USING MNODEL THEORY TO SPECIFY Al PROGRAMS

Alan M. Frisch

Cognitive Studies Programme
The University of Sussex

Brighton,

Abstract

This paper proposes a method for adapting the
traditional devices of model theory to the task of
specifying the input/output behavior of artificial
intelligence reasoning programs when viewed as
inference engines. The method is illustrated by
specifying two programs, one a toy example and the
other a program for retrieving information from a
declarative knowledge base. Close examination
shows that many intuitions about the properties of
a retriever can be stated rigorously in terms of
inference and that the model-theoretic specifica-
tion can then be used to prove that the retriever
has these properties.

1. Al Needs Specification Techniques

The success of artificial Intelligence as a sci-
ence hinges on our ability to build a theory that
relates a program's structure to its behavior.
Essential to this enterprise are methods for pro-
ducing rigorous specifications of programs at a
high level of abstraction that can be used to
codify and communicate our results.

There are two specification methods predominantly
(though certainly not exclusively) used: English
prose typically describing various structural ocom-
ponents of the program and their role in the
program's performance, and the actual code that is
used to implement the program. An English prose
specification can be highly abstract but, in prac-
tice, usually at the expense of rigor and preci-
sion. Consider the problem of predicting how a
program so described in a journal will behave on
examples not considered in the article. Morse yet,
consider the problem of showing that the program
has certain properties. Though a program's code
does not suffer from the lack of precision that an

English specification typically does, it is not
sufficiently abstract. Hence, appropriately
enough, code rarely works its way into the litera-

ture.

A methodology that has been pursued successfully
throughout computer science is that of separating
the description of what a program computes from how
it computes it. On the one hand there are descrip-

This work has been supported in part by grant
GR/D/16062 from the Science and Engineering
Research Council.

England

tions of a program's input/output behavior and on
the other descriptions of its internal modules,
processes, states and data structures.

This paper considers the case for
theory to specify what a program computes. A
method is proposed for adapting traditional model-
theoretic techniques and is illustrated by specify-
ing two programs. The first is a toy example used
to illuminate the key points of the technique,
while the second, a knowledge retriever, is used to
demonstrate application of the technique to a real-
istic AJ program. Beyond what is demonstrated by
these examples and those mentioned in the section
on related work, little is known about the range of
applicability of the technique.

using model

2. Overview of the Proposed Technique

A major concern of Al is with programs that mani-
pulate representations, which 1 take to be data
structures that denote. This raises the possibil-
ity that many such programs can be viewed as
inference engines, deriving conclusions from their
representations. This paper is concerned with
developing techniques for using model theory to
specify the input/output behavior of programs seen
from this viewpoint.

For example, a planner can be seen as an infer-
ence system. The program embodies a theory of
action and its input is a pair of sentences each
predicating a condition on the world. The planner
produces a plan such that its theory of action log-
ically implies that the second input sentence would
be true if the plan were performed in any world
satisfying the first input sentence.

Unfortunately, many planning systems such as
STRIPS (Fikes and Nllsson, 1971) do not meet such a
specification. In order to deal with the enor-
mously complex problem of finding an appropriate
plan among the set of all plans, these systems
employ problem representations that often find
plans quickly but do so at the expense of occasion-
ally failing to find any at all. As an inference
engine such a system is incomplete. How then can
such an incomplete system be specified?

The approach advocated here is to produce another
model theory whose logical implication relation is
weakened' in such a way that the program is a sound
and complete inference engine with respect to It.
Many people initially find this approach quite odd.

They are accustomed to thinking of a model theory
as specifying what can be concluded validly from
what—in some sense, as a competence theory of
inference. | suggest that those who are comfort-
able with this viewpoint consider the weaker model
theory as a performance theory of inference. Other
people are accustomed to thinking of a model theory
as a way of assigning meaning to symbols and are
skeptical of producing a new meaning assignment.
But | am not suggesting that the original model
theory be discarded; on the contrary, it is still
a valuable device in the study of meaning. The new
model theory can be thought to provide an addi-
tional meaning assignment. If the program is work-
ing under this alternative meaning then it is a
complete inference engine. Hence, the symbols mean
one thing to us and something different to the pro-
gram. According to our theory of meaning the pro-
gram is incomplete but according to its weaker
theory of meaning it is complete.

