
A SUBDIVISION ALGOUITHM IN CONFIGUKATION SPACE FOR FINDPATII WITH ROTATION 

Rodney A. Brooks and Tomas Lozano-Peres 

MIT Artificial Intelligence Laboratory 
545 Technology Square 

Cambridge, Massachusetss, 02139, U.S.A. 

ABSTRACT 
A recursive cellular representation for configuration space is 

presented, along with an algorithm for searching that space for 
collision free paths. The details of the algorithm are presented 
for polygonal obstacles and a moving object with two transla-
tional and one rotational degrees of freedom. 

I. Introduction 
In this paper we present an algorithm for finding collision free 
paths for a rigid polygonal object moving through space that 
is cluttered with obstacle polygons. The paths can include 
rotations of the object. The algorithm will find a path from 
a given initial position and orientation to a goal position and 
orientation if such a path exists, subject only to a user-specified 
resolution limit on displacements. 

The problem addressed here is an instance of the problem 
known as the find path or mover's problem in robotics. The 
problem arises when planning the motion of a robot manipulator 
or mobile robot in an environment with known obstacles. For 
related approaches to the find path problem, see Brooks [1982], 
Lozano-Perez [1981, 1983a], Lozano-Perez and Wesley [1979], 
Moravec [1080], Schwartz and Sharir [1981, 1982], and Udupa 
[1977]. A survey of the. different approaches to findpath and 
a discussion of its role in robot task planning can be found in 
Lozano-Perez [1983b]. 

The algorithm described here is based on the configuration 
space approach described by Lozano-Pcrcz [1981, 1983a]. The 
configuration of a rigid object is a set of independent parameters 
that characterize the. position of every point in the object. We 
associate a local coordinate frame with a rigid object, such as 
a planar polygon. The configuration of the polygon can be 
specified by the x,y position of the origin of the local coor­
dinate frame, known as the reference point and a 0 value in­
dicating the rotation of the local frame relative to the global 
frame. The space of all possible configurations of an object is 
its configuration space. A point in the configuration space, a 
configuration point, represents a particular position of the ob­
ject's reference point and an orientation of the object's axes. 

The configuration space for planar polygons is three-
dimensional while that of solid polyhedra is six-dimensional: 
three translational and three rotational dimensions. Due to 

This report describes research done at the Artificial Intelligence 
Laboratory of the Massachusetts Institute of Technology. 
Support for the Laboratory's Artificial Intelligence research is 
provided in part by the Office of Naval Research under Office 
of Naval Research contract N00014-81-K-0494 and in part 
by the Advanced Research Projects Agency under Office of 
Naval Research contracts N00014-80 C 0505 and N00014-82-
K-0334. 

the presence of the immovable obstacles some regions of the 
configuration space are not reachable; these regions are the 
configuration obstacles. Hence, in the configuration space, the 
moving object is shrunk to a configuration point while the 
immovable obstacles are expanded to fill all space where the 
presence of the configuration point would imply a collision of the 
object with obstacles. The findpath problem of finding a path 
for the object through the original space while avoiding obstacles 
is thus transformed to finding a path for the configuration point 
through the configuration space while avoiding the configuration 
obstacles. 

The. fundamental structure of the algorithm is extremely 
simple. Configuration space is first divided into rectangloids 
with edges parallel to the axes of the space. Each rectangloid 
is labeled as (1) empty if the interior of the rectangloid nowhere 
intersects a configuration obstacle, (2) Full if the interior of the 
rectangloid everywhere intersects the configuration obstacles or 
(3) mixed if there are interior points both inside and outside of 
configuration obstacles. A free path is found by first finding a 
connected set of empty rectangloid cells that, include the initial 
and goal configurations and constructing a piecewise linear path 
through those empty cells. If such an empty cell path cannot 
be found in the initial subdivision of configuration space then a 
path that includes mixed cells is found. Mixed cells on the path 
are subdivided, by cutting them with a single plane normal to a 
coordinate axis, and each resulting cell is appropriately labeled 
as empty, full, or mixed. Another search for an empty-cell path 
is initiated, and so on iteratively until success is achieved. If at 
any time no path can be found through won-full cells of greater 
than some preset minimum size, then the problem as posed is 
insoluble (i.e., no collision free path exists given the resolution 
limit). 

The conceptual and practical problems that must be solved 
to implement this algorithm are as follows: 

(a) What is an efficient algorithm for labeling the newly cut 
cells as empty, full or mixed? 

(b) How should configuration space be initially divided into 
rectangloids? 

(c) Where should a mixed cell be cut when it is subdivided? 
(d) What additional information should be kept with mixed 

cells describing the configuration space obstacles they intersect? 
(e) How should the iterative search be controlled? 

H. Representation of Configuration Space Obstacles 
For a convex polygonal moving object A and a convex polygonal 
obstacle B we write the configurations forbidden for A as 
COA(B). Figure 1 shows such a configuration obstacle for 
polygons A and B where their relative orientation is fixed. 
Lozano Perez [1983a] showed that COA(B), for fixed relative 
orientations of convex A and B, is also a convex polygon. A 



800 R. Brooks and T. Lozano-Perez 

Figure 3. Non-convex moving objects can be decomposed into a union 
of convex objects sharing a common reference point and reference 
orientation. 

convex polygon can be expressed as a conjunction of linear in­
equalities. 

