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ABSTRACT 

Multiple processors can be used to speed up a backward-chaining 
deduction by distributing or-parallel deductions. However, the actual 
speedup obtained is strongly dependent on the amount of 
communication required for the task allocation strategy. A Variable 
Supply Model (VSM) is presented for multiple processors with 
replicated databases on a broadcast network. The term model refers to 
the set of procedures and messages required to perform the 
computation. VSM allows an infinite class of strategies with varying 
amounts of communication. The utility of VSM lies in the easy and 
powerful way it provides for selecung a strategy that works satisfactorily 
given certain communication constraints. Al l strategies in VSM use a 
dynamic task supply protocol (ESP) that works better than other supply 
protocols described in the literature. 

I INTRODUCTION 

Parallelism has been identified as a key to future high-performance 
reasoning machines - the fifth generation of computer systems (Moto-
oka, 1984). Multiple processors must be made to cooperate to speed up 
a computation. Clearly, there is a need to identify parallel components 
of reasoning computations and there is a need to build multiprocessor 
hardware. In addition, there is a need to map parallel computations 
onto multiple processors, keeping in mind the constraints of 
communication. This last need is being largely ignored at the present 
time and may become the bottleneck in achieving high performance 
from multiple processors. The purpose of this paper is to address the 
last need (i.e., to propose methods for task allocation that work well in 
the presence of communication constraints). 

Task allocation in a multiple processor system strongly affects the 
overall speedup obtained for a parallel computation (Conway, 1967). 
Also, communication cost can be a significant part of the cost of the 
computation. Therefore, a good task allocation strategy is needed and 
can be obtained only if both processing costs and communication costs 
are kept in mind. 

The type of computation being considered in this paper is backward-
chaining deduction (Barr, 1982) with no side-crTects, and the 
parallelism employed is or-parallelism (Conery, 1983,1.indstrom, 1984, 
Ciepielewski, 1983). In addition, all the processors can do backward-
chaining deductions2 and are connected by a broadcast network. 

1This work was supported in part by ARPA contract N00039-83-C-0136 

2They may. however, work at different speeds 

3The multiple processor scenano applies to both multiple processors connected by a 
broadcast local area network (like the CSMA-CD Ethernet (Metcalfe. 1976)) or multiple 
processors connected by a broadcast network on a single chip as suggested by Ullman 
(Ullman. 1984) 

Moreover, the database is replicated at each processor.4 The goal is to 
complete the deduction in as short a time as possible.5 The task 
allocation strategics presented in this paper do not assume any 
knowledge of the domain of application (i.e., the database of facts and 
rules may be used only syntactically). The task allocation strategies can, 
however, use extra information to improve their performance. 

Previous approaches to parallel task allocation (Lawler. 1982) will not 
work well in this domain because of assumptions that are not 
reasonable here. Most techniques can be eliminated as inapplicable 
because they assume that all tasks to be allocated are known beforehand 
along with their processing requirements (Mayr, 1981). Another large 
class of techniques can be eliminated because communication cost is 
not considered or it is inaccurately modeled (Lageweg, 1981). More 
likely contenders will be considered later in the paper. 

The importance of this paper lies primarily in providing two kinds of 
mechanisms to control communication cost. First, clever ways are 
found to reduce communication cost outright. KSP, a communication 
network protocol for transferring tasks among processors is more 
efficient than the announcement-bid-award protocol of Contract Net 
(Davis, 1983) and Enterprise (Malone, 1983). Second, mechanisms are 
described to trade off communication cost and parallelism. The 
Variable Supply Model (VSM) allows flexible usage of the inter-
processor throughput in this respect. The term model refers to the set of 
procedures and messages required to perform the computation. 
Throughput means the amount of data (in terms of messages) per unit 
time that can be sent on the communication network. VSM uses KSP as 
its communication protocol. 

This paper is organized as follows. Section II explains how to view a 
backward-chaining deduction as a tree of or-parallel tasks. Section 
I I I contains a description of the multiple processor architecture. 
Section IV then describes VSM and how it can be used to control 
communication. Section V describes ESP and how it can be used as an 
efficient task supply protocol for all the strategies in VSM. Sections 
VI and VII contrast the results of using the two extremes of VSM - a 
supply-driven strategy and a demand-driven strategy. Useful 
extensions to VSM and KSP and how they might fit into the current 
framework are described in Section VI I I . That section also contains 
directions for future work and a summary. 

