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Abst rac t 
This paper describes a distributed software control structure developed 

for the CMU Rover, an advanced mobile robot equipped with a variety of 
sensors. Expert modules are used to control the operation of the sensors 
and actuators, interpret sensory and feedback data, build an internal model 
of the robot's environment, devise strategies to accomplish proposed tasks 
and execute these strategies. Each expert module is composed of a master 
process and a slave process, where the master process controls the 
scheduling and working of the slave process. Communication among 
expert modules occurs asynchronously over a blackboard structure. 
Information specific to the execution of a given task is provided through a 
control plan. The system is distributed over a network of processors. Real-
time operating system kernels local to each processor and an interprocess 
message communication mechanism ensure transparency of the underlying 
network structure. The various parts of the system are presented in this 
paper and future work to be performed is mentioned 

1 Introduction 
This paper is a progress report on the CMU Rover Project. The 

CMU Rover [1,2] is an advanced mobile robot, equipped with several 
different sensors, being developed at the CMU Robotics Institute. 

Research in the area of mobile robots can be divided into two broad 
categories. One major line of investigation studies the problems of 
balance and locomotion [3]. Another line, exemplified by projects such 
as the Stanford Cart [4], Hilaire, VESA and others [5]. as well as the 
CMU Rover, concentrates on the problems of developing autonomous or 
semi-autonomous vehicles which use different kinds of sensors to obtain 
data about the real world. 

From the point of view of application, the latter kind of research paves 
the way for the development of intelligent autonomous vehicles which 
could be used for space or sea exploration, or for work in hazardous 
environments, such as undersea mining and reactor maintenance [6,7]. 
Additionally, research in mobile robot systems is an important challenge 
in Artificial Intelligence research [2]. The need to cope with dynamically 
changing, unpredictable, real-world environments in which processing 
has to be done in real-time, can lead to the development of more robust 
and general AI tools. 

In this paper, we will give a brief overview of the robot's hardware. 
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describe a Distributed Control System designed for the Rover, and 
present one control configuration, which is being developed for obstacle-
avoidance tasks. 

2 Hardware Structure 
The CMU Rover Project is a continuation of research begun with the 

Stanford Cart [2.4], a minimal computer controlled mobile camera 
platform. I"hc Rover [1] is intended to support a variety of Al research in 
the areas of perception (sensory data processing and understanding), 
control, real-world modelling, problem-solving, planning and related 
issues. For this reason, the system is being designed along the following 
guidelines: 

• mechanical, sensor and controller flexibility; 
• enough onboard processing capabilities to enable it to 

function autonomously, but with connections to a remote 
mainframe system for heavy processing, such as is needed in 
vision or in long-term planning; 

• several different sensor systems which substitute and 
complement one another. 

The Rover is cylindrical, approximately 1 meter tall and 50 cm in 
diameter, and is equipped with three individually stecrablc wheel 
assemblies, Each has two wheels, and is powered by two brushlcss 
samarium-cobalt motors. The whole system is powered by six scaled 
lead-acid batteries. Hach motor is controlled by a Motor Processor (a 
dedicated MC6805). The Conductor (an MC68000) orchestrates the 
individual Motor Processors to follow a given path. The Simulator 
(another MC68000) uses feedback information from the motors to 
maintain a dead-reckoning estimate of the robot's position. 

The sensors available include a TV camera, a set of sonar ranging 
devices and an array of proximity sensors. Each is controlled by a 
dedicated MC6805 (respectively the Camera. Sonar and Proximity 
Processors). The Utility Processor (also an MC6805) monitors internal 
conditions of the Rover, such as motor temperature or battery voltage. 
Additional processors (all MC68000s) arc the Controller, responsible for 
the sensor subsystem; the Blackboard Processor, where information 
relevant to several processes is shared; and the Communications 
Processor, which controls a remote link to a mainframe system (a VAX 
11/780 with a high-speed digitizer and an array processor). I"hc processor 
network is shown in Fig. 1. 

3 Software Structure 
To permit high-level control, ease of programming and use, and 

flexibility to perform different kinds of experiments with the Rover, an 
integrated Planning and Control System is being designed, composed of 
the following modules (Fig. 2): 
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• a Real-World Modelling System, which interprets and 
integrates the qualitatively different, partial and sometimes 
cenflicting sensory information, and constructs an Internal 
Model of the real world environment in which thee Rover is 
operating; 

• a high-level Planning and Simulation System, which uses 
general problem-solving techniques, as well as specific 
information obtained from the Internal World Model, to 
develop and monitor the execution of plans to solve a given 
task; 

• a Distributed Control System, which is responsible for the 
execution of a Control plan, through parallel and 
coordinated control of the different sensors and actuators. 

