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ABSTRACT 

Genetic algorithms (GAs) are powerful , general 
purpose adaptive search techniques which have been 
used successful ly in a var ie ty of learning systems. 
In the standard formulat ion, GAs maintain a set of 
a l t e rna t i ve knowledge structures for the task to be 
learned, and improved knowledge s t ructures are 
formed through a combination of competi t ion and 
knowledge sharing among the a l te rna t i ve knowledge 
s t ruc tu res . In t h i s paper, we extend the GA para­
digm by al lowing multidimensional feedback concern­
ing the performance of the a l te rna t i ve s t ruc tu res . 
The modif ied GA is shown to solve a mul t i c lass pat ­
tern d isc r im ina t ion task which could not be solved 
by the unmodified GA. 

1 - In t roduc t ion 

Pattern c l a s s i f i c a t i o n is a cent ra l task in 
f l e x i b l e systems which incorporate an arsenal of 
problem solv ing techniques. For example, a given 
problem instance may need to be c l ass i f i ed in order 
to decide which problem solving method should be 
app l ied. This paper concerns the task of m u l t i -
class pat tern d iscr iminat ion in a learning system. 
As in M i t che l l [ 8 ] , we view learning as a search 
process. But rather than searching a space of con­
cepts, we consider a learning system which searches 
a space of production system programs for programs 
which adequately accomplish the desired pat tern 
c l a s s i f i c a t i o n . The search is accomplished by 
means of a genetic algori thm (GA). GAs are power­
f u l adaptive search techniques which have been used 
successful ly in a va r ie ty of learning systems 
[ 3 , 4 , 5 , 1 2 ] . In t h i s paper, GAs are extended in 
order to perform mu l t i -ob jec t i ve learning in a pa t ­
te rn c l a s s i f i c a t i o n domain. 

2• Learning v ia Genetic Search. 

This sect ion contains a b r i e f descr ip t ion of 
GAs. More deta i led descr ipt ions are avai lab le in 
the l i t e r a t u r e [ 3 , 6 , 7 , 12 ] . B r i e f l y , GAs may be 
viewed as adaptive generate-and-test procedures. 
GAs are adaptive in the sense that the candidate 
so lu t ions generated r e f l e c t and exp lo i t in format ion 
obtained by e a r l i e r t e s t s . A GA maintains a popu-
l a t i o n o f knowledge st ructures ( e . g . a l t e rna t i ve 
sets of production rules for a given task) and 
repeatedly (1) selects s t ructures on the basis of 
observed performance, and (2) appl ies ideal ized 
genet ic operators to the selected s t ructures to 

construct new s t ruc tu res . For example, one impor­
tant genetic operator is crossover, by which sub­
sets of ru les may be exchanged between two a l t e rna ­
t i v e knowledge s t ruc tu res . This r esu l t s in a 
sophist icated search in which subsets of ru les 
which cont r ibute to good performance are propagated 
through the popula t ion. Other genetic operators 
are described in Smith [ 1 2 ] . In t h i s paper, we 
concentrate on the inf luence of the performance 
feedback on step (1) above, the se lec t ion of 
knowledge st ructures for reproduct ion. 

The charac ter iza t ion of the power and l i m i t a ­
t i ons of GAs is an act ive research area, but p r e l ­
iminary theo re t i ca l resu l t s are ava i l ab le . For 
example, the number of s t ructures in the populat ion 
which contain a given subset of ru les can be 
expected to increase or decrease over time at a 
rate propor t iona l to the average observed pe r f o r ­
mance of a l l knowledge st ructures which contain 
that set of ru les [ 1 1 ] . Thus, a l l subsets of ru les 
appearing in the populat ion of knowledge s t ruc tures 
are explored simultaneously in a near-opt imal 
fash ion, a phenomenon which is ca l led i m p l i c i t 
pa ra l le l i sm by Ho l land [7 ] . Bethke[2] describes 
some propert ies of search spaces which may be espe­
c i a l l y hard for GAs. 