II BACK-CHAINING AS OR-PARALLEL COMPUTATION 

And-or trees (Barr, 1981) can be used to represent the problem-
reduction in a backward-chaining deduction (Barr, 1982). In this paper, 
only or-parallelism is used; no and-parallelism is exploited. Therefore, 
an or tree to represent a backward-chaining deduction, as described 
below, is of more interest than an and-or tree. Backward-chaining is 

There are two reasons for choosing this multiprocessor architecture First, it is a 
practical way to utilize personal workstations when their owners are not using them 
(Malone. 1983)) Second, this paper can be a stepping stone to studying multiprocessors 
with more complex interconnection structures 

5It is well known that optimal task allocation even for relatively simple problems is 
NP-complete (Mayr. 1981) Therefore, no attempt will be made to get an optimal 
solution 
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used in the context of rule-based systems in which the data base consists 
of a dynamic set of First Order Predicate Calculus (FOPC) propositions 
and the rule base consists of a static set of FOPC rules. In this paper, 
even the data base is kept unchanged as the deduction proceeds. Al l of 
the propositions in the data base are literals (i.e.. cither atomic 
propositions or negations of atomic propositions). All propositions in 
the rule base arc required to be written in one of the forms shown 
below, where alpha, beta, and alpha 1 alphan are all literals.6 

( / /alpha beta) 

(if (and a lpha r .a lphan) beta) 

Similarly, a goal to be proved must also be a literal or a conjunction 
of literals. In the rest of the paper, the term data base will be used to 
refer to the union of the rule base and the data base as described above. 

Each node in the or tree can be represented as a tuple of two sets, a 
set of goals and a set of bindings. The top-level node's set of goals 
contains one literal and its set of bindings is empty. If the set of goals of 
a node in the tree is non-empty, its children can be obtained in the 
following three ways: (1) Take one of the goals in the goal set and 
backward-chain with all possible rules. A child is created for each of 
the rules that can be used to backward-chain from the parent. A child's 
goal set is obtained from the parents goal set by removing the goal that 
was backward-chained on, adding the antecedents of the rule applied, 
and applying the unifier from the backward-chaining to the resulting 
goal set. The set of bindings of the child is obtained by adding the 
unification bindings to the set of bindings of the parent. (2) Uni fy a 
goal from the goal set of a parent node with a proposition in the data 
base. A proposition in the data base is treated as a rule in (1) with no 
antecedents. (3) If (1) and (2) cannot be used, no child can be created 
and this chain of backward-chaining ends in failure. 

Figure 1 presents an example of an or tree. A leaf represents a 
positive result if its set of goals is empty. 

Any node in the or deduction tree may be referred to equivalently as 
a task. A unit deduction is the expansion of a node into its children. 
The result of a deduction is the binding list that satisfies the proposition 
in question, if only one positive result is desired, or it is the list of 
binding lists that satisfy the proposition, if all positive results are 
desired. 

Notice that each of the subtasks of a task can be solved completely 
independently. No communication is required among the subtasks. 
Also, notice that the grain of the tasks in the deduction tree can range 
all the way from I unit backward-chaining deduction to an arbitrarily 
large size. Moreover, backward-chaining deductions are side-effect 
free7 

III THE MULTIPLE PROCESSOR ARCHITECTURE 

The goal of this paper is not to describe multiple processor 
architectures in any great detail. A l l we require is that the multiple 
processor architecture satisfy certain properties described below. 

(1) Many sequential processors are connected to a broadcast 
network; (2) The memory at each processor is large enough to store a 
complete copy of the database; (3) Message-passing is the only form of 
inter-processor communication; (4) A message may be either point-to-
point or broadcast; and (5) Each processor has a unique processor 
number. An example of this kind of architecture is multiple Symbolics 
3600 processors connected to a Chaosnet (Moon, 1982). 

The local time at each processor is used for time-stamping messages. 
It is impossible to have all processor clocks completely synchronized 
but a close synchronization is desirable (and can be obtained by a 
standard distributed clock synchronization algorithm (Marzullo, 1984)). 

