
A D i s t r i b u t e d C o n t r o l S y s t e m f o r t h e C M U R o v e r

A lber to Elfes Sarosh N. Ta lukdar

The Robotics Institute
Carnegie-Mellon University

Pittsburgh. PA 15213
USA

Abst rac t
This paper describes a distributed software control structure developed

for the CMU Rover, an advanced mobile robot equipped with a variety of
sensors. Expert modules are used to control the operation of the sensors
and actuators, interpret sensory and feedback data, build an internal model
of the robot's environment, devise strategies to accomplish proposed tasks
and execute these strategies. Each expert module is composed of a master
process and a slave process, where the master process controls the
scheduling and working of the slave process. Communication among
expert modules occurs asynchronously over a blackboard structure.
Information specific to the execution of a given task is provided through a
control plan. The system is distributed over a network of processors. Real-
time operating system kernels local to each processor and an interprocess
message communication mechanism ensure transparency of the underlying
network structure. The various parts of the system are presented in this
paper and future work to be performed is mentioned

1 Introduction
This paper is a progress report on the CMU Rover Project. The

CMU Rover [1,2] is an advanced mobile robot, equipped with several
different sensors, being developed at the CMU Robotics Institute.

Research in the area of mobile robots can be divided into two broad
categories. One major line of investigation studies the problems of
balance and locomotion [3]. Another line, exemplified by projects such
as the Stanford Cart [4], Hilaire, VESA and others [5]. as well as the
CMU Rover, concentrates on the problems of developing autonomous or
semi-autonomous vehicles which use different kinds of sensors to obtain
data about the real world.

From the point of view of application, the latter kind of research paves
the way for the development of intelligent autonomous vehicles which
could be used for space or sea exploration, or for work in hazardous
environments, such as undersea mining and reactor maintenance [6,7].
Additionally, research in mobile robot systems is an important challenge
in Artificial Intelligence research [2]. The need to cope with dynamically
changing, unpredictable, real-world environments in which processing
has to be done in real-time, can lead to the development of more robust
and general AI tools.

In this paper, we will give a brief overview of the robot's hardware.

This research is being supported by the Office of Naval Research under Contract
NOO014-81-K-O5O3 The first author is supponed in pan by the Conselho Nacional dc
Desenvolvimenio GenliTico c Tecnoldgico - CNPq. Brazil, under Grant 200 986-80: in part
by the Institulo Tccnologico dc Aeroniutica ■ ITA. Brazil; and in pan by The Robotics
Institute. Carnegie-Mellon University.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the funding agencies.

describe a Distributed Control System designed for the Rover, and
present one control configuration, which is being developed for obstacle-
avoidance tasks.

2 Hardware Structure
The CMU Rover Project is a continuation of research begun with the

Stanford Cart [2.4], a minimal computer controlled mobile camera
platform. I"hc Rover [1] is intended to support a variety of Al research in
the areas of perception (sensory data processing and understanding),
control, real-world modelling, problem-solving, planning and related
issues. For this reason, the system is being designed along the following
guidelines:

• mechanical, sensor and controller flexibility;
• enough onboard processing capabilities to enable it to

function autonomously, but with connections to a remote
mainframe system for heavy processing, such as is needed in
vision or in long-term planning;

• several different sensor systems which substitute and
complement one another.

The Rover is cylindrical, approximately 1 meter tall and 50 cm in
diameter, and is equipped with three individually stecrablc wheel
assemblies, Each has two wheels, and is powered by two brushlcss
samarium-cobalt motors. The whole system is powered by six scaled
lead-acid batteries. Hach motor is controlled by a Motor Processor (a
dedicated MC6805). The Conductor (an MC68000) orchestrates the
individual Motor Processors to follow a given path. The Simulator
(another MC68000) uses feedback information from the motors to
maintain a dead-reckoning estimate of the robot's position.