Smith[12] implemented a GA-based machine 
learning system cal led LS-1. In LS-1 , each s t ruc ­
ture maintained by the GA represents a product ion 
system (PS) program. Each PS program is evaluated 
on the learning task by a c r i t i c which assigns a 
numerical measure of f i t ness to the evaluated pro­
gram. When a l l of the PS programs in the current 
populat ion have been evaluated, the GA is invoked 
to construct a new populat ion of PS programs, and 
the cycle is repeated. (See Figure 1.) LS-1 suc­
cess fu l l y learned PS programs for maze tasks and 
for draw poker. Our work extends the LS-1 system 
in order to achieve mu l t i - ob jec t i ve l ea rn ing . 

3• The Task Domain 

Mu l t i - c l ass pat tern d isc r im ina t ion was 
selected as a representat ive mu l t i - ob jec t i ve l e a r n ­
ing task . The spec i f i c task under i nves t i ga t i on 
was to c l a s s i f y muscle a c t i v i t y pat terns for f i v e 
human g a i t c lasses, representing one normal and 
four abnormal g a i t types. A t r a i n i n g set of 11 
t es t cases was obtained from the l i t e r a t u r e [ 1 ] , 
eaoh t r a i n i n g case cons is t ing of a 12-b l t s t r i n g 
derived from EMG s ignals from leg muscles whi le 
walk ing. As In LS -1 , we used a GA to search a 
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space of knowledge s t ruc tures ( i . e . , r u l e s e t s ) . 
The goal of the learning system was to f i nd a 
knowledge s t ruc tu re which co r rec t l y c l a s s i f i e s the 
11 t r a i n i n g cases. The performance of the learn ing 
system was measured by the number of knowledge 
s t ruc tures tested before obta in ing a s o l u t i o n . By 
choosing subsets of the t r a i n i n g cases, we derived 
2 -c lass , 3 -c lass , 4 - c l a s s , and 5-c lass d isc r im ina­
t i o n problems. Each experiment was s tar ted wi th an 
i n i t i a l populat ion of randomly generated knowledge 
s t ruc tu res , in order to t es t the power of the GA 
w i th no i n i t i a l knowledge. (Our implementation 
system[9] does al low the Incorporat ion of heu r i s t i c 
knowledge in to the i n i t i a l populat ion of knowledge 
s t ruc tu res . ) 

4. The Need for Mult idimensional Feedbaok 

A ser ies of experiments was performed in which 
a GA using a scalar c r i t i c was applied to m u l t i -
c lass d isc r im ina t ion problems. Although the GA 
could solve 2-c lass problems, i t could not solve 
the f u l l f i ve -c l ass problem. An analysis of the 
i nd i v i dua l PS programs generated by the GA at v a r i ­
ous times dur ing search revealed a common p a t t e r n . 
Knowledge of how to recognize a p a r t i c u l a r class 
was f requent ly absent from l a t e r PS programs, even 
when such knowledge was present in e a r l i e r pro­
grams. The problem is tha t s t ruc tures which con­
t a i n complementary knowledge are forced to compete 
by a GA using a scalar c r i t i c . Consider t h i s sim­
ple example: Suppose tha t the c r i t i c measures the 
f i t ness of each s t ruc ture by counting the number of 
t r a i n i n g cases which were c o r r e c t l y c l a s s i f i e d . 
Suppose program P1 contains ru les which co r rec t l y 
c l a s s i f y classes A and B, and program P2 co r rec t l y 
c l a s s i f i e s only instances in class C. I f a l l 
classes are equal ly represented in the t r a i n i n g 
se t , then program P1 appears to be twice as " f i t " 
as program P2. Since the GA se lects programs for 
reproduct ion on the basis of the f i t ness assigned 
by the c r i t i c , P1 w i l l tend to cont r ibu te ru le sub­
sets to twioe as many new programs in the next 
populat ion as w i l l P2. As the number of classes 
increases, specia l ized knowledge ( l i k e that in P2) 
may tend to su f fe r e x t i n c t i o n , f i n a l l y r e s u l t i n g in 
suboptimal performance fo r the learn ing system as a 
whole. 

Our so lu t i on was to modify the o r i t i c so tha t 
a vector of performance measures was computed fo r 
eaoh s t ruo tu re , w i th one s l o t in the f i t n e s s vector 

for each class represented in the t r a i n i n g se t . We 
then modif ied the GA so that complementary 
knowledge s t ruc tures would share knowledge (through 
the genetic operators) rather than compete 
d i r e c t l y . 

