
the contents of each permissible square (black king, black
man, vacant, red man, red king; or -2,-1,0,1,2), and there
are roughly 1020 legal states. Full inductive learning would
require the assignment of each of these configurations to its

Figure 3. The three level information structure of FLSO. Shown is
the construction of a feature f which counts the number of diagonal
juxtapositions of two friendly pieces in checkers. This begins with
a detailed description of board configurations in terms of 32 primi­
tives e, giving the contents of individual squares. (See Fig. 2 for
detail.) When subspaces such as e10e14 and e18e10 are examined, and
utilities are CLUSTERed after superposition of subspaces, important
structural patterns emerge having common utility descriptors
(UD's). A pattern class results (level 2). Eventually a class may be
generalized using a group of transformations (level 3).

Figure 2. Clustering small samples of primitive subobjects. Shown is a projection of the 32 dimensional space of
subobjects (checkerboard squares). Here the tenth and fourteenth squares are sampled. The possible values for
each square are blank or 0 (origin), our player's man or 1 (p.man), opponent's king or -2 (o.king), etc., for a total of
5 X 5 = 25 coordinates in this two-dimensional subspace. The fractions beside each point (extreme left) indicate the
proportion of winning states. The clusters (extreme right) compress this utility information (omitting points with
no observations). This rightmost view becomes the least abstract level of Fig. 3.

L. Rendell 653

proper utility class, for an average of about 1020/100 = 1018

in each class. In terms of primitives, a logic description of
such a class would be highly irregular, involving a combina­
tion of an immense number of terms.

Utility classes are much easier to describe in terms of
predefined features. As Fig. 4 illustrates, the number of
classes at the feature level is very roughly 106 - this is the
size of a typical feature space [25 ,28]. Utility bears a smooth
relationship to features, so the induction required is merely
selective (Fig. la), and only a few simple descriptions are
needed (Fig. 5).9 In contrast, raw data descriptions in the
form of primitive vectors are more detailed (having 1020

values as opposed to 108). Moreover, utility-primitive rela­
tionships are discontinuous, so the much more difficult con­
structive induction is needed (see Figs. 1 and 3).

C. Automated Feature Construct ion

This paper begins to explore a method for discovery of
features from primitives, a problem hardly addressed previ­
ously (but see [8,9,19]). Conceptually and experimentally,
the approach appears tractable and error resilient. A lay­
ered, "divide and conquer" approach restricts complexity,
not just "generating and testing" hypotheses, but rather con­
structing simple ones from previously validated components.

How can utility-primitive relationships be captured and
generalized? Induction is infeasible without some guidance
from regularities, assumed or else discovered [32]. One tech­
nique, curve fitting, is often inadequate even in selective
induction when features are the starting point [6,25,28]. A
more flexible approach is to record information in feature
space cells, as in Fig. 5 [21,28]. An important tool for induc­
ing this knowledge is the method of cluttering.

f f l C L U S T E R I N G , A T O O L F O R I N D U C T I O N

Clustering classifies data so that events or objects are similar
within any class, but dissimilar across classes [1]. This tech­
nique has been used in successful learning systems by Michal-
ski [15,17,18], and earlier by the author [20,21,25], who ori­
ginated a form of conceptual clustering. This kind of cluster­
ing takes into account not only feature values, but also forms
of concepts (e.g. feature space rectangles) and aspects of the
environment (e.g. observed utility). Michalski has
emphasized concept constraints, and the author has stressed
relationships between task domain and inductive algorithms.
These are dual aspects: model- and data-drivenness.

In this section we describe general characteristics of
clustering, and then examine PLSl's algorithm for selective
induction as a preliminary for PLSO's more powerful con­
structive induction.

Figure 4. Levels of abstraction in search. Elementary data in the
form of primitive descriptions represent fully detailed knowledge,
but are massive and infeasible to gather. At the other extreme,
maximal compression expresses utility classes concisely. Intermedi­
ate representations facilitate expression: e.g. features discriminate
utility quite smoothly. In contrast, primitive measurements deter­
mine utility very irregularly.

