
A VARIABLE SUPPLY MODEL
FOR

DISTRIBUTING DEDUCTIONS

Vineet Singh
Michael R. Genesereth

Computer Science Department
Stanford University
Stanford, CA 94305

ABSTRACT

Multiple processors can be used to speed up a backward-chaining
deduction by distributing or-parallel deductions. However, the actual
speedup obtained is strongly dependent on the amount of
communication required for the task allocation strategy. A Variable
Supply Model (VSM) is presented for multiple processors with
replicated databases on a broadcast network. The term model refers to
the set of procedures and messages required to perform the
computation. VSM allows an infinite class of strategies with varying
amounts of communication. The utility of VSM lies in the easy and
powerful way it provides for selecung a strategy that works satisfactorily
given certain communication constraints. Al l strategies in VSM use a
dynamic task supply protocol (ESP) that works better than other supply
protocols described in the literature.

I INTRODUCTION

Parallelism has been identified as a key to future high-performance
reasoning machines - the fifth generation of computer systems (Moto-
oka, 1984). Multiple processors must be made to cooperate to speed up
a computation. Clearly, there is a need to identify parallel components
of reasoning computations and there is a need to build multiprocessor
hardware. In addition, there is a need to map parallel computations
onto multiple processors, keeping in mind the constraints of
communication. This last need is being largely ignored at the present
time and may become the bottleneck in achieving high performance
from multiple processors. The purpose of this paper is to address the
last need (i.e., to propose methods for task allocation that work well in
the presence of communication constraints).

Task allocation in a multiple processor system strongly affects the
overall speedup obtained for a parallel computation (Conway, 1967).
Also, communication cost can be a significant part of the cost of the
computation. Therefore, a good task allocation strategy is needed and
can be obtained only if both processing costs and communication costs
are kept in mind.

The type of computation being considered in this paper is backward-
chaining deduction (Barr, 1982) with no side-crTects, and the
parallelism employed is or-parallelism (Conery, 1983,1.indstrom, 1984,
Ciepielewski, 1983). In addition, all the processors can do backward-
chaining deductions2 and are connected by a broadcast network.

1This work was supported in part by ARPA contract N00039-83-C-0136

2They may. however, work at different speeds

3The multiple processor scenano applies to both multiple processors connected by a
broadcast local area network (like the CSMA-CD Ethernet (Metcalfe. 1976)) or multiple
processors connected by a broadcast network on a single chip as suggested by Ullman
(Ullman. 1984)

Moreover, the database is replicated at each processor.4 The goal is to
complete the deduction in as short a time as possible.5 The task
allocation strategics presented in this paper do not assume any
knowledge of the domain of application (i.e., the database of facts and
rules may be used only syntactically). The task allocation strategies can,
however, use extra information to improve their performance.

Previous approaches to parallel task allocation (Lawler. 1982) will not
work well in this domain because of assumptions that are not
reasonable here. Most techniques can be eliminated as inapplicable
because they assume that all tasks to be allocated are known beforehand
along with their processing requirements (Mayr, 1981). Another large
class of techniques can be eliminated because communication cost is
not considered or it is inaccurately modeled (Lageweg, 1981). More
likely contenders will be considered later in the paper.

The importance of this paper lies primarily in providing two kinds of
mechanisms to control communication cost. First, clever ways are
found to reduce communication cost outright. KSP, a communication
network protocol for transferring tasks among processors is more
efficient than the announcement-bid-award protocol of Contract Net
(Davis, 1983) and Enterprise (Malone, 1983). Second, mechanisms are
described to trade off communication cost and parallelism. The
Variable Supply Model (VSM) allows flexible usage of the inter-
processor throughput in this respect. The term model refers to the set of
procedures and messages required to perform the computation.
Throughput means the amount of data (in terms of messages) per unit
time that can be sent on the communication network. VSM uses KSP as
its communication protocol.

This paper is organized as follows. Section II explains how to view a
backward-chaining deduction as a tree of or-parallel tasks. Section
I I I contains a description of the multiple processor architecture.
Section IV then describes VSM and how it can be used to control
communication. Section V describes ESP and how it can be used as an
efficient task supply protocol for all the strategies in VSM. Sections
VI and VII contrast the results of using the two extremes of VSM - a
supply-driven strategy and a demand-driven strategy. Useful
extensions to VSM and KSP and how they might fit into the current
framework are described in Section VI I I . That section also contains
directions for future work and a summary.