How can these new, weaker model theories be pro-
duced and what is their relationship to the unweak-
ened model theory? To answer the question consider
a model theory as laying down a set of constraints
on what constitutes a model. Of all (mathematical)
objects, only those that satisfy the constraints
qualify as models. A model theory also associates
with each model a truth assignment, a total func-

tion from sentences to their truth values. Hence,
a model theory constrains the range of truth
assignments that can be generated. In a standard

propositional logic, for example, these constraints
ensure that any truth assignment that assigns two
sentences true, also assigns their conjunction
true. The logical implication relation associated
with a model theory is a product solely of the
range of truth assignments that the model theory
generates. Relaxing the constraints produces a new
model theory, one that may generate additional
truth assignments. No matter how the constraints
are relaxed, the new model theory must have a
weaker logical implication relation than the origi-
nal . That s, if =y and |wy are logical
Implication relations and |=p is obtained by relax-
ing the model theory for |=y, then alpha |=g beta
Implies alpha I=; beta. To see this, observe that
a truth assignment can serve only as a counterexam-
ple to a claim that one sentence logically implies
another; hence if none of the truth assignments
from the relaxed model theory are counterexamples
then certainly none from the original model theory
are.

3. A Toy Example

Consider a program that reasons about an arbi-
trary equivalence relation named "r". A user com-
municates with the program, making assertions and
queries, each of which specifies a sentence of the

form "r(alpha,beta)", where alpha and beta are sym-

1 One logical implication relation is weaker
than another if the inferences sanctioned by the
first are a subset of those sanctioned by second.

A. Frlsch 149

bols drawn from some lexicon.

This program can be specified in terms of the
symbolic manipulations it performs. There are many
conceivable specifications but for the sake of
argument let us say that the program works by main-
taining a collection of disjoint sets. Initially
there is a unit set for each symbol in the lexicon.
Whenever the user asserts "r(alpha,beta)" the pro-
gram combines the sets that contain alpha and beta
into a single set. To respond to the query
"r(alpha,beta)" the program simply determines
whether the elements alpha and beta are in the same
set. There are many well-studied algorithms for
performing this set-union task (Tarjan and van
Leeuwen, 1984), the best of which can process a
series of n assertions and queries in slightly
greater than 0(n) time.

To the user of the system this
too detailed and too concrete. A more abstract,
non-procedural definition of this reasoning system
can be obtained by replacing the question "What
does the reasoner do?" with "Given a set of sen-
tences that have been asserted, what query sen-
tences succeed?" At this higher level of abstrac-
tion the various set-union algorithms are all
equivalent.

specification is

In response to the question of what queries
succeed, it can be shown that the program described
above answers "yes" to a query if, and only if, it
legitimately can do so based on what it has been
told. That is, it answers "yes" if, and only if,
the queried sentence logically follows from the set
of asserted sentences. Forgive my pedantry while |
spell out the obvious details of the model theory
that gives rise to the logical Implication relation
for this language; these details will be valuable
in considering how to relax a model-theoretic
specification.

Each of the model theories discussed in this
paper is given a name. The one presented next is
called "E". In cases where confusion could arise,
terms like "E-model" and "E-logical implication"
and symbols like "|=E" are used to indicate which
model theory is under consideration.

An E-model is a pair <D,A>» where 0 is a non-empty
set of individuals called the domain and A is a
function that maps every symbol in the lexicon to
an element of 0 and maps r to a binary relation
over D such that:

(1) A(r) is reflexive,
(2) A(r) is symmetric, and
(3) A(r) is transitive.