0. Because most of the "knowledge" resides so regularly in the
features, an evaluation function can often be a linear combination
of them. See [25].

A . M u t u a l Data Support

Clustering has several desirable properties. Within
ascribed boundaries of a cluster, missing data presumably
share characteristics of their neighbors, so the process can be
predictive (see Figs, la and 5). Once a class is formed, its
determining data may be dismissed, so storage and computa­
tion can be economical. If statistics is employed, susceptibil­
ity to error may be low and credibility may improve as a
result of clustering the data. Further, the structure used for
clustering may concisely describe a concept that emerges
automatically as information is compressed [15,25].

As an example of these characteristics, consider the left­
most rectangle of Fig. 5. Because of the imposed rectangular
shape, the description of this "concept" is simple and easily
stored: Moreover the associ­
ated utility u = 0.2 may have come from many data: out of
perhaps N = 100 objects observed in this rectangle, g = 20
of them may have been "successful". If a few observations
were in error, the value of would
still be close to the "true" utility (here a probability). As

Figure 5. A region set is a partition of feature space with associ­
ated information. Shown are classes (rectangles) r and their values
(utilities) u for some task. A region can simply be the pair (r,u).
In PLS1 a feature space region set is used as an evaluation func­
tion. In PLSO a primitive space region set is used to create
features.

654 L. Rendell

long as the utility does not vary too much within the
rectangle's boundaries (a case of selective induction), u may
relate to any enclosed point, observed or unobserved. As an
added benefit, u may be more accurate because it has been
measured over many "similar" objects. We call this impor­
tant coincidence of information compression, concept forma­
tion, and accuracy improvement mutual data support [25].

B. Goal-Directed C lu t te r ing Using U t i l i t y

Mutual data support arises in the statistical technique
of clustering. In [20, ,21,25], the author introduced a special
kind of clustering which employs not just attributes or
features of an object, but also the quality or utility of that
object in the task environment.10 This clustering criterion is
central in the family of probabilistic learning systems (PLS)
[22,24,25].11 In PLS1, the utility u is a probability: the
number g of "good" objects contributing to task success,
divided by the total number N of observed objects: the utility

E.g., the object might be a state in a problem or game, and
success might mean appearing in a solution or win.

C. Regions as Clusters of Simi lar U t i l i t y

PLS1 clusters utility, thereby associating state descrip­
tions of common quality. The cluster or region R is a triple

feature space volume r having utility u with error
factor (this codes the interval Because utility
bears a smooth relationship to typical features, clustering
may profitably be constrained as a partition of feature space,
the region set (see Fig. 5). The region set is suitable for selec­
tive induction (Fig. la); it is a compressed representation of
the utility surface in this augmented feature space.

Characteristics of regions (e.g. rectangle size and shape)
are consistent with data encountered: a region set remains
small enough to economise resources but large enough to
express important knowledge. To accomplish this, PLS1
employs a utility revision rule for correcting values of u, a
specialization rule for refining cells r, and generalization and
reorganization operators for otherwise modifying regions.

Various unusual or unique advantages result. Computa­
tion is inexpensive, and more autonomous than Samuel's sig­
nature table method [28]. The algorithms automatically pro­
duce an effect similar to a criterion using "similarity" and
"fit" (see [21,24,25] and compare [15,18]). Results include
efficient discovery of optimal heuristics.

D. Region Refinement and Credib i l i ty

Here we consider in detail the PLS1 refinement operator
for splitting regions: the algorithm CLUSTER[21,25]. A
region R is dichotomised when utility data within it are
found to diverge. The criterion for splitting involves a dis­
similarity (distance) measure d. If and are the two util­
ities for a tentative dichotomy, and and their errors,
then The dissimilarity d is

10. See Anderberg [l,pp. 194ff,| for discussion of "external cri­
teria" in clustering.

11. The original PLS1 has been extended to become a more
stable, powerful and efficient learning system but here
we refer to both as PLSl.