II BACK-CHAINING AS OR-PARALLEL COMPUTATION

And-or trees (Barr, 1981) can be used to represent the problem-
reduction in a backward-chaining deduction (Barr, 1982). In this paper,
only or-parallelism is used; no and-parallelism is exploited. Therefore,
an or tree to represent a backward-chaining deduction, as described
below, is of more interest than an and-or tree. Backward-chaining is

There are two reasons for choosing this multiprocessor architecture First, it is a
practical way to utilize personal workstations when their owners are not using them
(Malone. 1983)) Second, this paper can be a stepping stone to studying multiprocessors
with more complex interconnection structures

5It is well known that optimal task allocation even for relatively simple problems is
NP-complete (Mayr. 1981) Therefore, no attempt will be made to get an optimal
solution

40 V. Singh and M. Genesereth

used in the context of rule-based systems in which the data base consists
of a dynamic set of First Order Predicate Calculus (FOPC) propositions
and the rule base consists of a static set of FOPC rules. In this paper,
even the data base is kept unchanged as the deduction proceeds. Al l of
the propositions in the data base are literals (i.e.. cither atomic
propositions or negations of atomic propositions). All propositions in
the rule base arc required to be written in one of the forms shown
below, where alpha, beta, and alpha 1 alphan are all literals.6

(/ /alpha beta)

(if (and a lpha r .a lphan) beta)

Similarly, a goal to be proved must also be a literal or a conjunction
of literals. In the rest of the paper, the term data base will be used to
refer to the union of the rule base and the data base as described above.

Each node in the or tree can be represented as a tuple of two sets, a
set of goals and a set of bindings. The top-level node's set of goals
contains one literal and its set of bindings is empty. If the set of goals of
a node in the tree is non-empty, its children can be obtained in the
following three ways: (1) Take one of the goals in the goal set and
backward-chain with all possible rules. A child is created for each of
the rules that can be used to backward-chain from the parent. A child's
goal set is obtained from the parents goal set by removing the goal that
was backward-chained on, adding the antecedents of the rule applied,
and applying the unifier from the backward-chaining to the resulting
goal set. The set of bindings of the child is obtained by adding the
unification bindings to the set of bindings of the parent. (2) Uni fy a
goal from the goal set of a parent node with a proposition in the data
base. A proposition in the data base is treated as a rule in (1) with no
antecedents. (3) If (1) and (2) cannot be used, no child can be created
and this chain of backward-chaining ends in failure.

Figure 1 presents an example of an or tree. A leaf represents a
positive result if its set of goals is empty.

Any node in the or deduction tree may be referred to equivalently as
a task. A unit deduction is the expansion of a node into its children.
The result of a deduction is the binding list that satisfies the proposition
in question, if only one positive result is desired, or it is the list of
binding lists that satisfy the proposition, if all positive results are
desired.

Notice that each of the subtasks of a task can be solved completely
independently. No communication is required among the subtasks.
Also, notice that the grain of the tasks in the deduction tree can range
all the way from I unit backward-chaining deduction to an arbitrarily
large size. Moreover, backward-chaining deductions are side-effect
free7

III THE MULTIPLE PROCESSOR ARCHITECTURE

The goal of this paper is not to describe multiple processor
architectures in any great detail. A l l we require is that the multiple
processor architecture satisfy certain properties described below.

(1) Many sequential processors are connected to a broadcast
network; (2) The memory at each processor is large enough to store a
complete copy of the database; (3) Message-passing is the only form of
inter-processor communication; (4) A message may be either point-to-
point or broadcast; and (5) Each processor has a unique processor
number. An example of this kind of architecture is multiple Symbolics
3600 processors connected to a Chaosnet (Moon, 1982).

The local time at each processor is used for time-stamping messages.
It is impossible to have all processor clocks completely synchronized
but a close synchronization is desirable (and can be obtained by a
standard distributed clock synchronization algorithm (Marzullo, 1984)).