The truth assignment associated with <D,A» js the
function that takes each sentence of the form
r(alpha.beta) to True if the relation A(r) holds
between A(alpha) and A(beta), and to False other-
wise. These truth assignments can then be used In
the wusual fashion to define the notions of E-
satisfiability, E-validlty, and E-logical implica-
tion for this language.

150 A. Frisch

This model theory serves two purposes In analyz-
ing the program. First, It provides a rigorous
semantics for the language that the prograa manipu-
lates and in doing so defines logical implication
for the language. Second, it is used in specifying
what the program computes by stipulating that it
responds "yes" if, and only if, the queried sen-
tence E-logically follows from the asserted sen-
tences. In the case of this program the two uses
go hand-in-hand because the program Is a sound and
complete inference engine. But it is important to
distinguish between these two uses of a model
theory as we turn our attention to a reasoning pro-
gram that is not complete.

Suppose that for some reason we were not happy
with a program that required slightly greater than
0(n) time to process a series of n assertions and
queries. (I told you this was a toy example!)
Furthermore, suppose that we were willing to

replace the set-union algorithm with the following
algorithm, which is much weaker but slightly fas-
ter. Whenever "r(alpha, beta)" is asserted, the
program adds the pair <alpha,beta> to an associa-
tive store. The program responds "yes" to the
query "r(alpha,beta)" if, and only if, alpha and

beta are identical or the associative store con-
tains either <alpha,beta> or <beta,alpha>.

This program is incomplete with respect to E.
For example, if only r(a,b) and r(b,c) have been
asserted, the query r(a,c) will not result in "yes"
even though the queried sentence E-logically fol-
lows from the two asserted sentences. E still
gives a semantics for the language manipulated by
the program but It no longer specifies what the
program computes. However, there is a weaker model
theory--call it E“--whose logical implication rela-
tion does specify the input/output relation of this
program. E" is Identical to E except that con-
straint (3), which says that A(r) must be transi-
tive, is eliminated. With respect to E¥ the pro-
gram is a sound and complete inference engine—
though admittedly soundness and completeness are
normally taken to be with respect to a model theory
that specifies the meaning of the language.

4. Knowledge Retrieval

Artificial intelligence reasoning systems com-
monly employ a knowledge base module (KB) that
stores information expressed in a representation
language and provides facilities for other modules
of the system to retrieve this Information. Though
there has been a growing concern for formalization
in the study of knowledge representation, |little
has been done to formalize the retrieval process.
This section outlines an attempt to use the pro-
posed specification technique to remedy the situa-
tion. Since a method should be judged by the
results that can be obtained with It, the section
Is not as concerned with the method Itself as with
how it can contribute to the study of retrieval.

4.1. Retrieval as Inference

The retrieval problem that | have studied® takes
the knowledge base to be a set of sentences of the
first-order predicate calculus (FOPC). While FOPC
may be less expressive than many other languages
that could be used, it is expressive enough to lead
to a serious retrieval problem; most notably, logt-
cal implication is only semi-decidable.

A query asks whether a specified closed sentence
of FOPC can be retrieved from the KB, and the
retriever responds "yes" or "no." So, for example,
one could query "Can 'UNCLE(JOHN,BILL)" be
retrieved?" It is not difficult to extend this
notion of query to include FOPC sentences with free
variables. Such an extension enables one to ask,
"What are all the x's such that 'UNCLE(x,BILL)" can
be retrieved?" However, for purposes of this expo-
sition it suffices to consider only the first form
of query.

A specification must determine whether a retri-
ever responds "yes" or "no" for any given KB and
any given query. Just as one can speak of a sen-
tence logically following, or being provable, from
a set of sentences, one can speak of a queried sen-
tence being retrievable from a set of sentences
contained in a knowledge base. Thus the task of
specifying a retriever comes down to one of speci-
fying a retrievability relation.