L. Rendell 655

pairs. For example, the u t i l i t y of simultaneously positive
values of is about equal to the u t i l i t y of the same

condi t ion on (see Fig. 3). A prerequisite for

mechanizing this inference is some language to express u t i l i t y
in the two dimensional subspace determined by and
separate from any other coordinate ek.

A . K n o w l e d g e L e v e l 1 : S u b o b j e c t R e l a t i o n s h i p s

To permit this s t ructur ing, knowledge level 1 uses pro­
jections of the n-dimensional pr imi t ive space (here n = 3 2) . A
subspace specifier (SS) is a str ing of length

Our i l lustrat ive example f can be expressed using a uni form
combinat ion of SS's, ail w i th For example, one

member of the adjacency concept is e10 e14 (F ig. 2). Paired

w i t h each is its utility descriptor (UD), a region
set expressing u t i l i t y relationships in this pr imi t ive subspace.
An SS together w i th its UD is a primitive pattern. F ig. 2 and
level 1 of Fig. 3 show two pr imi t ive patterns, one for the sub-
space specifier e10e14, and the other for the SS e16e19.

A pr imi t ive pat tern is a compressed representation of
the funct ion u(e), where u is the u t i l i t y , and e is the fu l l
pr imi t ive vector. The compression is of two types: project ion
of pr imi t ive space into subspaces, and approximat ion of u as
a step funct ion. The subspaces are indicated as subspace
specifiers (SS's), and the step funct ion is expressed as a u t i l ­
i ty descriptor (a UD is a pr imi t ive region set).

The purpose of knowledge level 1 is to compress ut i l i ty
relationships concise forms dist inguishing s t r ik ing aspects of
objects. Consider Fig.2 again. The and are

both meaningful as subobject pairs. These two SS's
represent similar structures, one just a t ranslat ion of the
other, so their UD's are somewhat alike. Pr imi t ive patterns
may stand out like this, based on small , biased domain sam­
ples. We shall re turn to small sample effects in Section V.

B . L e v e l 2 : P a t t e r n Classes o f S i m i l a r S t r u c t u r e s

Knowledge level 2 facil i tates search for similar subobject
structures: those exhib i t ing similar u t i l i t y behavior are
merged, eventually to produce a sensible feature. Regulari­
ties are recorded in a pattern class, a union of pr imi t ive pat-
terns, i.e. a set of SS's w i th a common UD (Fig. 3). In our
example, SS's would arise consisting of two adjacent coordi­
nates, such as and These would be

placed in a dist inctive pat tern class because their ind iv idual
UD's are similar and can be combined (details are given
later). This category would indicate indistinguishable u t i l i t y
behavior of each component SS and also nonseparabil i ty of
e10 e14 into single coordinates and etc.; i.e. the p r im i ­
tives are meaningful as pair*.

The overall purpose of knowledge level 2 is to uni fy
similar pr imi t ive structures (e.g. patterns of checkerboard
squares) as funct ional ly equivalent subobjects, i.e. to cluster
SS's whose associated u t i l i t y descriptors agree when superim­
posed. Correspondence of UD's strengthens knowledge
about u t i l i ty -pr imi t ive relationships, since more in format ion
is present in the union (mutua l data support) . These regu­
larized pat tern classes become prospective feature elements.
L i t t le in format ion is wasted since only the strong patterns
survive or even appear.

C . K n o w l e d g e L e v e l 3 : P a t t e r n G r o u p s

Knowledge level S is the most advanced structure for
feature fo rmat ion . Here we discuss it only briefly.