The sensors available include a TV camera, a set of sonar ranging
devices and an array of proximity sensors. Each is controlled by a
dedicated MC6805 (respectively the Camera. Sonar and Proximity
Processors). The Utility Processor (also an MC6805) monitors internal
conditions of the Rover, such as motor temperature or battery voltage.
Additional processors (all MC68000s) arc the Controller, responsible for
the sensor subsystem; the Blackboard Processor, where information
relevant to several processes is shared; and the Communications
Processor, which controls a remote link to a mainframe system (a VAX
11/780 with a high-speed digitizer and an array processor). I"hc processor
network is shown in Fig. 1.

3 Software Structure
To permit high-level control, ease of programming and use, and

flexibility to perform different kinds of experiments with the Rover, an
integrated Planning and Control System is being designed, composed of
the following modules (Fig. 2):

A. Elfes and S. Talukdar 831

• a Real-World Modelling System, which interprets and
integrates the qualitatively different, partial and sometimes
cenflicting sensory information, and constructs an Internal
Model of the real world environment in which thee Rover is
operating;

• a high-level Planning and Simulation System, which uses
general problem-solving techniques, as well as specific
information obtained from the Internal World Model, to
develop and monitor the execution of plans to solve a given
task;

• a Distributed Control System, which is responsible for the
execution of a Control plan, through parallel and
coordinated control of the different sensors and actuators.

Of the three modules, the Distributed Control System was developed
first, and is described in the following material.

3.1 The Distributed Control System

3.1.1 Design Considerations
The design of the Distributed Control System was guided by the

following goals:

• effective use of the large parallel processing potential existing
in the system;

• flexibility of interaction with the different sensors and
actuators;

• distributed hierarchical decision-making capabilities;
• flexibility and case of expansion and change of the system;
• graceful integration of a task-specific Control Plan with the

several processes which control and operate the Rover, and
with sensory and feedback information.

3.1.2 Overview
With the previously mentioned functions and design considerations in

mind, the Distributed Control System was designed and a first version
was implemented. The system consists of an expandable community of
Expert Modules, which communicate asynchronously among themselves
over a Blackboard and perform a given task under the direction of a
Control Plan. Each Expert Module is dedicated to a particular type of
subtask, such as the monitoring of sensors or actuators, problem-solving,
or system management. The Control Plan breaks the overall task set to
the Rover into a set of subtasks and a set of constraints (the order in
which these subtasks must be executed). One Expert Module, the
Supervisor, dynamically extracts scheduling information on the subtasks
from the Control Plan. The Blackboard is a data structure [8] where
information relevant to the different Expert Modules is posted, This
includes information on the robot's status, relevant sensory and feedback
data, scheduling information abstracted from the Control Plan and the
degree of progress made towards completing this plan.

The Expert Modules reside in the various processors that make up the
network. Local to each processor we have a small real-time operating
system kernel that handles physical I/O, schedules processes and
manages interprocess and interprocessor communication. A general
message-based communication mechanism is used for local as well as
remote interprocess communication.

A high level diagram of the Distributed Control System is shown is
Fig. 3.

3.1.3 Details
Each expert module is composed of a pair of closely coupled

processes: a "master" process and a "slave" process. The master process
keeps track of relevant information on the Blackboard, changing when
necessary the status (run/stop/abort/continue) of its associated slave
process. The master also retrieves needed data from the Blackboard,
hands it as input to the slave module, and posts relevant information
generated by the slave process on the blackboard. The slave process is the
one actually responsible for expert work, such as monitoring sensors,

832 A. Elfes and S. Talukdar

handling events, controlling actuators, interpreting sensory information,
doing problem-solving, etc. In the typical case, the master process resides
in the Blackboard processor (for access efficiency reasons), and the slave
process actually resides in a different processor of the network.
Communication between them is maintained through the use of a
symbolic message passing mechanism, similar to the system proposed in
[9]. A message is composed of a set of «namc>, <valuc>) pairs, and has a
priority associated to it. Each of the Expert Modules, working
asynchronously, maintains an input processing stream and an output
processing stream.