IV VARIABLE SUPPLY MODEL (VSM)

VSM allows a class of strategies with varying amounts of
communication. It will be shown later that the strategy with the highest
communication cost will work best when inter-proccssor
communication throughput is very plentiful relative to the message
traffic that needs to take place. Also, the strategy with the lowest
communication cost will work best when the inter-processor
communication throughput is very low. The utility of VSM lies in
providing a unifying framework for an infinite set of strategics with
varying amounts of communication, in the case of selection of these
strategies, and in the demonstrated usefulness of the two extreme
strategics. The use of intermediate strategies for intermediate
communication conditions seems likely but is left unexplored in this
paper.

The notation for propositions is taken from (Genesereth. 1983)

They are side-effect free at least in their pure form One could have side-effects, for
example, by allowing caching, but that is not considered here Figure 2: The Variable Supply Model

V. Singh and M. Genesereth 41

VSM lays down a specific internal organization of the set of tasks
known to each processor. This organization is shown in figure 2.
Current Task is the task being worked on by the processor, Actual
Work Set is the set of tasks that the processor is committed to
executing, and Potential Work Set is the set of tasks that no processor is
known to be committed to perform. The lines with arrows show the
directions of transfer of tasks. Any tasks that flow from left to right
across the hypothetical commit line must be announced to other
processors as being available so that they may place the task in their
potential work sets. Similarly, any tasks that flow from right to left
across the commit line must be announced as being grabbed by this
processor so that other processors may not also grab the same task.

Ideally, the potential work sets of all the processors are the same at all
times and each task is grabbed by one and only one processor.
However, because of non-zero message delays, more than one processor
may attempt to grab a task. A protocol understood by all the processors
is required so that multiple grabs are resolved, results are properly
handled, and tasks are killed when they are no longer needed. An
efficient communication protocol (ESP) to handle these problems is
described in the next section.

In VSM, the mechanism for controlling the amount of
communication lies in the fact that the tasks in the actual work set and
the potential work set can be arbitrarily balanced. As will be seen later,
if all newly generated tasks arc placed in the potential work set and
grabbed only when absolutely needed, one obtains the supply-driven
strategy with the highest communication cost. Similarly, if all newly
generated tasks are placed in the actual work set and only placed in the
potential work set when absolutely needed, one obtains the demand-
driven strategy with the lowest communication cost. This will be
explained in greater detail in sections VI and VII.

For all the strategies in VSM, if a new current task is needed, it is
picked out of the actual work set if it is non-empty. Otherwise, the
current task is picked from the potential work set.

V EFFICIENT SUPPLY PROTOCOL (ESP)

HSP is the network communication protocol that is used by VSM to
transfer tasks among processors. It may also be referred to as a task
supply protocol.

First, this section presents a detailed description of HSP. Next, the
domain of application of HSP, which is larger than the present
application alone, is described. Finally, some previous work is
contrasted with the work presented here.

A. Detailed Description of ESP

This description consists of two parts: Tasks and Messages.

1. Tasks
Each task has a globally unique name. Attached pieces of

information are:

l.Task Description: {PROP-SET B-SET ALL?), where
PROP-SET is the set of propositions to be proved, B-SET
is the set of bindings obtained so far, and ALL? is a boolean
variable that means all positive results must be found (if
true) or only one positive result must be found (if false) .

2. Parent Task

3. Pending Subtasks

4. Results: This is the set of results received so far for this task.

5. Grabbed Timestamp: This is the timestamp9 at which the
task was grabbed. This can be revised if a future "grab"
request for the same task "wins" out over a previous "grab"
request. In a comparison between two "grab" requests, the
one with the lower timestamp "wins".

2. Messages
Hach message is described here with the syntax

M essage-Type{Arguments). The following four message types are
required:

1. NeW(Task-Name Task-Description): This is the message
used to make the "Task is available" broadcast mentioned
in section IV. When a processor receives a new message, the
processor sets up the appropriate book-keeping information
for the task name and puts the task name in the potential
work set.

