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ABSTRACT

This paper deals with the relationship
between the termination of programs and the vali-
dity of certain modal formulas. We give a complete
proof procedure for theses formulas, which will
allow to bring the correctness of these programs
back to a problem of automated deduction in modal
logic.

Many modal logics of programs have been de-
velopped during these last years [PR, HKP, M2].
Particular attention has been paid to their abili-

ty to express many properties of programs [HKP, MZ2].

This paper is concerned with the relationship
of termination problem for regular programs to the
validity of certain formulas in modal logic.

For these formulas we present a proof proce-
dure, very close to the resolution procedure for
first-order predicate, calculus. We will use this
procedure to prove the termination of programs. As
in Lucid [AW] we can consider the set of modal for-
mulas with the proof procedure as a programming
language. This way of doing things permits direct
reasoning about programs, from their direct manipu-
lation, rather than indirectly via another langua-

ge.

I. Preliminaries

We shall consider as in [M2] the modal sys-
tem S4, for reasoning about programs.

For our formalization of quantificational $4,
we start with denumerably infinite lists of indivi-
dual variables x1, X2, X3, , n-adic function
symbols fn, gn, hn,..., and n-adic predicate sym-
bols pn, gn, rn——

Atomic formulas as well as negations of ato-
mic formulas are called literals. We adopt the
prime symbols & (conjunction), * (negation) L (ne-
cessity) and (xi) (universal quantification). We
use the usual notions of terms and well-formel for-
mulas. Let A, B, C, ... be arbitrary formulas. For
each A, MA is defined as usual as AL A. The axioma-
tization of quantificational S4 is obtained by

adding to a habitual formalization of lower predi-
cate calculus (LPC) the following axiom schemes
and the following rule of inference :

L(A +~ B)Y. » .IA ~ LB
LA =+ A

LA ~ LLA

(x)LA + L{x) A

A J LA

Following the example of Kripke, we define a
quantificational S4 modal structure as an ordered
triple (G, K, R), where K is a set, R is a relation
on K and G is a distinguished element of K, toge-
ther with a function Y wich assigns to each H a
set y'(H), called domain in H. We shall further
specify that all domaines are identical. The inter-
pretation T of A at H is defined as in LPC by in-
duction on the number of logical symbols in A.

Ad F(LB,H)=t iff T(B,H")=t for every HEK such
HRH\ otherwise T(LB,H)=f.

A sentece A is said to be true in a model U
associated with a modal structure (GKR) if
r(A,G)=t ; it is said to be false in that model if
T(A,G)=f. A is said to be valid iff it is true in
all its models (for every modal structure), and
unsatisfiable iff it is false in all its models.

A set of formulas is said to be consistent

if there is no finite subset such that the disjunc-
tion of negations of its elements in a theorem.

I'l. Programs and modalities

2.1. Assume that a program is represented by
a directed graph whose nodes are the labels of this
program and whose arcs represent transitions
between labels. In the graphs there is only a
start node (Is) and a terminal node (It) [MI]. For
an arc (1], 12) the transition has the general
form as follows :

[ (z:=f

(x,y) —= (x,y)
(1,.1,) (1,1,

where x = (x ,...,x ) is the input variables,



= (¥)s+e4,¥y is the program variables and

= {2]y...,2) 18 the output variables.

1, 12)(i,§) is a condition under which the assi-
»

0 oMbt

gnement ;:-f( "12)(§.§) is realized. We assumed

1
that each note 1;, one and only one of the condi-
tion, corresponding to the arcs leaving 1;, is
true.

Since modal logic, like classical logic [Mj],
does not provide a direct tool for speaking about
programs, such as the logics of programs [HO, 5,
PR_], we must asscciate to each arc of the graph a
modal formula :

(x,¥) & pix,¥)) =+

(x,¥)3})

Lﬂat(ll) & c(ll’lz)

M(at(lz) & p(x.f(l 1)
1" 2
where at(l;} is a proposition corresponding to the
label 1, This formla is relative to the forward

agsignment,

2.2. If P ig a program and Fp the set of
modal formulas asgociated to the graph of P, then
Fp s satisfiable,

This is true since the set of formulas of
Fp with the general form M(at(1) & p) is consis-
tent [HCJ.