The information posted on the Blackboard has a structure in some
aspects similar to the structure of messages, being also composed of
(<namc>. <valuc>) pairs. For efficiency and logical structuring reasons,
the Blackboard is subdivided into different areas, with several levels of
abstraction possible within each. In each area related types of
information are posted, e.g.. data relating to "movement", "proximity
sensors", etc. Actual access to the Blackboard is done only by the
Blackboard Monitor, to insure the integrity of the posted data. A
Blackboard Scheduler schedules the master processes to interact with the
Blackboard, according to their own priorities and the priorities of data
and events being recorded there.

Integrated into the overall control structure of the Rover is the Control
Plan. A simplified example is shown in Fig.4. The syntax is partially
based on [10]. Processes can be specified to execute in parallel (those
within < > brackets) or sequentially (those within [] brackets). Responses
to events arc defined by the use of "ON <cvcnt> IX) <action>" rules.
From the Plan, information about parallel and sequential execution of
processes, as well as reactions to events, is abstracted, and posted
dynamically on the blackboard as the Plan is executed.

Figure 4: Example of a Simple Plan: Moving to a Goal and
Avoiding Obstacles

Transparency of the physical structure of the network itself is obtained
through the underlying support software residing in each processor.
Local to each processor we have a real-time operating system kernel ,
which handles interprocess and intcrprocessor communication, takes care
of the internal scheduling of the resident processes, and handles low-level
I/O. I/O handlers interface with the actuators and sensors in the system;
other routines are responsible for the translation of specific low-level
actuator and sensor commands to control signals (logical -> physical
translation) and of feedback and sensory data to higher abstraction level
descriptions (physical -> logical translation). The mailing routine
constructs messages to be sent to other processors, and handles incoming
messages. Messages have headers with routing information (source and
destination) and information contents. The specialized modules residing
in each processor can either perform only local functions (in which case
they don't interact with the blackboard), or can belong to the set of
master-and-slave expert modules. The scheduling of local (in-processor)
modules for execution/suspcnsion/abortion/continuation is done on the
basis of: a)thc inherent priority of the module; b)the priority of internal
events, generated either by software or by hardware; c)thc priority of
related incoming messages. The resident kernel also takes care of flow
control, buffering, message fragmentation, broadcasting,etc.
3.2 Discussion

The system presented reflects the structure of a community of
cooperating experts. These experts communicate asynchronously over
the processor network, generating and absorbing streams of data.
Concomitantly, the system embodies a hierarchical model of distributed
computation, where the arrangement of the processors can be seen as a
tree. I the reflects the fact that the decision-making model is partially
hierarchical: control decisions arc. whenever possible, made locally in the
processor which is confronted with a problem. Otherwise, the problem
or data is broadcast recursively to the next higher level of decision
(processors on the path up the tree). Another result from this model is
that commands and data can exist within the system at several levels of
abstraction. At each level only the necessary degree of detail is present
Higher levels are able to deal with the same information in a more
abstract form and do not become cluttered with unnecessary details.

A. Elfes and S. Talukdar 833

The system described is loosely coupled , since the rate of
communication between machines, spcciall) from the motor and sensor
subsystem levels on upwards, is relatively small. Iliis results from the
use of asynchronous processes and the blackboard. This approach can
lead 10 higher performance and better adaptability to dynamically
changing conditions [11].

The blackboard mechanism has been used by several researchers, e.g.
in speech understanding [8]. image understanding [12], and tracking of
objects [13]. In our case, due to the multiprocessing network and the
need to dynamically respond to the changing conditions of the real-world
environment, the role of the "condition pan" of the Hcarsay-II
Knowledge Sources [8] was expanded to a more general master/slave
relation. In this way, unnecessary or even dangerous actions can be
discontinued when necessary. Furthermore, a separate control plan,
integrated into the overall structure, and which Hearsay-II lacked, was
considered essential in our case. Other researchers have also fell the
need to use separate focusing and goal-proposing mechanisms [12,13].