2. Grabbed(Task-Name Timestamp): This is the message used
to make the "Task is grabbed" announcement mentioned in
section IV. When a processor selects a certain task as the
next current task for itself, it broadcasts a grabbed message
for that task. When a grabbed message is received for a task,
it is removed from the potential work set of the processor
where the message is received and the book-keeping
information for the task is revised (if required). If the task
for which the grabbed message is received is the current task
or even if the task is awaiting completion of its subtasks,
then it will have to be aborted if the timestamp in the new
grabbed message is lower than the previous timestamp for
the task name. Aborting a task also means aborting any
pending subtasks for the task. A remote task is aborted by
sending a kill message as explained below.

3. Kill(Task-Name): A kill message is sent to abort tasks
remotely. When a kill message is received, the task name is
removed from the potential work set. In case the task in
question is the current task, it is aborted and another
current task is chosen. Also, if the task is awaiting
completion of some of its subtasks, the subtasks are
recursively aborted.

4. Done(Task-Name Binding-List): This is sent when the
answer for a remotely originated task is obtained. When a
done message is received, the result is reported to the parent
of the task in question. The result is added to the results
already obtained for the parent task name. If there are no
pending subtasks for the parent task name, then the
combined result for the parent task is reported to the
processor that originated the parent task.10 Again, a done
message may have to be used if the originator of the parent
task was a remote processor. The entire computation is

In the current implementation. ALL? is always true

9 A timestamp is composed of the time in its higher order bits and a fixed number of
bits for a unique processor number in its lower order bits A timestamp with a lower
(greater) time than another umestamp is always lower (greater) than the other When the
times are equal, the umestamp with the lower numbered processor is lower

For the case in which a single answer is required for the lop-level deduction, a
positive answer can be sent to the processor that onginated the top-level deduction and
the rest of the computation can be terminated This is not done in the current
implementation, however

42 V. Singh and M. Genesereth

complete when all needed results (one or all) for the top-
level task are reported.

3. Heuristics
Several heuristics, as described below, are used to reduce

computation and communication.

When it is time for a processor to select a new current task out of the
potential work set, locally generated tasks are preferred: this saves on
sending a done message for that task when the task is completed.

Backward-chaining within a processor is done in a depth-first
fashion. This reduces the search (compared to breadth-first) if only one
positive result is desired.11

To reduce the number of grabs for the same task, the following
heuristic is used. Grabs by processors are given some arbitrary but
pre-specified priority order. By watching messages on the broadcast
network, processors get hints about the status of other processors. For
example, if a processor sends out a grabbed message, other processors
know that the processor is busy. When a new task is made available, a
processor will defer grabbing to a higher-priority processor if both arc
free.

When deciding which tasks to move to the potential work set, the
most costly is picked. Also, when deciding which task to grab out of the
potential work set. the most costly is chosen. This is done so that a free
processor grabs the most costly task first out of the surplus tasks
available from all the processors. The effect is that, in general,
processors tend to remain busy longer between grabs and this reduces
the message traffic.

If no information is available about the cost of deductions, the least
one can go by is that deductions higher up in the deduction tree are, on
the average, more costly. Also, if the delays are not very high, all
processors can be heunstically assumed to be at the same level in the
tree. Therefore, the order of announcement of new tasks on the
broadcast network can be heunstically assumed to be in the more costly
to less costly order.

B. Domain of Application of ESP

More than one processor can start executing a task at the same time
Therefore, either the tasks should be side-effect free as in the backward
chaining case or repetitions of side-effects should be acceptable.
Examples of acceptable repetitions of side-effects include 1) side-effects
designed only to increase efficiency but not to affect the correctness of
the computation (e.g., caching of propositions in the backward chaining
case) and 2) idempotent computations.

As mentioned before, ESP can handle a realistic failure set. Details
of this can be found in a technical report written by the authors (Singh,
1984).

C. Comparisons with Previous Work

Contract Net (Davis, 1983) was one of the first efforts to address the
problem of dynamically distributing tasks among processors. Its supply
protocol uses what is called an Announcement-Bid-Award sequence.
Enterprise (Malone, 1983) uses a similar supply protocol but with
significant specializations. In the discussion below, ABASP stands for
the Announcement-Bid-A ward type of protocol used in the Contract
Net and Enterprise.

ESP allows task execution to begin as soon as a bid is submitted (in a
grabbed message). This can increase processor utilization compared to
ABASP in which task execution begins only when an award message is
received.