| place three requirements on any retrievability
relation that | study. If kb is a set of sentences
and g a single sentence of some language whose log-
ical implication relation is |= then any retrieva-
bility relation for that language should satisfy:
soundness: If q is retrievable from kb then
kb |= q.
retrieval: If g kb then q is
retrievable from kb.
decidability: retrievability is decidable.
The first requirement demands that sentences not
logically following from the KB are not retrievable
while the second demands that sentences explicitly
in the KB are retrievable. The third requirement,
which ensures that the retriever can be realized by
an effective procedure that is guaranteed to ter-
minate, is weaker than it ideally should be—that
the retriever could be realized by a procedure
requiring only some small amount of computational
resources.

verbatim

It should come as no surprise that | specify a
retrievability relation for FOPC by identifying it
with the logical implication relation of a model
theory obtained by relaxing the standard Tarskian
model theory for FOPC (Tarski, 1956). 1 call the
Tarskian model theory "T" and the relaxed model
theory that specifies the retriever "R".

Consider how, as a retrievability
stands up to the above requirements.
obtained by relaxing constraints in the

relation, j=p
Since |=g is
specifica-

X
2 Frisch and Allen (1982) examine the problem in
more detail.

tion of |[=p. the soundness requirement is met,
according to the argument of Section 2. Any logi-
cal implication relation will satisfy the second
requirement, regardless of the model theory. Since
|=r is not decidable, it is the third requirement
that forces a relaxation of T and leads to the
viewpoint of knowledge retrieval as limited (i.e.,
incomplete) inference. Hence it is the undecida-
bility of FOPC that makes the retrieval problem
interesting.

4.2. Specifying a Retriever

1 have used this viewpoint of retrieval as lim-
ited inference to specify a slightly simplified
version of the knowledge retriever incorporated in
the ARGOT dialogue-participation system (Allen.
Frisch and Litman, 1982). The specification is
produced in stages, first by specifying a retriever
that is extremely conservative in what it infers
and then by extending it with additional forms of
decidable inference such as those dealing with tax-
onomic hierarchies and property inheritance (as
typically done by semantic-network systems). At
each stage a retrievability relation is specified
by identifying it with both a provability and a
logical implication relation. A point worth noting

is that these specifications of ARGOTS retriever
were developed after the program. Only the
extremely conservative retriever is considered
here, though Section 4.4 briefly outlines how

semantic-network-style taxonomic inference can be
incorporated.

The strategy for ruling-out certain inferences to
obtain this extremely weak inference engine is
based on the important intuition that retrieval s
more like a matching operation than a deductive
operation. Stated in terms of inference, the sim-
ple retriever satisfies the no-chaining restrlc-
Uon; imagining the KB and query divided into
quanta called "facts," the simple retriever cannot
chain two facts together in order to respond affir-
matively to a queried fact. Tn other words, a
queried sentence is retrievable only if each of its

facts is retrievable from a single fact in the KB.
This intuition contrasts with the notion that
retrieval deduces the queried sentence by repeat-

edly combining facts together to derive new facts.

The use of the word "fact" has been deliberately
vague and will not be made precise until Section
4.3. However before turning to the specification
of retrieval it is worth noting that the main con-
nective in a fact is disjunction. This is a cru-
cial point because R is derived by weakening only
the interpretation of disjunction. Hence, a fact
is given a weaker Interpretation in R, eliminating
chaining and thus making R-logical implication
decidable over the set of facts. A key example is
that the specification does not sanction a simple
form of chaining, the disjunctive form of modus
ponens: P, =P v @ |fg Q

A. Frisch 151

It is tempting to try to produce the specifica-
tion of the relaxed model theory by following the
tactic used in Section 3 of simple textual deletion
of some constraint on what constitutes an unrelaxed
model. However, in the case of T it is not so
straightforward. E specifies three constraints on
the relations that can be assigned to the symbol

"r" and thus prevents the atomic sentences of the
language from obtaining certain combinations of
truth values. (Recall that all sentences in the

object language of E are atomic.) Relaxing E to
obtain EY involves deleting one of the three con-
straints, allowing the atomic sentences to be given
additional combinations of truth values.