IV VARIABLE SUPPLY MODEL (VSM) 

VSM allows a class of strategies with varying amounts of 
communication. It will be shown later that the strategy with the highest 
communication cost will work best when inter-proccssor 
communication throughput is very plentiful relative to the message 
traffic that needs to take place. Also, the strategy with the lowest 
communication cost will work best when the inter-processor 
communication throughput is very low. The utility of VSM lies in 
providing a unifying framework for an infinite set of strategics with 
varying amounts of communication, in the case of selection of these 
strategies, and in the demonstrated usefulness of the two extreme 
strategics. The use of intermediate strategies for intermediate 
communication conditions seems likely but is left unexplored in this 
paper. 

The notation for propositions is taken from (Genesereth. 1983) 

They are side-effect free at least in their pure form One could have side-effects, for 
example, by allowing caching, but that is not considered here Figure 2: The Variable Supply Model 
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VSM lays down a specific internal organization of the set of tasks 
known to each processor. This organization is shown in figure 2. 
Current Task is the task being worked on by the processor, Actual 
Work Set is the set of tasks that the processor is committed to 
executing, and Potential Work Set is the set of tasks that no processor is 
known to be committed to perform. The lines with arrows show the 
directions of transfer of tasks. Any tasks that flow from left to right 
across the hypothetical commit line must be announced to other 
processors as being available so that they may place the task in their 
potential work sets. Similarly, any tasks that flow from right to left 
across the commit line must be announced as being grabbed by this 
processor so that other processors may not also grab the same task. 

Ideally, the potential work sets of all the processors are the same at all 
times and each task is grabbed by one and only one processor. 
However, because of non-zero message delays, more than one processor 
may attempt to grab a task. A protocol understood by all the processors 
is required so that multiple grabs are resolved, results are properly 
handled, and tasks are killed when they are no longer needed. An 
efficient communication protocol (ESP) to handle these problems is 
described in the next section. 

In VSM, the mechanism for controlling the amount of 
communication lies in the fact that the tasks in the actual work set and 
the potential work set can be arbitrarily balanced. As will be seen later, 
if all newly generated tasks arc placed in the potential work set and 
grabbed only when absolutely needed, one obtains the supply-driven 
strategy with the highest communication cost. Similarly, if all newly 
generated tasks are placed in the actual work set and only placed in the 
potential work set when absolutely needed, one obtains the demand-
driven strategy with the lowest communication cost. This will be 
explained in greater detail in sections VI and VII. 

For all the strategies in VSM, if a new current task is needed, it is 
picked out of the actual work set if it is non-empty. Otherwise, the 
current task is picked from the potential work set. 

V EFFICIENT SUPPLY PROTOCOL (ESP) 

HSP is the network communication protocol that is used by VSM to 
transfer tasks among processors. It may also be referred to as a task 
supply protocol. 

First, this section presents a detailed description of HSP. Next, the 
domain of application of HSP, which is larger than the present 
application alone, is described. Finally, some previous work is 
contrasted with the work presented here. 

A. Detailed Description of ESP 

This description consists of two parts: Tasks and Messages. 

1. Tasks 
Each task has a globally unique name. Attached pieces of 

information are: 

l.Task Description: {PROP-SET B-SET ALL?), where 
PROP-SET is the set of propositions to be proved, B-SET 
is the set of bindings obtained so far, and ALL? is a boolean 
variable that means all positive results must be found (if 
true) or only one positive result must be found (if false) . 

2. Parent Task 

3. Pending Subtasks 

4. Results: This is the set of results received so far for this task. 

5. Grabbed Timestamp: This is the timestamp9 at which the 
task was grabbed. This can be revised if a future "grab" 
request for the same task "wins" out over a previous "grab" 
request. In a comparison between two "grab" requests, the 
one with the lower timestamp "wins". 

2. Messages 
Hach message is described here with the syntax 

M essage-Type{Arguments). The following four message types are 
required: 

1. NeW(Task-Name Task-Description): This is the message 
used to make the "Task is available" broadcast mentioned 
in section IV. When a processor receives a new message, the 
processor sets up the appropriate book-keeping information 
for the task name and puts the task name in the potential 
work set. 