4 Implementation Status
The several physical subsystems of the Rover have been tested and are

operational. Final assembly, integration and testing arc now being
undertaken. Concomitantly, one specific control configuration,
consisting of a set of Expert Modules and the underlying support
software, is being developed. This set of modules includes tht
Controller, Communication, Sonar, Proximity-Sensor, Camera,
Simulation, Blackboard and Utility modules, which implement the
corresponding functions mentioned in Section 2; the Movement module
accomplishes a trajectory along a path provided by the Path-Planner, the
Vision-Processing module extracts visual information about obstacles;
the Real-World-Modeller uses information from the Obstacle-Detection
module to construct an Internal Model of the environment; the
Supervisor dynamically extracts the necessary information from the
Control Plan, while the Defaulter fills in the details; the Guardian
watches over certain key parameters in the Blackboard to prevent
dangerous situations from happening, and the User Interaction module
permits communication with a human user. Most of these modules have
been implcmcnicd and tested in a simulated environment. The
Distributed Control System has proven to be very flexible and adequate.
It is now awaiting in; sito testing, running the Rover.

5 Conclusion
Although the development of such complex pieces of hardware and

software is fraught with difficulty, there are considerable benefits.
Among them, many insights were gained into the problems of control,
planning, interaction with the real-world environment and use of a
processor network.

The Distributed Control Structure described in this paper fulfills the
initial design goals. Future work includes the integration of the
information coming from the sensors into a more sophisticated Internal
Model, the development of a more elaborate planning system, and
research into the problems of automatic knowledge acquisition and
learning.

6 Acknowledgments
The authors would like to thank Hans Moravcc, Marc Donner, Zary

Segall, Dave McKcown and Peter Hibbard for their suggestions and for
interesting discussions.

7 References

1. Moravcc, H.P. "The CMU Rover." Proceedings of the
AAA1-82, August 1982.

2. Moravcc. H.P. "The Stanford Cart and The CMU Rover."
Proceedings of the IEEE, to appear, 1983.

3. Raibert, M. H. and Sutherland. I. E. "Walking Machines."
Scientific American, January 1983.

4. Moravcc. H.P. Obstacle Avoidance and Navigation in the
Real World by a Seeing Robot Rover, PhD dissertation,
Stanford University, September 1980. Published as Robot
Rover Visual Navigation by UMI Research Press, Ann Arbor,
Michigan, 1981.

5. Julliere. M. and Marce, L. Contribution a I'Autonomie des
Robots Mobiles Laboratoirc d'Applications des Techniques
Electroniqucs Avancecs, Institut National des Sciences
Appliquccs, Renncs, 1982.

6. NASA Machine Intelligence and Robotics: Report of the
NASA Study Group. Final Report, N81-21769, March 1980.

7. Ayres, R.and Miller, S. The Impacts of Industrial Robots,
CMU Robotics Institute TR-81-7, November 1981.

8. Erman, L.D. et al. "The HEARSAY-M speech-understanding
system: Integrating knowledge to resolve uncertainty."
Computing Surveys 12:2, June 1980.

9. Feldman, J. A. "High Level Programming for Distributed
Computing." CACM 22:6, June 1979.

10. Donncr, M.D. "The Design of OWL: A language for
Walking." Proceedings of 1983 Sigplan Symposium, ACM,
June 1983.

11. Talukdar, S.N., Pyo, S.S. and Giras, T.G, "Asynchronous
Procedures for Parallel Processing". Proceedings of Power
Industry Computer Applications Conference, 1983. To appear
in IEEE Trans, on PAS.

12. Hanson, A.R. and Riseman, E.M. "Visions: A computer
system for interpreting scenes." In: Hanson, A.R. &
Riscman, F.M. (cds.), Computer Vision Systems. Academic
Press, NY, 1978.

13. Corkill, D.D., Lesser. V.R. and Hudlicka.F. "Unifying Data-
Directed and Goal-Directed Control: An Example and
Fxperiments." Proceedings of the AAAI-82, August 1982.