A level 2 pat tern class is augmented by a set of transfor­
mat ion operators wh ich , when applied to subspace specifiers
in the class, reproduce extant members and fil l in "missing"
SS's. Operators are selected which give the "best" closure in
this induct ion of the pattern group. The feature f requires
translat ion and rotat ion (of 9 0 °) . Several pairs like e1 0e1 4 ,
etc., m igh t be needed for confidence in the general transfor­
mat ion , which induces a group of 56 pr imi t ive patterns.

An alternat ive formal izat ion for knowledge level 3 is
grammat ica l inference [9]. The above example would
become a single product ion rule.

D . S u m m a r y o f L a y e r e d K n o w l e d g e

At the lowest knowledge level, data are CLUSTERed to
dist inguish prominent u t i l i t y surfaces in pr imi t ive subspaces.
Discr iminat ing combinat ions of primit ives (SS's) are
ident i f ied, and their u t i l i t y relationships are condensed as
u t i l i t y descriptors (UD's).

At the second level, these results are consolidated into
sets of corresponding pr imi t ive subspaces having mutua l ly
similar u t i l i t y surfaces (UD's). As a consequence of matching
and coalescing u t i l i t y relationships, impor tant structure in
domain subobjects is identif ied and extracted. This structure
creation emerges f rom clustering utility surfaces.

At the th i rd knowledge level, indiv idual pr imi t ive pat­
terns of a given class are used to induce a complete group: a
general rule is discovered for t ransforming one member of
the class into another, and missing elements are inferred. As
explained below, u t i l i t y invariances help to generate these
compound structures incremental ly and efficiently.

V R E A L I S T I C C O N S T R U C T I V E I N D U C T I O N

Th is section outl ines feature creation from the knowledge
structures just described and considers the reduced computa­
t ional complexi ty result ing f rom their restr ict ion.

656 L. Rendell

B. Restr icted Use of Pr imi t ives

Even using exhaustive search, knowledge acquisition at
level 3 is relatively inexpensive for current domains (although
not generally [28]). Here we will focus on levels 1 and 2,
which, combinatorially, are extremely complex. The number
of possible subspace specifiers (SS's) is 232 for checkers, and
finding appropriate SS's is only one step in the induction.
However the problem may be simplified.

In PLSO, the explicit creation of an SS may begin with
straightforward primitive CLUSTERing which determines
various ground values and structures (D G , UDG , etc. - see
Section III). Since not all variables differentiate utility in a
practical (small) data set, this ground processing reduces the
effective dimensionality (by about two thirds in trial experi­
ments). The remaining primitives are active for current
data. The fact that only some primitives are active accounts
for the phenomenon of useful information extraction in
ground CLUSTERing; even though abstract features are con­
founded at the primitive level, structures do arise for small
data sets. Moreover, strong patterns appear first.

Utility-primitive relationships are reinforced through
comparison with other formative subobject structures (i.e.
with similar components of the board). To discover mean­
ingful patterns among these subobjects (i.e. among subspaces
of primitive space), certain arrangements A of variables from
the active set S are considered. Let the size of S be n; each
A is a relation [27] over S k , where k < n . For example, sup­
pose is the active set. Then n = 5.
For The pair
(e2,e6) determines the SS e2e6, etc., and A defines a superpo-
sition of primitive subspaces, i.e. a class of SS's (here the
class is a precursor of f).

C. M u t u a l Data Support for S t ruc tur ing

Given a superposition A of active variables, CLUSTER
(Section III) is now run with overlaid primitives treated as
one. E.g., for and would be identified. Because
of this equivalence, the sample sizes N (Section III) are
effectively increased (by a factor roughly equal to the number
of superpositions - it is patterns within states - subobjects -
that are counted). Since larger N implies lower errors, the
discrimination assurance D is higher in cases where primitive
patterns coincide; i.e. when utilities match up in the overlaid
dimensions, and merged UD's support each other (see
Figs. 2& 3). If, instead, utility behavior differs, the mutual
support is weaker, and if misalignment is extreme, D is even
lower than the ground value DG.