Also, no award message is required as in ABASP. Additionally, there
is the potential of drastically reducing the number of grabbed messages.

11This pure depth-first strategy will have to be modified if there are infinite depth
paths. In the current implementation, only depth-first is used within a processor

the equivalent of bid messages in the ABASP case. The number of
grabbed messages may, in the best case, be one per new task announced.
This will happen if the first grabbed message is always sufficiently early
to inhibit any other processor from making an attempt to "grab" the
same task. Also, recall that a heuristic to reduce the number of grabbed
messages was presented earlier.

Note, however, that there is one source of extra messages in the
supply-driven strategy using ESP. Multiple executions of the same task
are possible. In theory, these multiple executions can create multiple
sub-tasks (with extra new messages) in parallel that have to be killed off
by extra kill messages. In practice, experimental results indicate that
this is not a problem when delays are reasonably short and throughput
is not a constraint. Short delays lead to a quick killing of replicated
executions before extra sub-tasks can be generated and announced
from the short-lived replicated executions. The throughput constraint
case will create a problem for Enterprise and Contract Net as well but
they do not propose any specific solutions. This paper, however,
presents VSM to deal with that case.

Shapiro's Bagel (Shapiro, 1983) also deals with dynamic distribution
of tasks in a multiprocessor system. However, Shapiro deals with
systolic problems where programmer determined mappings arc
possible. Similar assumptions in the present case would mean that one
would know ahead of time how many subtasks were going to be
generated from each task. This paper makes no such assumption.

VI A SUPPLY-DRIVEN ALLOCATION STRATEGY

Imagine for a moment that the broadcast network can allow an
infinite message throughput. This assumption is, of course, not
practical but it serves to illustrate the extreme of very plentiful network
throughput. A supply-driven strategy, in which all newly generated
tasks are announced to all processors, might be appropriate in precisely
such a situation.

In the supply-driven strategy, all processors place all newly generated
tasks, except one task that is chosen as the current task, in the potential
work set. Of course, all tasks placed in the potential work set must be
announced with new messages. A processor is allowed to grab a task
from the potential work set only when it runs out of internally
generated tasks. Since all surplus tasks are announced as being
available, this strategy needs the highest network throughput of all
strategies included in VSM.

A. Experimental Results

All results reported here were obtained by implementing VSM and
ESP on a simulation of the multiple processor architecture described in
section III.12 The unit of time for the results reported is the time taken
to do a unit backward-chaining deduction.

Figure 3 gives some information about the or deduction tree that was
experimented with. The database of each processor contains the
behavioral and structural description of a piece of digital hardware - a
4-bit adder. It also contains the values of its inputs. The top-level
proposition is a fact to be proved about one of the outputs of the adder.
It turns out that the top-level proposition has no positive answer and,
therefore, the entire deduction tree is searched in trying to prove the
proposition.

The time taken for 1 processor to do the adder example is 652 unit
deduction time units. Figure 4 shows the results obtained for the adder
example with 1 to 10 processors. For now, the reader's attention is
directed to the curves labeled Supply-Driven, Infinite Throughput.

12The simulation was performed on a sequential processor (Symbolics 3600) A
preliminary version was implemented with multiple (real) 3600s communicating over a
Chaosnet to obtain the parameters for a realistic simulation. More details in (Singh.
1984)

V. Singh and M. Genesereth 43

Figure 3: Or Deduction Tree for Adder Example

Notice from the figure that initially the speedup is almost linear but
it becomes less so as the number of processors increases; the speedup
obtained by using ten processors (7.01) is still substantial. Some of the
less than linear speedup is due to the inter-processor message delay but
some is certainly due to the fact that the deduction tree for the example
does not permit very large speedup due to its shape (sec figure 3). The
deduction tree is not very wide at some depths and, therefore, all
processors cannot be kept busy at all times by any possible supply
protocol. A wider deducuon tree for a bigger example can certainly be
expected to lead to larger speedups.

The message traffic does not vary much when the number of
processors is varied from 1 to 10. The total number of messages sent
increases from 165 for 1 processor to 213 for 10 processors.

Note that although the speedup curve for the supply-driven strategy
for infinite throughput looks somewhat like a logarithmic curve, it is a
mistake to associate this with Minsky's hypothesis (of log(# of
processors) speedup) (Minsky, 1970).