2. Grabbed(Task-Name Timestamp): This is the message used 
to make the "Task is grabbed" announcement mentioned in 
section IV. When a processor selects a certain task as the 
next current task for itself, it broadcasts a grabbed message 
for that task. When a grabbed message is received for a task, 
it is removed from the potential work set of the processor 
where the message is received and the book-keeping 
information for the task is revised (if required). If the task 
for which the grabbed message is received is the current task 
or even if the task is awaiting completion of its subtasks, 
then it will have to be aborted if the timestamp in the new 
grabbed message is lower than the previous timestamp for 
the task name. Aborting a task also means aborting any 
pending subtasks for the task. A remote task is aborted by 
sending a kill message as explained below. 

3. Kill(Task-Name): A kill message is sent to abort tasks 
remotely. When a kill message is received, the task name is 
removed from the potential work set. In case the task in 
question is the current task, it is aborted and another 
current task is chosen. Also, if the task is awaiting 
completion of some of its subtasks, the subtasks are 
recursively aborted. 

4. Done(Task-Name Binding-List): This is sent when the 
answer for a remotely originated task is obtained. When a 
done message is received, the result is reported to the parent 
of the task in question. The result is added to the results 
already obtained for the parent task name. If there are no 
pending subtasks for the parent task name, then the 
combined result for the parent task is reported to the 
processor that originated the parent task.10 Again, a done 
message may have to be used if the originator of the parent 
task was a remote processor. The entire computation is 

In the current implementation. ALL? is always true 

9 A timestamp is composed of the time in its higher order bits and a fixed number of 
bits for a unique processor number in its lower order bits A timestamp with a lower 
(greater) time than another umestamp is always lower (greater) than the other When the 
times are equal, the umestamp with the lower numbered processor is lower 

For the case in which a single answer is required for the lop-level deduction, a 
positive answer can be sent to the processor that onginated the top-level deduction and 
the rest of the computation can be terminated This is not done in the current 
implementation, however 
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complete when all needed results (one or all) for the top-
level task are reported. 

3. Heuristics 
Several heuristics, as described below, are used to reduce 

computation and communication. 

When it is time for a processor to select a new current task out of the 
potential work set, locally generated tasks are preferred: this saves on 
sending a done message for that task when the task is completed. 

Backward-chaining within a processor is done in a depth-first 
fashion. This reduces the search (compared to breadth-first) if only one 
positive result is desired.11 

To reduce the number of grabs for the same task, the following 
heuristic is used. Grabs by processors are given some arbitrary but 
pre-specified priority order. By watching messages on the broadcast 
network, processors get hints about the status of other processors. For 
example, if a processor sends out a grabbed message, other processors 
know that the processor is busy. When a new task is made available, a 
processor will defer grabbing to a higher-priority processor if both arc 
free. 

When deciding which tasks to move to the potential work set, the 
most costly is picked. Also, when deciding which task to grab out of the 
potential work set. the most costly is chosen. This is done so that a free 
processor grabs the most costly task first out of the surplus tasks 
available from all the processors. The effect is that, in general, 
processors tend to remain busy longer between grabs and this reduces 
the message traffic. 

If no information is available about the cost of deductions, the least 
one can go by is that deductions higher up in the deduction tree are, on 
the average, more costly. Also, if the delays are not very high, all 
processors can be heunstically assumed to be at the same level in the 
tree. Therefore, the order of announcement of new tasks on the 
broadcast network can be heunstically assumed to be in the more costly 
to less costly order. 

B. Domain of Application of ESP 

More than one processor can start executing a task at the same time 
Therefore, either the tasks should be side-effect free as in the backward 
chaining case or repetitions of side-effects should be acceptable. 
Examples of acceptable repetitions of side-effects include 1) side-effects 
designed only to increase efficiency but not to affect the correctness of 
the computation (e.g., caching of propositions in the backward chaining 
case) and 2) idempotent computations. 

As mentioned before, ESP can handle a realistic failure set. Details 
of this can be found in a technical report written by the authors (Singh, 
1984). 

C. Comparisons with Previous Work 

Contract Net (Davis, 1983) was one of the first efforts to address the 
problem of dynamically distributing tasks among processors. Its supply 
protocol uses what is called an Announcement-Bid-Award sequence. 
Enterprise (Malone, 1983) uses a similar supply protocol but with 
significant specializations. In the discussion below, ABASP stands for 
the Announcement-Bid-A ward type of protocol used in the Contract 
Net and Enterprise. 

ESP allows task execution to begin as soon as a bid is submitted (in a 
grabbed message). This can increase processor utilization compared to 
ABASP in which task execution begins only when an award message is 
received. 