The simple example of Fig. 6 shows three cases of super-
position, in three tables. The leftmost is ground clustering
(no overlaying) with subspace specifier e10e14e16. In the first
row, indicates that the tenth square is
blank, and that the fourteenth and sixteenth squares both

12. A feature is tentative until enough support is found for its
determinative pattern class. This support increases gradually as
experience is gained (additional data result in more regions per UD
and in more patterns per class). Once defined, features are in-
dependently assessed and selected by PLS1 [21,25].

contain a friendly man. This structure has a sample size N
of only 5. In the third row of this leftmost table, (1,1,0) has

Note that in row one, while in row three,
In no other row is either variable zero.

The center table shows identification of with In
the first row of this table, N is the sum of the N values from
the first and third rows of the leftmost table. This gives a
sample size of 13 for equal to zero and
The other table entries are computed similarly.

Recall from Section III that utility and that D
is the sum of utility dissimilarities when rectangles are split.
Comparing the central and rightmost tables, we see that the
discrimination assurance D should be substantial in the cen­
tral table but likely zero in the rightmost one. Thus the
rightmost overlay is rejected. Since the center case has util­
ity values similar to the ground case, but the quantities are
larger in the center overlay, D is higher there. Hence the
superposition of with is supported (these two variables
are "similar").

This is small sample similarity, which has been verified
in experiments. When various superpositions are examined,
certain of them are found to stand out, i.e. to have high D's;
these become components of pattern classes. In summary,
overlaid CLUSTERing extracts utility commonalities in com­
ponents of the object (board description), and thereby dis­
covers and strengthens patterns of meaningful structure.

D. Constrained, yet General Construct ive Induct ion

Without some guidance, examining superpositions is

extremely complex: the number of trials is where n
is the number of active primitives. The value of n may be
reduced by screening inactive variables with ground CLUS­
TERing (Subsection B), but more important, trials need not
be exhaustive. They can be uniformly guided by general
heuristics. Intrinsic bonds in primitive variables manifest in
poorer D's when elements of the combination are unduly
superimposed. This discovery of small sample dissimilarity is
illustrated above and in Fig. 6, where and are dis­

tinguished. Such a discovery disqualifies the superposition
as part of any other trial, which means that only

pairs need be overlaid in preliminary testing. The complex­
ity of this is 0(n2) .

Figure 6. Three tables showing simplified data for ground cluster­
ing (left) and for superimposed clustering (center and right). The
discrimination assurance D (Section III) depends on (i) dissimilar
utilities g/N where N is the sample size and g is the number of
successes, and (ii) the value of N, which affects error. Since N
increases with superposition of primitive variables (e.g. center and
right), utility relationships may be strengthened. The central case
is supported but the rightmost case is not. Hence e10 and e16 are
similar but e10 and e14 are not. Superposition promotes discovery
of meaningful structure in objects.

L. Rendell 657

After pairs of small sample s imi lar pr imit ives are
formed

CLUSTERing is subsequently reapplied to classify pairs of
similar pr imit ives into larger sets (at this point , overlays are
sti l l one-dimensional). In this way, similar patterns emerge
and cluster into mutual ly dissimilar sets.

Final ly, general SS's are constructed by appropr iate
selection. For example, if there are two dissimilar sets S1 =

one SS class

would be thus preserving pr imi t ive

dissimilari ty in dist inct dimensions while ident i fy ing similar
pr imit ives and thereby creating st ructura l pat tern classes.

These algorithms have been programmed and tested
w i th the fifteen puzzle.13 The 15 pr imit ives used were c i ty
block distances of indiv idual tiles f rom their home positions.
(This gives a \ 0 % informat ion compression advantage com­
pared w i th the 8 0 % of high level features - see [25].) The
first feature induced was the to ta l distance score fd. Exper i­
ments show that discr iminat ion assurance D is a good meas­
ure for t r ia l superpositions. When data were gathered using
breadth-f irst search, was created and no other pat tern
classes formed. In contrast, after fd emerged to guide search,

D values were less uni form in overlays, and other pat tern
classes began to arise.