Unlike E, T places no constraints on the rela-
tions that a model can assign to a relation symbol
and therefore the atomic formulas of the language
can be assigned any combination of truth values.
So the strategy of generating additional truth
assignments by giving the atomic sentences more
combinations of truth values cannot be pursued in
this case.® Since the truth assignments to atomic

formulas cannot be Increased we must consider the
truth assignments to molecular formulas. T is
truth-functional; the truth value of a molecular

formula in a model is a function of the truth
values of the formula's constituents tn that model.
For example, a disjunction is true in a T-model if,
and only if, one of its disjuncts is true in that
model. In order to admit more truth assignments
while still maintaining a compositional semantics,
the truth value of a molecular formula must be a
function of some other feature of the formula's
constituents. The best-known non-truth-functional
model theories are the possible-worlds model
theories (Kripke, 1963), which are commonly used
for modal logics, in a PAMI (possible-worlds model
theory) one speaks of the truth value of a formula
in a world, and for a molecular formula this may be
a function of the truth values of the formula's
constituents in other worlds. There are many rea-
sons for moving from a Tarskian to a possible-
worlds model theory, but the sole motivation here
is that the possible-worlds framework is a more
expressive medium for describing a model theory;
every truth-functional model theory can be written
in a possible-worlds form but not vice-versa.

So, the first step to reaching the ultimate tar-
get of a model theory for specifying the retriever
is to produce a PWMT--call it T'--whose models
correspond to those in T and which therefore yields
precisely the Tarskian truth assignments. The next
step is to produce K by relaxing T' so that it
allows more models and associates non-truth-
functional truth assignments with the added models.

For present purposes, consider a model in a PAMIT

to be a 3-tuple <D,AW> where D--the domain—and
W—the set of worlds in the model--are non-empty
% It Is assumed here that only 2 truth values

are used. Belnap (1975, 1977) pursues a strategy
of using 4 truth values.

152 A.Frisch

sets and A is a function fron a non-logical symbol
and a world to an appropriate denotation for that
symbol. Because the non-logical symbols may have
different denotations in different worlds, there is
a truth assignment associated with each world in a
model. The manner in which such a truth assignment
is derived varies from one PMMI to another.

The current task is to define T, a PAMI that
corresponds to T. Since a T-model generates only
one truth assignment, let T' be a possible-worlds

theory in which all models contain exactly one
world. Hence, the T'-model <D,A,(w}> corresponds
to the T-model <D,lambda x.A(x,w)>. In the obvious

way, w in <D,A,{w}> can be associated with a truth
assignment, the same as that associated with its
corresponding T-model. I make this explicit
because, as previously mentioned, it is the manner
in which these assignments are generated that is to

be relaxed. Specifically, consider the equation
that inductively defines the way T' assigns truth
values to disjunctions. If V mw is the truth

assignment associated with world win model m then
(4) Vg ylee vA) = OR(Vy (=), Vg LIA))

where OR is the usual Boolean disjunction.

To specify R, T' is relaxed to allow models with
more than one world. This enables R to construct
non-truth-functional truth assignments by defining
the assignment associated with one world in terms
of those associated with other worlds. In particu-
lar, R assigns True to a disjunction in a world if
any of its disjuncts are assigned True in any world
in the model. This modification is effected by
replacing (4) with (5).

(5) Vg ylocv) = True
if for some world u in m
OR(Vy yiec) Vg y(B)) = True
= Falae otherwise

The equation gives a formula of the form v
the same interpretation as a traditional PMT would
give to the modal formula "possibly {s< wvf)."

Notice that (4) and (5) are in full agreement on
those models that contain only a single world.
Hence R still generates all the Tarsklan truth
assignments. However, R also generates many non-

truth-functional truth assignments. As an example
consider any two-world model whose worlds are
complementary--they disagree on the truth value

assigned to every atomic formula. Every literal
(an atomic formula or its negation) must be true in
exactly one of the two worlds, and therefore in
either world every disjunction of literals is true,
regardless of the truth of the literals in that
world. This vividly illustrates how the logic is
weakened; if one knows only that a disjunction of
literals is true, one knows nothing of the truth
values of those literals.