Of the three modules, the Distributed Control System was developed 
first, and is described in the following material. 

3.1 The Distributed Control System 

3.1.1 Design Considerations 
The design of the Distributed Control System was guided by the 

following goals: 

• effective use of the large parallel processing potential existing 
in the system; 

• flexibility of interaction with the different sensors and 
actuators; 

• distributed hierarchical decision-making capabilities; 
• flexibility and case of expansion and change of the system; 
• graceful integration of a task-specific Control Plan with the 

several processes which control and operate the Rover, and 
with sensory and feedback information. 

3.1.2 Overview 
With the previously mentioned functions and design considerations in 

mind, the Distributed Control System was designed and a first version 
was implemented. The system consists of an expandable community of 
Expert Modules, which communicate asynchronously among themselves 
over a Blackboard and perform a given task under the direction of a 
Control Plan. Each Expert Module is dedicated to a particular type of 
subtask, such as the monitoring of sensors or actuators, problem-solving, 
or system management. The Control Plan breaks the overall task set to 
the Rover into a set of subtasks and a set of constraints (the order in 
which these subtasks must be executed). One Expert Module, the 
Supervisor, dynamically extracts scheduling information on the subtasks 
from the Control Plan. The Blackboard is a data structure [8] where 
information relevant to the different Expert Modules is posted, This 
includes information on the robot's status, relevant sensory and feedback 
data, scheduling information abstracted from the Control Plan and the 
degree of progress made towards completing this plan. 

The Expert Modules reside in the various processors that make up the 
network. Local to each processor we have a small real-time operating 
system kernel that handles physical I/O, schedules processes and 
manages interprocess and interprocessor communication. A general 
message-based communication mechanism is used for local as well as 
remote interprocess communication. 

A high level diagram of the Distributed Control System is shown is 
Fig. 3. 

3.1.3 Details 
Each expert module is composed of a pair of closely coupled 

processes: a "master" process and a "slave" process. The master process 
keeps track of relevant information on the Blackboard, changing when 
necessary the status (run/stop/abort/continue) of its associated slave 
process. The master also retrieves needed data from the Blackboard, 
hands it as input to the slave module, and posts relevant information 
generated by the slave process on the blackboard. The slave process is the 
one actually responsible for expert work, such as monitoring sensors, 
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handling events, controlling actuators, interpreting sensory information, 
doing problem-solving, etc. In the typical case, the master process resides 
in the Blackboard processor (for access efficiency reasons), and the slave 
process actually resides in a different processor of the network. 
Communication between them is maintained through the use of a 
symbolic message passing mechanism, similar to the system proposed in 
[9]. A message is composed of a set of «namc>, <valuc>) pairs, and has a 
priority associated to it. Each of the Expert Modules, working 
asynchronously, maintains an input processing stream and an output 
processing stream. 

The information posted on the Blackboard has a structure in some 
aspects similar to the structure of messages, being also composed of 
(<namc>. <valuc>) pairs. For efficiency and logical structuring reasons, 
the Blackboard is subdivided into different areas, with several levels of 
abstraction possible within each. In each area related types of 
information are posted, e.g.. data relating to "movement", "proximity 
sensors", etc. Actual access to the Blackboard is done only by the 
Blackboard Monitor, to insure the integrity of the posted data. A 
Blackboard Scheduler schedules the master processes to interact with the 
Blackboard, according to their own priorities and the priorities of data 
and events being recorded there. 

Integrated into the overall control structure of the Rover is the Control 
Plan. A simplified example is shown in Fig.4. The syntax is partially 
based on [10]. Processes can be specified to execute in parallel (those 
within < > brackets) or sequentially (those within [ ] brackets). Responses 
to events arc defined by the use of "ON <cvcnt> IX) <action>" rules. 
From the Plan, information about parallel and sequential execution of 
processes, as well as reactions to events, is abstracted, and posted 
dynamically on the blackboard as the Plan is executed. 