E . PLSO O u t l o o k and S u m m a r y

One question about PLSO methodology is its generality.
We can gain some insight by considering, for example,
Samuel's features for checkers. Several of these, such as
piece advantage, guard, etc., would present no problem.
Others, though, such as mobi l i ty , would require more sophis­
t icated transformations (or addi t ional knowledge levels) for
efficient induct ion. Not only games and puzzles, bu t also
various real-world applications seem either to conform to the
general PLSO approach as it stands, or else to possible exten­
sions of the system.

To summarize: Feature format ion is s t ra ight forward
once appropriate knowledge structures have been created.
In l imi t ing the huge quant i ty of possible structures [30], PLSO
imposes few arb i t rary constraints (compare [7]), bu t rather
the data help to simpli fy search Structura l patterns (pr imi ­
tive subspaces — SS's) and goal-directed in format ion (u t i l i ty
relationships - UD's) are meaningful ly combined using a
credibi l i ty measure (discr iminat ion assurance D) to assess
candidate hypotheses (overlays).

This process creates a change of knowledge representa-
t ion — to meaningful object components expressed as classes
and groups of structures together w i th in format ion about
their u t i l i ty . Intrinsic bonds among pr imi t ive components
become explicit . PLSO is designed for any cases in which
components of objects may be identi f ied (whenever transla-

13. Other ideas have not yet been programmed. One involves
comparison with predicted D's assuming perfect superposition (i.e.
full aligned utility surfaces). Still another heuristic involves gui­
dance from pattern classes already forming: since PLSO is incremen­
tal, current data may be compressed preferentially to match extant
primitive patterns and classes - by searching for supporting super-
positions, e.g. those having the same SS length as established
classes.

t ions, rotat ions, etc., leave ut i l i ty invar iant) . This applies to
a large class of problems since goal-direction and invariance
(s imi lar i ty of object components) are prevalent.

V I C O N C L U S I O N S

Whi le st i l l fo rmat ive, PLSO is a general, substantial, and
promising learning system for realistic constructive induct ion.
Its superior capabi l i ty can be quantif ied (Section II). When
assessed according to cr i ter ia for constructive induct ion [7],
PLSO appears solid. The three level knowledge representa­
t ion is adequate for domains considered and extensible to o th­
ers. The rules of generalization are powerful , suited to prob­
lems not previously explorable. Heuristics are general across
domains. Th is stochastic scheme is insensitive to error.
Final ly, PLSO is eff icient; it effectively reduces computat ional
complexi ty (e.g. f rom double exponential to polynomial in an
impor tan t par t of the problem — see Section V) .

To improve efficiency, PLSO feature creation uses a
"divide and conquer" scheme having three stages, each of
which builds f rom elements verified at the level below.
Structures are generated, assessed, and improved so that the
generate-and-test cycle of inductive inference is meaningful ly
constrained. Each of the three stages is both model- and
data-dr iven: general heuristics speed format ion of hypothet i ­
cal concepts, and task u t i l i t y determines the more credible
ones.

The basis for this constructive induct ion is clustered
ut i l i ty surfaces. Invariance of ut i l i ty relationships in pr imi ­
tive descript ion spaces leads to a new form of clustering
which creates new knowledge structures. Progressive struc­
tu r ing relies on mutual data support dur ing clustering of u t i l ­
i ty surfaces: in format ion is simultaneously regularized and
reinforced. Mu tua l data support is impor tant : it is the simul­
taneous occurrence of concept format ion, noise management,
accuracy improvement, and complexity reduct ion.

The computat ional complexity of the generalization
problem may be reducible f rom intractably exponential to
pract ical ly polynomial .

R E F E R E N C E S

(1) Anderberg, M.R., Cluster Analysis for Applications, Academic
Press, 1973.