R-models with complementary worlds play an impor-

tant role in studying the properties of this model
theory. Whereas R-models with identical worlds
produce only the Tarsklan truth assignments, those

with complementary worlds are the most un-Tarskian
in that their truth assignments differ most from
the Tarsklan truth assignments. Such R-models can
demonstrate, for example, that P and -P v Q do not
R-logically imply Q.

4.3. Properties of the Retriever
This section examines the

retrievability

properties of the
relation specified by model theory
R. | state these properties without proof,
concentrating instead on how they coincide with
certain informal intuitions about retrieval.

The principal motivation for relaxing T to pro-
duce R was to obtain decidability of logical impli-
cation. Yet because R still gives negation, con-
junction and quantification their standard Tarskian
interpretations, |=g remains undecidable. How-
ever, it is decidable for sentences of a particular
normal form. A universal clause is a universally
quantified disjunction of literals. An existen-
tial disjunction is an existentially quantified
conjunction, each conjunct of which is a disjunc-
tion of literals; that is it is of the form,

)8
RN I

3!],X2.... “.-1] v Lyg ¥

(Lzy v Lpp v

where each L; is a literal. An atomic sentence is
neither a universal clause nor an existential dis-
junction though a disjunction with a single dis-
junct is permitted. This seemingly-trivial
insistence that every existential disjunction and
universal clause contains a disjunction has the
crucial consequence that these sentences are inter-
preted more weakly by R than by T.
Property 1
There is a procedure, which given any finite set
of universal clauses—kb—and any existential
disjunction—g—decides whether kb }=g q.

Though this crucial property is not proved here,
the remaining properties mentioned in this paper
are the key lemmas in its proof.

One intuition about retrieval is that it vyields
exact answers. For example, "3x Liarix)" is not
retrievable from a KB containing solely
"Liar(Richard-Nixon) v Liar(John-Dean)" because a
particular x cannot be named. So a retriever only
says that an individual with a particular property
exists if it is able to name that individual. The

following property formally states that |=r cap-
tures this intuition.
Property 2
An existential conjunction,
JIxyxp.... (hgpvigpv ...

)&
(Lpy vipp v ...} & ...

is R-logically implied by a set of wuniversal
clauses, kb, if, and only if, there is a substi-
tution, 9, of ground terms for the variables
X1,X2,**. such that

kb i"n {Lll v Lla v ...,o and

kb {=g (Lp; vLpz v ...)g Bnd ...

Now consider the problem of retrieving a ground
clause--a disjunction of variabJe-free literals--
from a set of universal clauses.

Property 3

Let kb be a set of universal clauses and q be a

ground clause. Then kb |=p q if, and only if,

b i=g q for some b that is a ground instance of a

clause in kb.

This is a no chaining property where a fact is
formalized as being a ground clause. Notice that
R-logical implication is restricted not just to a
single universal clause but to a single instance of
the clause. This means that

¥x ~N{x} v N{s(x)) |#; “N{0} v N(s{s{0}})

because the query T-logically follows only from two
instances of the clause 1n the KB:

~N{0) v N{s(0]), ~N{s(0)) v N(a(s(D)})
j=r ~B{0) v N(&{8(0)})
Such an inference can be seen as chaining a sen-
tence with itself, and hence our intuitions say
that it should not be performed by the retriever.
Property 3 confirms that the specified retriever
captures this intuition.

There are many conceivable retrievers that, like
this retriever, satisfy the no-chaining restriction
for the definition of "fact" used here. However,
among these retrievers the one specified here occu-
pies a privileged position by virtue of Property 4.
Property 4

For any two ground clauses, kb and q, kb

if, and only if, kb [=p q.

[=r q

Recall (from the soundness requirement of Section
4.1) that for a relation to be considered a
retrevability relation it must be a subset of |=r.
Therefore, with respect to the present definition
of "fact," |=g is the strongest retrievability
relation satisfying the no-chaining restriction!