Also, no award message is required as in ABASP. Additionally, there 
is the potential of drastically reducing the number of grabbed messages. 

11This pure depth-first strategy will have to be modified if there are infinite depth 
paths. In the current implementation, only depth-first is used within a processor 

the equivalent of bid messages in the ABASP case. The number of 
grabbed messages may, in the best case, be one per new task announced. 
This will happen if the first grabbed message is always sufficiently early 
to inhibit any other processor from making an attempt to "grab" the 
same task. Also, recall that a heuristic to reduce the number of grabbed 
messages was presented earlier. 

Note, however, that there is one source of extra messages in the 
supply-driven strategy using ESP. Multiple executions of the same task 
are possible. In theory, these multiple executions can create multiple 
sub-tasks (with extra new messages) in parallel that have to be killed off 
by extra kill messages. In practice, experimental results indicate that 
this is not a problem when delays are reasonably short and throughput 
is not a constraint. Short delays lead to a quick killing of replicated 
executions before extra sub-tasks can be generated and announced 
from the short-lived replicated executions. The throughput constraint 
case will create a problem for Enterprise and Contract Net as well but 
they do not propose any specific solutions. This paper, however, 
presents VSM to deal with that case. 

Shapiro's Bagel (Shapiro, 1983) also deals with dynamic distribution 
of tasks in a multiprocessor system. However, Shapiro deals with 
systolic problems where programmer determined mappings arc 
possible. Similar assumptions in the present case would mean that one 
would know ahead of time how many subtasks were going to be 
generated from each task. This paper makes no such assumption. 

VI A SUPPLY-DRIVEN ALLOCATION STRATEGY 

Imagine for a moment that the broadcast network can allow an 
infinite message throughput. This assumption is, of course, not 
practical but it serves to illustrate the extreme of very plentiful network 
throughput. A supply-driven strategy, in which all newly generated 
tasks are announced to all processors, might be appropriate in precisely 
such a situation. 

In the supply-driven strategy, all processors place all newly generated 
tasks, except one task that is chosen as the current task, in the potential 
work set. Of course, all tasks placed in the potential work set must be 
announced with new messages. A processor is allowed to grab a task 
from the potential work set only when it runs out of internally 
generated tasks. Since all surplus tasks are announced as being 
available, this strategy needs the highest network throughput of all 
strategies included in VSM. 

A. Experimental Results 

All results reported here were obtained by implementing VSM and 
ESP on a simulation of the multiple processor architecture described in 
section III.12 The unit of time for the results reported is the time taken 
to do a unit backward-chaining deduction. 

Figure 3 gives some information about the or deduction tree that was 
experimented with. The database of each processor contains the 
behavioral and structural description of a piece of digital hardware - a 
4-bit adder. It also contains the values of its inputs. The top-level 
proposition is a fact to be proved about one of the outputs of the adder. 
It turns out that the top-level proposition has no positive answer and, 
therefore, the entire deduction tree is searched in trying to prove the 
proposition. 

The time taken for 1 processor to do the adder example is 652 unit 
deduction time units. Figure 4 shows the results obtained for the adder 
example with 1 to 10 processors. For now, the reader's attention is 
directed to the curves labeled Supply-Driven, Infinite Throughput. 

12The simulation was performed on a sequential processor (Symbolics 3600) A 
preliminary version was implemented with multiple (real) 3600s communicating over a 
Chaosnet to obtain the parameters for a realistic simulation. More details in (Singh. 
1984) 
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Figure 3: Or Deduction Tree for Adder Example 

Notice from the figure that initially the speedup is almost linear but 
it becomes less so as the number of processors increases; the speedup 
obtained by using ten processors (7.01) is still substantial. Some of the 
less than linear speedup is due to the inter-processor message delay but 
some is certainly due to the fact that the deduction tree for the example 
does not permit very large speedup due to its shape (sec figure 3). The 
deduction tree is not very wide at some depths and, therefore, all 
processors cannot be kept busy at all times by any possible supply 
protocol. A wider deducuon tree for a bigger example can certainly be 
expected to lead to larger speedups. 

The message traffic does not vary much when the number of 
processors is varied from 1 to 10. The total number of messages sent 
increases from 165 for 1 processor to 213 for 10 processors. 