Figure 4: Example of a Simple Plan: Moving to a Goal and 
Avoiding Obstacles 

Transparency of the physical structure of the network itself is obtained 
through the underlying support software residing in each processor. 
Local to each processor we have a real-time operating system kernel , 
which handles interprocess and intcrprocessor communication, takes care 
of the internal scheduling of the resident processes, and handles low-level 
I/O. I/O handlers interface with the actuators and sensors in the system; 
other routines are responsible for the translation of specific low-level 
actuator and sensor commands to control signals (logical -> physical 
translation) and of feedback and sensory data to higher abstraction level 
descriptions (physical -> logical translation). The mailing routine 
constructs messages to be sent to other processors, and handles incoming 
messages. Messages have headers with routing information (source and 
destination) and information contents. The specialized modules residing 
in each processor can either perform only local functions (in which case 
they don't interact with the blackboard), or can belong to the set of 
master-and-slave expert modules. The scheduling of local (in-processor) 
modules for execution/suspcnsion/abortion/continuation is done on the 
basis of: a)thc inherent priority of the module; b)the priority of internal 
events, generated either by software or by hardware; c)thc priority of 
related incoming messages. The resident kernel also takes care of flow 
control, buffering, message fragmentation, broadcasting,etc. 
3.2 Discussion 

The system presented reflects the structure of a community of 
cooperating experts. These experts communicate asynchronously over 
the processor network, generating and absorbing streams of data. 
Concomitantly, the system embodies a hierarchical model of distributed 
computation, where the arrangement of the processors can be seen as a 
tree. I the reflects the fact that the decision-making model is partially 
hierarchical: control decisions arc. whenever possible, made locally in the 
processor which is confronted with a problem. Otherwise, the problem 
or data is broadcast recursively to the next higher level of decision 
(processors on the path up the tree). Another result from this model is 
that commands and data can exist within the system at several levels of 
abstraction. At each level only the necessary degree of detail is present 
Higher levels are able to deal with the same information in a more 
abstract form and do not become cluttered with unnecessary details. 
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The system described is loosely coupled , since the rate of 
communication between machines, spcciall) from the motor and sensor 
subsystem levels on upwards, is relatively small. Iliis results from the 
use of asynchronous processes and the blackboard. This approach can 
lead 10 higher performance and better adaptability to dynamically 
changing conditions [11]. 

The blackboard mechanism has been used by several researchers, e.g. 
in speech understanding [8]. image understanding [12], and tracking of 
objects [13]. In our case, due to the multiprocessing network and the 
need to dynamically respond to the changing conditions of the real-world 
environment, the role of the "condition pan" of the Hcarsay-II 
Knowledge Sources [8] was expanded to a more general master/slave 
relation. In this way, unnecessary or even dangerous actions can be 
discontinued when necessary. Furthermore, a separate control plan, 
integrated into the overall structure, and which Hearsay-II lacked, was 
considered essential in our case. Other researchers have also fell the 
need to use separate focusing and goal-proposing mechanisms [12,13]. 

4 Implementation Status 
The several physical subsystems of the Rover have been tested and are 

operational. Final assembly, integration and testing arc now being 
undertaken. Concomitantly, one specific control configuration, 
consisting of a set of Expert Modules and the underlying support 
software, is being developed. This set of modules includes tht 
Controller, Communication, Sonar, Proximity-Sensor, Camera, 
Simulation, Blackboard and Utility modules, which implement the 
corresponding functions mentioned in Section 2; the Movement module 
accomplishes a trajectory along a path provided by the Path-Planner, the 
Vision-Processing module extracts visual information about obstacles; 
the Real-World-Modeller uses information from the Obstacle-Detection 
module to construct an Internal Model of the environment; the 
Supervisor dynamically extracts the necessary information from the 
Control Plan, while the Defaulter fills in the details; the Guardian 
watches over certain key parameters in the Blackboard to prevent 
dangerous situations from happening, and the User Interaction module 
permits communication with a human user. Most of these modules have 
been implcmcnicd and tested in a simulated environment. The 
Distributed Control System has proven to be very flexible and adequate. 
It is now awaiting in; sito testing, running the Rover. 

5 Conclusion 
Although the development of such complex pieces of hardware and 

software is fraught with difficulty, there are considerable benefits. 
Among them, many insights were gained into the problems of control, 
planning, interaction with the real-world environment and use of a 
processor network. 

The Distributed Control Structure described in this paper fulfills the 
initial design goals. Future work includes the integration of the 
information coming from the sensors into a more sophisticated Internal 
Model, the development of a more elaborate planning system, and 
research into the problems of automatic knowledge acquisition and 
learning. 
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