An i n te res t i ng question emerges at t h i s point 
which was never an issue wi th scalar c r i t i c s . Where 
should any punishment for incor rec t behavior be 
applied? Consider a knowledge s t ruc ture which 
i nco r rec t l y c l a s s i f i e s a class A case as class B. 
By applying the penalty to the A s l o t of the reward 
vec tor , we are punishing the f a i l u r e to do the 
r i g h t t h i n g . By applying it to the B s l o t , we are 
punishing doing the wrong t h i n g . The former s t r a ­
tegy was adopted for a l l subsequent experiments, 
arguing that class X t r a i n i n g cases should c o n t r i ­
bute, p o s i t i v e l y or negat ive ly , only to the X s lo t 
of the reward vector . 

The modi f ica t ion to the basic GA is as f o l ­
lows: instead of se lect ing s t ruc tures for reproduc­
t i o n on the basis of a s ing le f i t ness measure, a 
por t ion of each new populat ion is selected on the 
basis of each s l o t in the f i t ness vector . Note 
that if a s t ruc ture scores wel l on several meas­
ures, then i t w i l l tend to be chosen in several 
se lect ion phases. However, s t ructures which per­
form wel l on even one measure w i l l be given the 
oppor tun i ty to pass along t h e i r specia l ized 
knowledge. Af ter the se lec t ion phases, s t ruc tures 
are combined v ia genetic operator j u s t as in LS-1 . 
As a r e s u l t , our modif ied GA performs m u l t i -
ob jec t ive opt imizat ion in the space of knowledge 
s t ruc tures [ 1 0 ] . 

5. The C r i t i c 

One important property of the c r i t i c in a GA-
based system is that the f i t ness reported by the 
c r i t i c must r e f l e c t more than j u s t success or 
f a i l u r e on the task. Otherwise, the GA is unable 
to i d e n t i f y promising programs in the ear ly stages 
when successes are r a re , and cannot d isc r im inate 
the bet ter programs in the l a t e r stages when they 
are p l e n t i f u l . One source of informat ion of t h i s 
type is the amount of uncer ta in ty exh ib i ted by a PS 
program whi le attempting the task, where uncer­
t a i n t y is defined as the extent to which c o n f l i c t 
reso lu t ion is required in the decision process. A 
good c r i t i c should not discourage t h i s uncer ta in ty 
in the ear ly stages but should discourage i t in the 
l a t e r stages. Some experiments w i th d i f f e r e n t c r i ­
t i c s of t h i s sor t revealed something of the power 
of the GA to exp lo i t subt le features in the c r i t i c . 
For example, a c r i t i c which applied a desi rable 
uncer ta in ty c o r r e c t i o n , but only rewarded success, 
was found to y i e l d populat ions r i oh in programs we 
ca l led s p e c i a l i s t s . A s p e c i a l i s t was a program 
which achieved a maximum score in one s l o t of the 
f i t ness vec to r , but zero i n a l l o thers . I t 
appeared to "know" only one aspect of the task . 
Unfor tunate ly , these spec ia l i s t s were ac tua l l y PS 
programs which were w i l d l y guessing in the sense 
that they contained an over ly general r u l e which 
suggested the same c l a s s i f i c a t i o n for every t r a i n ­
ing case. A modif ied c r i t i c , designed to punish 
t h i s ind iscr im ina te guessing, was found to be too 
s t r i c t . By making r i s k - t a k i n g behavior too 
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dangerous, it led the GA to evolve programs which 
produced no c l a s s i f i c a t i o n . This strategy at least 
scores zero, which is bet ter than being excessively 
punished. F i n a l l y , a jud ic ious balance of reward 
and punishment was achieved by incorporat ing in the 
c r i t i c a scoring scheme inspired by the Scholast ic 
Apt i tude Test (SAT scor ing) . This scheme led the 
GA to consistent success on problems invo lv ing 2, 
3, 4 and 5 classes. 

6. Results 

the c r i t i c is too l ax , only rewarding successes, 
the GA evolves programs which guess w i l d l y to max-
imize the p o s s i b i l i t y of success. When the c r i t i c 
is too s t r i c t , the GA quick ly learns than doing 
nothing is a good s t ra tegy. Only jud ic ious balanc­
ing of reward and punishment leads to e f f e c t i v e 
l ea rn ing . 
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