(2) Banerji, R.B., Some linguistic and statistical problems in pat­
tern recognition, Pattern Recognition S, (1971), 409-419.

(3) Banerji, R.B., Pattern recognition: Structural description
languages, in Belzer, J. (Ed.), Encyclopedia of Computer Sci­
ence and Technology 12 (1978), 1-28.

(4) Bierre, P., The professor's challenge, AI Magazine 5, 4
(Winter 1985), 60-75.

(5) Christensen, R., Foundations of Inductive Reasoning,
Entropy, Ltd. , 1964.

(6) Dietterich, T G „ London, B., Clarkson, K., and Dromey, G.,
Learning and inductive inference, STAN-CS-82-913, Stanford
University, also Ch.XIV of The Handbook of Art i f ic ial Intell i-
gence, Cohen & Feigenbaum (Ed.), Kaufmann, 1982.

(7) Dietterich, T.G. and Michalski, R.S., A comparative review of
selected methods for learning from examples, in [16] (1983),
41-81.

(8) Ernst, G.W. and Goldstein, M.M., Mechanical discovery of
classes of problem-solving strategies, J. A C M S9, (1982) 1-33.

(9) Fu, K.S., Syntactic Pattern Recognition and Applications,
Prentice-Hall, 1982.

658 L Rendell

(10) Langley, P., Bradshaw, G.L., and Simon, H.A., Rediscovering
chemistry with the Bacon system, in [16) (1983), 307-329.

(11) Lenat, D.B. and Brown, J.S., Why AM and Eurisko appear to
work, Artificial Intelligence S (1984), 269-294.

(12) McCarthy, J., AI needs more emphasb on basic research, AI
Magazine 4, 4 (Winter 1983), 6.

(13) Med in, DX. and Smith, E.E., Concepts and concept forma-
tion, Annual Review of Psychology 35, (1984), 113-138.

(14) Medin, DX., Wattenmaker, W.D., and Michalski, R.S., The
problem of constraints in inductive learning (as yet unpub­
lished manuscript), 1984.

(15) Michakki, R.S., A theory and methodology of inductive learn­
ing, Artificial Intelligence 20, 2 (1983), 111-161; reprinted in
|16], 83-134.

(16) Mkhalski, R.S., CarboneU, J.G., and Mitchell, T.M. (Ed.),
Machine Learning: An Artificial Intelligence Approach, Tioga,
1983.

(17) Michalski, R.S. and Chilausky, R.L., Learning by being told
and learning from examples: An experimental comparison of
the two methods of knowledge acquisition in the context of
developing an expert system for soybean disease diagnosis,
Int. J. Policy Analysis and Information Systems 4, 2 (1980),
125-161.

(18) Michalski, R.S. and Stepp, R.E., Learning from observation:
Conceptual clustering, in |16), 331-363.

(19) Quinlan, J.R., Learning efficient classification procedures and
their application to chess end games, in |16| (1983), 463-482.

(20) Rendell, L.A., A method for automatic generation of heuristics
for state-space problems, Dept of Computer Science CS-76-10,
University of Waterloo, 1976.

(21) Rendell, L.A., A new basis for state-space learning systems
and a successful implementation, Artificial Intelligence 20, 4
(1983), 369-392.

(22) Rendell, LA., Toward a unified approach for conceptual
knowledge acquisition, AI Magazine 4, 4 (Winter 1983), 19-27.

(23) Rendell, L.A., Utility patterns as criteria for efficient generali-
sation learning, Proc. 1085 Conference on Intelligent Systems
and Machines, (also Univ. of Illinois Report No. UIUCDCS-R-
85-1206), 1985.

(24) Rendell, L.A., Genetic plans and the probabilistic learning sys­
tem: Synthesis and results, Univ. of Illinois Report No.
UIUCDCS-R-85-1209 (submitted for publication), 1985.

(25) Rendell, L.A., Conceptual knowledge acquisition in search,
University of Guelph Report CIS-83-15, Dept. of Computing
and Information Science, Quelph, Ontario, Canada, 1983.