Note that although the speedup curve for the supply-driven strategy 
for infinite throughput looks somewhat like a logarithmic curve, it is a 
mistake to associate this with Minsky's hypothesis (of log(# of 
processors) speedup) (Minsky, 1970). 

The results mentioned so far were obtained with an allowed 
throughput of infinity. It is certainly possible that the throughput is not 
enough to send all the messages that are queued at some time in the 
next unit deduction time. One might expect that with a throughput 
bottleneck the performance of the supply-driven strategy will 
degenerate. This is exactly what is observed in the simulation (as shown 
in the curves labeled Supply-Driven, Bottleneck Throughput) when a 
fairly severe throughput limitation of 2 is imposed. The delay is one as 
before. The speedup for 10 processors is only 2.80. 

B. Conclusions 

The supply-driven strategy works well when the throughput is not a 

If communication cost is ignored as in Minsky's hypothesis, the speedup curves for 
the supply-driven strategy in the infinite throughput case will be asymptotically linear, as 
long as the size of the or deducuon tree LS large enough compared to the number of 
processors. Communication cost certainly reduces speedup but there is no proof that 
speedups will be only logarithmic in the general case 

Figure 4: Data 

bottleneck. However, the performance can be quite bad if the 
throughput does become a bottleneck. 

It is important to note here that most of the time, it was not really 
necessary to announce all surplus tasks when all processors were 
already busy. The next section offers an alternative that can reduce the 
amount of communication and thereby decrease overall task 
completion time for the throughput bottleneck case. 

VII A DEMAND-DRIVEN ALLOCATION STRATEGY 

The supply-driven strategy always supplies any surplus tasks and. 
therefore, uses up a lot of throughput. The other extreme is to supply 
surplus tasks only when all previously announced tasks have been 
grabbed. This is the demand-driven strategy. As will be shown later, 
this can drastically reduce message traffic and lead to faster completion 
of tasks when the available throughput is a bottleneck. 

All surplus tasks are not supplied and, therefore, not placed in the 
potential work set. The surplus tasks that are not supplied are put in 
the actual work set. More precisely, when a processor generates more 
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than one task, it keeps one as its next current task, supplies a task to the 
potential work set if the potential work set is empty, and keeps the 
remaining tasks in its actual work set. With this strategy, the tasks are 
supplied only when they are demanded (i.e.. when the potential work 
set gets empty). 

A. Comparison with Supply-Driven Allocation Strategy 

Not only does the demand-driven strategy use fewer messages than 
the supply-driven strategy, as explained above, but in some cases the 
number of messages can be provably an infinitesimal fraction of the 
supply-dnven case. One such case is when the deduction tree is a 
balanced, binary tree and the ratio of the number of tasks to the 
number of processors goes asymptotically to infinity. More details are 
provided in (Singh, 1984). In addition, experimental data presented 
later wil l show a dramatic reduction in messages in a practical case. 

Another attracuve property of the demand-driven strategy is that it 
requires less storage. Most tasks are kept locally whereas in the supply-
driven case, all processors keep a copy of tasks not being worked on. 

[here is, however, a disadvantage with using the demand-driven 
strategy. There may be, in general, a higher delay in transferring tasks 
among processors. This can happen when more than one processor 
becomes free at the same time: one processor can grab the single task in 
the potential work set but the others have to wait for some surplus task 
to be transferred to the potential work set. An example in which the 
behavior of the demand-driven strategy is, in fact, unboundedly worse 
is where the total rate of generation of tasks is equal to the total rate of 
consumption of tasks and the rate of generation and consumption is not 
uniform over all tasks. A high delay in such a situation would further 
compound the problem. 

B. Experimental Results 

The curves labeled Demand-Driven, Infinite Throughput in figure 
4 illustrate the performance of the demand-driven strategy for the 
adder example for unit delay and infinite throughput. 

As can be seen by comparing the curves labeled Demand-Driven. 
Infinite Throughput and Supply-Driven. Infinite Throughput, the time 
taken for 10 processors with the demand-driven strategy (105) is slightly 
more that the time taken with the supply-dnven strategy (93). The 
extra time taken is due to the extra delay in supplying tasks. However, 
the number of messages sent with the demand-driven strategy (90) is 
much lower than the number of messages sent with the supply-dnven 
strategy (213). Therefore, it should be expected that the demand-dnven 
strategy will not degrade as much in the presence of the same 
throughput limitation imposed on the supply-driven strategy. This is, 
in fact, the case as illustrated by the curves labeled Demand-Driven. 
Bottleneck Throughput. The delay is one and the maximum throughput 
is 2. 