4.4. Extensions

1 expect that having a model-theoretic specifica-
tion will result in big payoffs when the capabili-
ties of the simple retriever are extended. Con-
sider extending the retriever to do a specific kind
of finite chaining—for example, reasoning about
Inheritance and taxonomies as is typically done by
semantic-networks. FOPC can be enhanced with nota-
tional devices for expressing information about
taxonomies and the Tarskian model theory can also
be extended to deal with these syntactic additions.
Our clear and simple intuitions about taxonomies
make this an easy task. Since the taxonomic exten-
sions are decldable and the retriever is to reason
fully about them, these same extensions can be made

to R in order to obtain a retrievability relation
for the enhanced language.
Though the difficult task of finding a proof

theory or a decision procedure still remains, ima-
gine the difficulty of doing so without the gui-
dance of a model theory. How would one know when
all necessary inferences were captured, or if the

A. Frisch 153

captured ones were reasonable? Of course one's
intuitions could provide guidance, but not to the
degree provided by a model theory constructed from
the same intuitions.

In another application, R could be extended to
form a logic of what l.evesque (1984) calls "expli-

cit belief"—those beliefs that an agent can
readily access (i.e., retrieve). R provides a
useful foundation on which to build since it
accounts for certain crucial facts: an agent's
explicit beliefs may be T-inconsistent, an agent
cannot explicitly believe most of the T-
consequences of his explicit beliefs, and an agent

can explicitly believe that P but not that Q, even
if P and Q are T-logically equivalent and he expli-
citly believes so.

5. Related Work

There is one line of research that has resulted
in a logic so close to R that | discuss it here at
the exclusion of all else. The comparison is

brief, though a detailed one certainly is called
for.

Belnap (1975; 1977) presents a four valued
relevance logic that provides a weakened interpre-

tation of propositional logic. Levesque (1984) in
turn uses this logic as the foundation of a modal
explicit-belief operator in a propositional logic.
With the retrieval problem in mind, Patel-Schneider
(1985) extends Belnap's logic with quantification,
resulting in a system with a t-entailment relation
strikingly similar to |=g. Though not explicitly
discussed, each of these systems provides a stan-
dard logical system with an alternative, relaxed
model theory and in each case the motivation is to
obtain a weak logical implication relation (called
"entailment"” in these systems) with certain proper-
ties.

Propositional sentences in Patel-Schneider's sys-
tem and those embedded in Levesque's implicit-
belief operator have the same interpretation as in
the wunderlying system of Belnap. Hence, 1 shall
compare propositional interpretations in R only
with those in Belnap's four-valued logic, which
henceforth is called simply "B".

Whereas the elimination of chaining motivated the
development of R, the elimination of inconsistency
motivated the development of B. Consequently, the
two logics weaken the logical connectives of FOPC
differently. R weakens the interpretation of dis-
junction so that a disjunction of false formulae
may be either true or false. B weakens the
interpretation of negation so that the truth of a
sentence is not related to that of its negation—
intuitively what one would expect from a logic
designed to eliminate inconsistency.

The remarkable result is that, like R, B does not
sanction the chaining of facts as defined here.
However, B is weaker than R in that no sentence s
B-valld. Whereas B denies the existence of vali-
dity, R carries the no-chaining intuition through

154 A. Frisch

to its definition: a normal for* sentence is R-
valid if, and only if, each of its facts is valid.
Specifically, the relationship between the two sys-
tems is that for sentences in prenex conjunctive
normal font

kb |=p q If, and only if, g is R-valid or
kb |=p g

6. Conclusion

Model-theoretic specifications of Al programs are
useful for several reasons. They are wore abstract
than LISP-code specifications yet formal enough to
prove that a specified program has certain proper-
ties, such as those discussed in Section 4.3. It
is hard to imagine a form of specification that
moves further in the direction of saying what s
computed without saying how. Perhaps this accounts
for why the retrieval specification presented here
is extremely short, though an efficient implementa-
tion wouid require a program of moderate size. In
addition to being technically valuable, a model
theory can be a useful heuristic tool, serving to
sharpen and extend our intuitions. Though a
proof-theoretic specification also can possess some
of these properties, ideally one would like to have
both forms of specification available; the more-
appropriate specification can then be chosen for
any given task.