2,3, A program P is said to be totally cor-
rect with respect to the specification (p,q) if
for every input X, satisfying p(%,), the computa-
tion of P terminates and the final values {Z,),
upon termination, satisfy q(Z;). This property is
expressed by the formula (noted by FTC} :

(at(ls] & p(xo)) - H(at(lt) & q(Eo))

In general, in order to verify this property,
we need the following informaticns :

. the formulas describing the execution of
program P,

the formulas {noted by F.) concerning con-
ditions, assignments and inputs ? ¢ axioms in
Bﬂﬂ) are as follows

Lix > 0)
Lix = 0) v M(x ¥ Q)

Then we can consider these formulas that
express the material properties, (depending on the
labels) and formal properties not depending on the
labels).

2.4, Let P be a program. P terminate iff
Fp & Fp & “Fpo 18 unsatisfiable.

The proof can be obtained by a similar rea-
soning to [M1].
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IT1. Deduction

3.1. We will now give a deduction method for
the form:las of quantificational 54, whoge varia-
blegs in the scope of the modal operators are free
fnoted hv  S4% ),

We consider the formulas in the Skelem nor-
mal form :

Gepdavennlx)) (A 8 .00 8 AD)

- where each (x;) is an universal quantifier (the
existential quantifiers have been eliminated by
Skelem functions in the usual way [RSJ) and :

-m > 1
-n30

- each 4; ] £1§m (clause in the classical
terminology [R]) is a disjunction of the form :

i | VeV LDkvMF] v...vMFk,v Pt Vi W Pk"

- where each P; 1 &£ 1 € k" ie 2 literal, each F;
I £ 1 ¢ k' is a conjunction of terms possessing
the general form of the rlauses, and vach Dy
11k is a disjunction that possesses the gene-
ral form of the clauses.

3.2. There i8 an effective procedure, for
congtructing, for any given formula of $4%, an
equivalent formula tn Skolem normal form.

2.}, Let E = {Eq,...,Ex} 1 ¢ n<w, bea
finite set of expressions. A substitution O is
called a unifier of the set E if Ejo = E:0 for
i,j€ {1,...,n}. A unifier ¢ is called the most
peneral unifier if for any unifier o' of E there
is & substitution ¢" such that ¢' = a . o" [R].

3.4. We consider the set of rules Xi i=l,. &
and Fi i=1,2 defined recursively as follows:
1. Elementary trule :

E {00 5 F = 550y 5 F] . Dy

provided . is v or &

2, Extending rules :
To[LD 5 &F) = A(Z;(D ; F)) provided Ais I,
M or the empty symbol
rifaimeo s »Y=almEi[o 5 F))

A{M(D & F)} means that M{(D & F}is a subfor-
mila of A.

J. Transforming rule :

I,(p 5 F] = [z ; ¥)
4. Classical rule :

Eq[? : “4ﬂ =9
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5. Elimination of @ :
Fz[a & F] =f
T2{ﬂ vp) =D
Ty ﬂlﬁl = @# provided & is L or M.

Let A and Ay be two clauses, We say that A, end
A; are rtesolvable if Zi[AI : A?l is defined {i.g.
the classical rule is used).

Let Af{ be a clause. We say that Aj is resolvahle
if Ty{Aj) is defined,

The remaining term obtaine from & (A| and Aj)
#fter application of Iy and {or Fi) is represente
by Ty[ay) (Zifa; 5 a2))

3.5. Let A v A; and A" v A" be two clauses
with no variables in common. The inference rules

Av Ay, A" v A

UXiLA;Ai v oA v UAi
2. Av Al v Ay
. 3
(,7,_1[1\} v OA
will be applied if A and A' (or A) arc (is) resol-

vables . Where O is the most general unifier usec
in the classical rule.

3.6, Let A v A] v Ap be a clause.