The results mentioned so far were obtained with an allowed
throughput of infinity. It is certainly possible that the throughput is not
enough to send all the messages that are queued at some time in the
next unit deduction time. One might expect that with a throughput
bottleneck the performance of the supply-driven strategy will
degenerate. This is exactly what is observed in the simulation (as shown
in the curves labeled Supply-Driven, Bottleneck Throughput) when a
fairly severe throughput limitation of 2 is imposed. The delay is one as
before. The speedup for 10 processors is only 2.80.

B. Conclusions

The supply-driven strategy works well when the throughput is not a

If communication cost is ignored as in Minsky's hypothesis, the speedup curves for
the supply-driven strategy in the infinite throughput case will be asymptotically linear, as
long as the size of the or deducuon tree LS large enough compared to the number of
processors. Communication cost certainly reduces speedup but there is no proof that
speedups will be only logarithmic in the general case

Figure 4: Data

bottleneck. However, the performance can be quite bad if the
throughput does become a bottleneck.

It is important to note here that most of the time, it was not really
necessary to announce all surplus tasks when all processors were
already busy. The next section offers an alternative that can reduce the
amount of communication and thereby decrease overall task
completion time for the throughput bottleneck case.

VII A DEMAND-DRIVEN ALLOCATION STRATEGY

The supply-driven strategy always supplies any surplus tasks and.
therefore, uses up a lot of throughput. The other extreme is to supply
surplus tasks only when all previously announced tasks have been
grabbed. This is the demand-driven strategy. As will be shown later,
this can drastically reduce message traffic and lead to faster completion
of tasks when the available throughput is a bottleneck.

All surplus tasks are not supplied and, therefore, not placed in the
potential work set. The surplus tasks that are not supplied are put in
the actual work set. More precisely, when a processor generates more

44 V. Singh and M. Genesereth

than one task, it keeps one as its next current task, supplies a task to the
potential work set if the potential work set is empty, and keeps the
remaining tasks in its actual work set. With this strategy, the tasks are
supplied only when they are demanded (i.e.. when the potential work
set gets empty).

A. Comparison with Supply-Driven Allocation Strategy

Not only does the demand-driven strategy use fewer messages than
the supply-driven strategy, as explained above, but in some cases the
number of messages can be provably an infinitesimal fraction of the
supply-dnven case. One such case is when the deduction tree is a
balanced, binary tree and the ratio of the number of tasks to the
number of processors goes asymptotically to infinity. More details are
provided in (Singh, 1984). In addition, experimental data presented
later wil l show a dramatic reduction in messages in a practical case.

Another attracuve property of the demand-driven strategy is that it
requires less storage. Most tasks are kept locally whereas in the supply-
driven case, all processors keep a copy of tasks not being worked on.

[here is, however, a disadvantage with using the demand-driven
strategy. There may be, in general, a higher delay in transferring tasks
among processors. This can happen when more than one processor
becomes free at the same time: one processor can grab the single task in
the potential work set but the others have to wait for some surplus task
to be transferred to the potential work set. An example in which the
behavior of the demand-driven strategy is, in fact, unboundedly worse
is where the total rate of generation of tasks is equal to the total rate of
consumption of tasks and the rate of generation and consumption is not
uniform over all tasks. A high delay in such a situation would further
compound the problem.

B. Experimental Results

The curves labeled Demand-Driven, Infinite Throughput in figure
4 illustrate the performance of the demand-driven strategy for the
adder example for unit delay and infinite throughput.

As can be seen by comparing the curves labeled Demand-Driven.
Infinite Throughput and Supply-Driven. Infinite Throughput, the time
taken for 10 processors with the demand-driven strategy (105) is slightly
more that the time taken with the supply-dnven strategy (93). The
extra time taken is due to the extra delay in supplying tasks. However,
the number of messages sent with the demand-driven strategy (90) is
much lower than the number of messages sent with the supply-dnven
strategy (213). Therefore, it should be expected that the demand-dnven
strategy will not degrade as much in the presence of the same
throughput limitation imposed on the supply-driven strategy. This is,
in fact, the case as illustrated by the curves labeled Demand-Driven.
Bottleneck Throughput. The delay is one and the maximum throughput
is 2.