(26) Ritchie, G.D. and Hanna, F.K., AM: a case study in AI metho-
dology, Artificial Intelligence 25(1984), 249-268.

(27) Sahni, S., Concepts in Discrete Mathematics, Camelot, 1981.

(28) Samuel, AX., Some studies in machine learning using the
game of checkers II-recent progress, IBM J. Ret. and
Develop. II (1967) 601-617.

(29) Ton, T.T. and Gonsales, R.C., Pattern Recognition Princi-
pies, Addison-Wesley, 1974.

(30) Watanabe, S., Knowing and Guessing: A Formal and Quanti­
tative Study Wiley, 1969.

(31) Watanabe, S., Pattern recognition as information compres-
sion, in Watanabe, S. (Ed.), Frontiers of Pattern Recognition,
Academic Press, 1972, 561-567.

(32) Winston, P.H., Artificial Intelligence, Addison Wesley, 1984.

A C K N O W L E D G E M E N T S

I would like to thank Steve Chien, Chris Matheus, Sheldon
Nichol, and Raj Seshu for discussions of ideas in this paper,
and for useful criticisms of the text. I also appreciate the
helpful comments from IJCAI reviewers.

APPENDIX. GLOSSARY OF TERMS
Cluster ing. Cluster analysis has long been used as a

tool for induction in statistics and pattern recognition [1,29].
Similar improvements to the basic techniques have been
invented independently by the author and by Michabki (see
Section III). This paper presents still another extension of
clustering, one suitable for constructive induction.

Feature. A feature is an attribute or property of an
object. Features are usually quite abstract (e.g. "mobility").
The utility (see below) varies smoothly with a feature. Com­
pare "primitive*'.

Induct ion. Induction, hypothesis formation, or general­
ization learning is an important means for knowledge acquisi­
tion. Information is actually created [30]. Induction forms
data into classes or categories in order to predict future
events efficiently and effectively. Selective induction is rela­
tively simple: it forms neighborhoods of feature space clus­
ters. Constructive induction is much more difficult, requiring
creation of concepts. See Sections I, III and IV.

Media t ing structures. Successful systems tend to
incorporate knowledge structures which mediate objects and
concepts during inductive processing. These structures
include means to record growing assurance of tentative
hypotheses. See [25].

M u t u a l data support . This is a term coined by the
author to express a subtle combination of phenomena in the
inductive process. Several causes and effects are interwoven:
noise management, accuracy improvement, efficient process­
ing, and concept formation (Sections III.A and V.C).

Object . Objects are any data to be induced into
categories. Components of objects (subobjects) may be inter­
related, and regularities may be discovered through construc­
tive induction. Relationships usually depend on some task
domain. See "util ity*.

PLS. The probabilistic learning system can learn what
are sometimes called "single concepts" [6], but PLS is capable
of much more difficult tasks, involving noise management,
incremental learning, and normalization of biased data.
PLS1 uniquely discovered locally optimal heuristics in search
[21,25]; PLS2 is an effective and efficient extension using the
genetic paradigm [24]; and PLS0 is the system for construc­
tive induction examined in this paper. PLS manipulates
regions in augmented feature or primitive space, using vari­
ous inductive operations [23].

P r im i t i ve . A primitive is a detailed, low-level property
of an object or subobject. The utility varies irregularly or
discontinuously with a primitive. Compare "feature".

Region. The region is PLS's basic structure for induc­
tion (clustering). It is a compressed representation of a util­
ity surface in augmented feature space. See Section III.C.

U t i l i t y . This is any measure of the usefulness of an
object in the performance of some task. The utility u pro­
vides a link between the task domain and generalisation
algorithms, u can be a probability: the number g of "good"
objects contributing to task success, divided by the total
number N of observed objects; i.e. u = g / N . Util ity is
related to an evidential criterion for induction. See Section
HI.