The inference rule

3 A v A v Al
l\ﬂ\?ﬁiﬂ.

will be applied if nl and AE have most general
unifier o.

3.4. Let S be a finite set of rlauses, & de-
duction of A from § is a finite sequence of clau-
ses A]""'ﬁn' such thatr :

- AL is A
~ A 1 Xdi<n is
an element of §, or
. a factor {rule 3) of &4;, J < i, or

. a resolvent (rules 1 and 2) of Aj and A,
or 3,k < 1

3.5. A set 8§ of clauses 16 unsatisfiable iff
there is a deduction of the empty clauee from §.

The proof can be obtained as in {F] or [0].

IV, Ezample

Consider the program P (fig.1) over the in-
tegers, that adds an integer X tc a natural num-

ber ¥ge
start 1
&

i
lf)"IJZ) b (xl |x2)

@.
J'_—®

_n_{(y,.y2)<-y,+l.v2-ll

se PR aXg. YY)

\ﬁ

l... z-x]+x

2

halt 1t

Fig. 1
The clauses as set out in 3, corresponding
te this program are of the form !
1. ﬂ((wﬂt(ls) v Tﬁ(x],x2,xi.x2)
v Mlat(l)) & Pxy kg0 ¥ aYy)))

2o LOCat(l ) v y,20 v ap(x X, Y, Ly m 1))
v M(at(ll) & p(xl.xz.y].yz)))

3. L(0at(1)) v ny=0 v Ap(R LR,y )Y ,))
v M("]t(.lt) & P(xlyxzt}"'io)))

where p{xI‘XZ'YT'YQJ 1s the assertion x|+x2 =yf+y?.
Using the induction fermula -

4. N(at(ll) & p(xl‘x2.y].0) & L(“et(lt)
viplx ax,,y,,0)) v MO(vae () v PIx Xy, YY)
& y2>0 & p(xl,xz.xT+l,y2-T)\ v ﬁ(ﬂat(]l) v
'\ap(xl.xz,y!.yz) v Ml’at(lt) £ p(x),%,,7,,0))
4nd the frame clauses @
5., Mx#0v ii{x=0)
6., L{(~ 0 £ D)
The program considered will be totally cor-
rect if this set of clauses with the following

formula

7. m((Watfls) v mp(xl,xz,xl,xz)) v M(at(lt) &
PX,02,5,7,.00))

is unsatisfiable.

Using the method given in 3. we obtain many
ateps, but here we will give the alternate ateps
ag follows :



8. MM(at(lt) & p(xl.xz.yl.ﬂ) & erat(lt) v
PIX s%,,¥ 200 v M(Gat (1)) v Molx, %), y,¥,))
& at(ll) [ y2>0 & p(xl,xz.x|+l,y2-l)}v
L(Nat(ll) v ﬂp(x].xz.yi.yz) v M{at(lt) &
p(xnlvxztyl'o})

from 4.,3,,5and 6.

9. M((Nat(ll) v ﬂp(x],xz.y].yz)) . at(l]] &
3250 3 p{xl.xz.x]+i,y2—l)) v L(mattll) v
DXy Y aY,) v Mat(1) & plx ax,,7,,0))

from B.

10. MM(%at(l]) v y2>0 v ﬂp(x].xz.y]+l.y2—l) &
at(ll) & y2>0 & p(x].xz.x1+l,y2—l)} v
L(mat(ll} v %p{x‘.xz,yl,yz) v M(at(lt] &
P(%,4%5,7,0))

from 9. and 2.
1. Mat(1) v vp(x %), ),7,)

frem 10., 7, and 1.
And from 11. and at(ls} & p(x'.xz,yl,yz) we obtain
the empty clause.

This proof is very close to the Lucid [AW
version of intermittent assertion proofs |MW].

The different rules (concatenation, consequen—
ce...) can be obtained by putting together several
steps of our method.

In general, we can consider the szet of modal
formulas with the proof procedure as a programming
language, that permits direct reaspning about the
pragrams, from their direct manipulation.
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