For 10 processors, the time taken for the demand-driven strategy
only increases from 105 to 106 by changing the maximum throughput
from infinity to 2. In the bottleneck case, the demand-driven strategy
(with a time of 106) completely outperforms the supply-driven strategy
(with a time of 233).

C. Conclusions

The demand-driven strategy can perform better than the supply-
driven strategy in the presence of throughput constraints because it
requires fewer messages.

It is possible that the tradeoff between delay in supplying tasks (high
for the demand-driven case) and the message traffic requirements (high
in the supply-driven case) may not have been optimally resolved in
cither of the extremes. An increase in delay may also be viewed as a
reduction in parallelism. VSM allows any intermediate strategy to be
selected with great ease and it seems quite probable that intermediate
strategics will be found useful for intermediate communication
situations. However, no results are available at the present time about
these intermediate strategies. Moreover, no results are available on
automating the selection of such a strategy.

VIII CONCLUSIONS

This section contains a description of possible extensions, future
work and a summary of the paper.

A. Extensions

The variable supply idea is actually more general than what its
application so far in VSM, in conjunction with ESP, might suggest. The
extensions described in this section retain the essential goal of VSM, the
ability to vary the supply of new tasks given that communication
constraints may exist.

1. Extension to Different Task Domains
In cases where side-effects are not acceptable, one can use a different

supply protocol with VSM that docs not allow multiple instances of a
task to start executing. For example, one could use the announcement-
bid-award supply protocol (of Contract Net or Enterprise).

2. Extension to Different Processor Interconnection
Structures

It is possible to apply VSM to cases where the interconnection
structure is not a single broadcast network. Essentially, broadcasts arc
replaced by limited broadcasts. The subset of processors to which a
limited broadcast is directed is determined solely by the originating
processor of the task. More details can be found in (Singh, 1984).

3. Using Additional Information

Costs of Deductions

So far costs of deductions have not been used because it is not easy to
make accurate estimates. However, if one docs have a means to obtain
reasonable estimates, several uses are possible.

An application of cost estimates can be to stop distribution of certain
propositions if their costs are too low to justify the overhead of
distribution to other processors.

Also, estimates can be used to break ties between processors with
different speeds in a more efficient way than by just comparing the
timestamps at which grabs take place. Timestamps based on
completion time estimates will be more profitable.

Another application of estimates can be to do load balancing.

Probabilities of Proving Propositions

These probabilities, along with costs of proving those propositions,
can be used to determine the best order of doing the tasks (Barnett,
1984, Simon, 1975). Further, Rosenschein and Singh (Rosenschein,
1983) place an upper bound on the amount of work that may be done
to achieve the optimal order determined as above. It may be possible to
generalize that upper bound result for an arbitrary number of tasks. On
the other hand, the result may be more immediately useful in doing
many pairwise redistributions in the hope of getting most of the power
of a complete redistribution.

B. Future Work
A major effort of future work (Singh, 1985) will be to remove the two

major bottlenecks present in the current method of distribution of
deductions: the replicated database and the shared communication
network. The architecture to be used will consist of large numbers of
processors connected with local connections to neighbors (as in a hex-
connected plane, for example). Each processor will have a limited
amount of local memory that can only store a small part of the entire
database.

And parallelism wil l also be taken advantage of in a limited way.
Taking full advantage of and parallelism is a very difficult problem.

V. Singh and M. Genesereth 45

C. Summary

Controlling communication cost was seen to be crucial for the
successful use of the multiprocessor used. ESP allows communication
cost to be reduced in comparison to other task supply protocols. VSM
allows an easy and powerful mechanism to choose strategies that work
best under different communication constraints. The two extreme
strategies were shown to be useful by theoretical and experimental
results. In addition, VSM and ESP can be adapted for use with other
tasks, interconnection structures, and additional information about
tasks.

ACKNOWLEDGMENTS

We wish to thank Ernst Mayr for many stimulating discussions and
all others that commented on earlier drafts of this paper.

REFERENCES

Barnett, J.A. How Much is Control Knowledge Worth?: A Primitive
Example. Artificial Intelligence, January 1984, 22(1), 77-89.