For 10 processors, the time taken for the demand-driven strategy 
only increases from 105 to 106 by changing the maximum throughput 
from infinity to 2. In the bottleneck case, the demand-driven strategy 
(with a time of 106) completely outperforms the supply-driven strategy 
(with a time of 233). 

C. Conclusions 

The demand-driven strategy can perform better than the supply-
driven strategy in the presence of throughput constraints because it 
requires fewer messages. 

It is possible that the tradeoff between delay in supplying tasks (high 
for the demand-driven case) and the message traffic requirements (high 
in the supply-driven case) may not have been optimally resolved in 
cither of the extremes. An increase in delay may also be viewed as a 
reduction in parallelism. VSM allows any intermediate strategy to be 
selected with great ease and it seems quite probable that intermediate 
strategics will be found useful for intermediate communication 
situations. However, no results are available at the present time about 
these intermediate strategies. Moreover, no results are available on 
automating the selection of such a strategy. 

VIII CONCLUSIONS 

This section contains a description of possible extensions, future 
work and a summary of the paper. 

A. Extensions 

The variable supply idea is actually more general than what its 
application so far in VSM, in conjunction with ESP, might suggest. The 
extensions described in this section retain the essential goal of VSM, the 
ability to vary the supply of new tasks given that communication 
constraints may exist. 

1. Extension to Different Task Domains 
In cases where side-effects are not acceptable, one can use a different 

supply protocol with VSM that docs not allow multiple instances of a 
task to start executing. For example, one could use the announcement-
bid-award supply protocol (of Contract Net or Enterprise). 

2. Extension to Different Processor Interconnection 
Structures 

It is possible to apply VSM to cases where the interconnection 
structure is not a single broadcast network. Essentially, broadcasts arc 
replaced by limited broadcasts. The subset of processors to which a 
limited broadcast is directed is determined solely by the originating 
processor of the task. More details can be found in (Singh, 1984). 

3. Using Additional Information 

Costs of Deductions 

So far costs of deductions have not been used because it is not easy to 
make accurate estimates. However, if one docs have a means to obtain 
reasonable estimates, several uses are possible. 

An application of cost estimates can be to stop distribution of certain 
propositions if their costs are too low to justify the overhead of 
distribution to other processors. 

Also, estimates can be used to break ties between processors with 
different speeds in a more efficient way than by just comparing the 
timestamps at which grabs take place. Timestamps based on 
completion time estimates will be more profitable. 

Another application of estimates can be to do load balancing. 

Probabilities of Proving Propositions 

These probabilities, along with costs of proving those propositions, 
can be used to determine the best order of doing the tasks (Barnett, 
1984, Simon, 1975). Further, Rosenschein and Singh (Rosenschein, 
1983) place an upper bound on the amount of work that may be done 
to achieve the optimal order determined as above. It may be possible to 
generalize that upper bound result for an arbitrary number of tasks. On 
the other hand, the result may be more immediately useful in doing 
many pairwise redistributions in the hope of getting most of the power 
of a complete redistribution. 

B. Future Work 
A major effort of future work (Singh, 1985) will be to remove the two 

major bottlenecks present in the current method of distribution of 
deductions: the replicated database and the shared communication 
network. The architecture to be used will consist of large numbers of 
processors connected with local connections to neighbors (as in a hex-
connected plane, for example). Each processor will have a limited 
amount of local memory that can only store a small part of the entire 
database. 

And parallelism wil l also be taken advantage of in a limited way. 
Taking full advantage of and parallelism is a very difficult problem. 



V. Singh and M. Genesereth 45 

C. Summary 

Controlling communication cost was seen to be crucial for the 
successful use of the multiprocessor used. ESP allows communication 
cost to be reduced in comparison to other task supply protocols. VSM 
allows an easy and powerful mechanism to choose strategies that work 
best under different communication constraints. The two extreme 
strategies were shown to be useful by theoretical and experimental 
results. In addition, VSM and ESP can be adapted for use with other 
tasks, interconnection structures, and additional information about 
tasks. 
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