This paper gives, | hope, strong evidence that a
model-theoretic specification of a program is a
valuable tool. Furthermore, it suggests how these
specifications may be produced for incomplete-

reasoning programs. Yet the utility of a methodol-
ogy must be demonstrated by more than two examples,
however persuasive they may be. The important
question that remains unanswered is "What is the

range of Al programs that can be specified natur-
ally with a model theory?" | stress the word
"naturally" because a cumbersome model-theoretic
specification will not provide the benefits dis-

cussed above.

During a period when the retrieval specification
used mechanisms other than possible worlds, | often
felt that the specification was stretching the
methodology to its limits, that slight extensions
to the retriever would introduce Immense complexity
to the specification. My pessimism subsided with
the introduction of possible worlds, and the poten-
tial for extension is now one of the strong points
of the retrieval specification. The use of possi-
ble worlds is just one element In a large body of

well-studied model-theoretic devices and logical
implication is just one of a range of model-
theoretic relations, which potentially could be

used in the construction of specifications. On
this rests the hope of using the proposed methodol-
ogy to specify a wide range of programs. Further
attempts to develop and use the technique are
needed to see how far it can be extended before
breaking down.

Acknowledgements

Lengthy discussions with David A. McAllester in
December 1982 led to several ultimately-correct
suggestions for approaching the problem of produc-
ing a model-theoretic account of my retriever. The
retrieval specification in this paper is the result
of a two-year process that produced numerous
incorrect and/or over-complex specifications. | am
most grateful to Dave, without whom | would have
slept better for two years but never would have
written this paper. | am also grateful to Peter
Patel-Schneider, Chris Mellish, Remko Scha and
Aaron Sloman for their useful comments on various
versions of the paper, to James Allen, Andy Haas
and Pat Hayes with whom | have had extensive dis-
cussions on model theory and knowledge retrieval,
and to Fran Evelyn for her eagle-eyed proofreading.

References

Allen, J.F., AM. Frisch and D.J. Litman. "ARGOT:
The Rochester Dialogue System," Proc. AAAI-
82, August, 1982.

Belnap, N.D., "How a Computer Should Think," in
Contemporary Aspects of Philosophy, Proc. of
the Oxford International Symposium, 1975.

Belnap, N.D., "A Useful Four-Valued Logic," in G.

Epstein and J.M. Dunn (eds.), Modern Uses of
Multiple-Valued Logic, Dordrecht: Reidel,
1977.

Flkes, R.E. and N.J. Nilsson, "STRIPS: A New
Approach to the Application of Theorem Prov-
ing to Problem Solving," Artificial Intelli-
gence 2. 189-208, 1971.

Frisch, A.M. and J.F. Allen, "Knowledge Retrieval
as Limited Inference," in DMW. Loveland

(ed.), Lecture Notes In Computer Science: 6th

Conference on Automated Deduction. New York:
Springer-Verlag, 1982.
Kripke, S.A., "Semantical Analysis of Modal Logic

I, Normal Propositional Calculi," Zeltschrlft
fur Mathematlsche Loglk und Grundlagen der
Mathematik 9, 67-96, 1963.

Levesque, H.J., "A Logic of Implicit and Explicit
Belief," Proc. AAAI-84, August 1984.
Patel-Schneider, P.P., "A Decidable First-Order

Logic for Knowledge Representation," Proc.
IJCAI-9, August, 1985.
Tarjan, R.E. and J. van Leeuwen, "Worst-Case

Analysis of Set Union Algorithms," Journal of
the A.C.M. 31. 245-281, 1984.

Tarski, A., "The Concept of Truth in Formalized
Languages," in A. Tarski (ed.), Logic, Seman-
tics, and Mathematics. Oxford: Clarendon

Press, 1956.