Barr, Avron and Edward A. Feigenbaum (Eds.). Search. In The
Handbook of Artificial Intelligence, : William Kauffman, Inc.,
Los Altos, California, 1981.

Barr, Avron and Edward A. Peigenbaum (Eds.). Automatic Deduction.
In The Handbook of Artificial Intelligence. : William Kauffman,
Inc., Los Altos, California, 1982.

Ciepielewski, Andrzej and Handi, Sief. A Formal Model for Or-Parallel
Execution of logic Programs, in Proceedings of the IEIP
Congress, pages 299-305, IFIP, 1983.

Conery, John Simpson. The And/Or Process Model jor Parallel
Interpretation of Logic Programs. PhD thesis. University of
California, Irvine, 1983.

Conway, R.W., W.L. Maxwell, and L.W. Miller. Theory of Scheduling. '
Addison-Wesley, Reading, Massachusetts 1967.

Davis, R. and R.G. Smith. Negotiation as a Metaphor for Distributed
Problem Solving. Artificial Intelligence, January 1983, 20(f), •
Also available as M I T AI memo # 624.

Genesereth, Michael R. A Meta-level Representation System.
Technical Report HPP 83-28, Heuristic Programming Project,
Computer Science Department, Stanford University, 1983.

Lageweg. B. J., E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan.
Computer Aided Complexity Classification of Deterministic
Scheduling Problems. Technical Report BW 138/81,
Mathematisch Centrum, Amsterdam, 1981.

Lawler, E.L., J.K. Lenstra, and A.H.G. Rinooy Kan. Recent
Developments in Deterministic Scheduling. In Deterministic and
Stochastic Scheduling, : Reidel, Dordrecht, 1982. Also available
as tech. report BW 146/81 from Mathematisch Centrum,
Amsterdam.

Lindstrom, Gary and Panangaden, Prakash. Stream-Based Execution of
Logic Programs, in IEEE Logic Programming Conference, pages
168-176, IEEE, February, 1984.

Malone, T.W., R.E. Fikes, and M.T. Howard. Enterprise: A Market-like
Task Scheduler for Distributed Computing Environments.
Working Paper, Cognitive and Instructional Sciences Group,
Xerox Palo Alto Research Center, Palo Alto. California, October
1983.

Marzullo, Keith. Maintaining the Time in a Distributed System - An
Example of a Loosely-Coupled Distributed Service. PhD thesis,
Stanford University, February, 1984.

Mayr, E. W. Well Structured Parallel Programs Are Not Easier to
Schedule. Report No. STAN-CS-81-880, Stanford University,
September 1981.

Metcalfe, R.M. and D.R. Boggs. Ethernet: Distributed Packet
Switching for Local Computer Networks. Communications of the
ACM, July 1976, 19(7), 395-404.

Minsky, M. Form and Content in Computer Science../. ACM. 1970,17,
197-215.

Moon, David A. Chaosnet. Symbolics, Inc., 1982. Printed by permission
of Massachusetts Institute of Technology.

Moto-oka, Tohru. Fifth Generation Computer Systems: A Japanese
Project. Computer, March 1984,, 6-13.

Rosenschein, Jeffrey S. and Vineet Singh. The Utility of Mela-level
Effort, Report No. HPP-83-20, Heuristic Programming Project,
Stanford University, March 1983.

Shapiro, Ehud. The Bagel: A Systolic Concurrent Prolog Machine.
Technical Report TM-0031, ICOT, Japan, November 1983.

Simon, Herbert A., and Joseph B. Kadanc. Optimal Problem-Solving
Search: All-or-None Solutions. Artificial Intelligence, 1975, 6,
235-247.

Singh, Vineet and Michael R. Genesereth. A Variable Supply Model for
Distributing Deductions. Technical Report HPP-84-14, Heuristic
Programming Project, Computer Science Department, Stanford
University, May 1984.

Singh, Vineet. Distributing Deduction to Multiple Processors. PhD
thesis, Stanford University, December, 1985.

Ullman, Jeffrey D. Some Thoughts about Supercomputer Organization,
in Proceedings of COMPCON, pages 424-432, IEEE Computer
Society, February, 1984.