When changes in the orientation of the moving object are 
allowed, the resultant COB

A[B) are neither convex nor bounded 
by half-spaces. Their surfaces are curved, although they do have 
the property that when cut by a plane normal to the rotation 
dimension they have polygonal cross sections (since such a cross 
section corresponds to a single fixed orientation). 

Lozano Perez [1983a] showed that for two dimensional A 
and B the surfaces of the configuration obstacle could be ex­
pressed as inequalities each valid over an infinite rectangloid R 
in (x, y,0) space, where 

The ai's are vertices of the "negated" moving polygon [O)A 
in Lozano Perez [11)81, 1983a]), in it,s local coordinate system. 
n1 is the angle the line from the origin of that coordinate system 
to the point a2 makes with the coordinate system's I axis, and 
>., is the angle marie by the normal to the segment from a1 to 
at+1. Similarly the bj's are the vertices of a convex obstacle 
polygon, the orientation of the line from the origin to b, 
and (nellset the orientation of the normal to the segment from bi; 
to bj+1 The parameter 0, a parameter of the configuration 
space, measures the angle between the x-axcs of the object and 
obstacle coordinate systems. Figure 2 shows the geometric con­
structions used to derive the forms of type A and D constraints. 

Type A constraints can be thought of as being generated by 
a face (edge) of the moving object A coming into contact with 
a vertex of an obstacle B, and a type D constraint as a vertex 
of A coming into contact with a face (edge) of B. 

We can cut up configuration space into rectangloids R,. For 
a single convex obstacle and a convex moving object (either with 
or without rotation) we can define the subset of the configuration 
space obstacle that intersects R1 by those points in R1 such that 
a conjunction /\1 e1 is satisfied, where each ei is an inequality. 

In the more general case the moving object A is represented 
as a union of (possibly overlapping) convex polygons. Similarly, 
multiple obstacles are each represented as unions of convex 
polygons. Let the convex moving polygons be A1, A2,... An. 
Define a single reference point P and reference orientation for 
all the Ai. See Figure 3 for an example. Let the convex obstacle 
polygons be B1B2, •.., Bm. 

The path for object A can be found through the obstacle lit­
tered space by finding a path for the configuration point through 
configuration space filled with the union of the C O A B J ' S or 



R. Brooks and T. Lozano-Perez 801 

Hence, for arbitrary obstacle and moving object 
polygons, we first decompose them into the unions of convex 
polygons; then, for all pairs of obstacle and object polygons 
we compute the configuration space obstacles. These new 
obstacles are all embedded in the same configuration space, and 
a collision- free path is found through it for the reference point 
of the object to be moved. 

In what follows we will represenet an obstacle embedded in 
configuration space as a union of finite rectangloid boxes each 
with edges parallel to the: coordinate axes. The boxes will each 
have associated with them a conjunction of inequalities which 
will allow us to determine the subset of the configuration space 
obstacle that intersects that box. We then embed these boxes 
into configuration space by cutting it into rectangloids. 

The way in which the set of boxes bounding a particular 
configuration space, obstacle is chosen is discussed in section HB. 

A. Representation of Configuration Space 
The inequalities derived above are referred to as constraints. 
Each one has the form j (x) < 0, where x is the configuration 
point for the moving object. A point x is inside such a constraint 
if f(x) < 0, outside if }(x) > 0 and on the constraint if f(x) = 
0. A point is contained in a configuration obstacle if it is not 
outside any of its defining constraints. A point x is on the surface 
of an obstacle if it is on some constraint. 

If two obstacles are embedded in the same space and two of 
their bounding boxes intersect then the two can be decomposed 
into a union of boxes. Each resulting box has associated with 
it a disjunction of the conjunctions representing the original 
two obstacles. Of course, the sub boxes that only overlapped 
a single configuration space obstacle have just the original con­
junction. 

More formally, we represent configuration obstacles as fol­
lows. Configuration space is subdivided into rectangloid cells 
in order to represent the embedding of many configuration 
obstacles. Each cell is a closed rectangloid with edges parallel 
to the coordinate axes. The union of all cells is the whole space 
and no point is in the interior of two cells. Associated with each 
cell is a sentence of constraints of the form 

Each conjunction of constraints in a sentence will be referred 
to as a clause and each clause is made up of terms, i.e., each 
constraint will be referred to as a term. 

A point is said to be inside sentence .9 if for some clause of 
the disjunction it is not outside any of the constraints. A point 
is said to be outside sentence S if it is outside some constraint 
in every clause. A cell C with associated sentence S is labeled 
as 

(1) empty if no point of C is inside S, 
(2) full if no point of C is outside 5, 
(3) mixed otherwise. 

The labeling is done as a by-product of trying to simplify sen­
tence S; see below. 
B. Simplification of Constraint Sentences 
Both while constructing the original representation of 
configuration space and when subdividing cells during search it 
is necessary to associate a constraint sentence S with a cell C. 
It may be the case that the cell is completely outside or com­
pletely inside some constraints in 5. The procedure below both 

Figure 5. Slice projections into the x-y plane of Type A and 
Type B surfaces from configuration obstacles. These projections 
divide the plane into three regions: inside, mixed, and outside. The 
Cell Compare procedure must determine where the projection of a cell 
lies relative to these regions. 

simplifies S by removing such)) constraints and, as a by product, 
labels the cell empty, full, or mixed. 

procedure SimplifyAndLabel (C, S); 
begin 

foreach CLAUSE in S do 
begin 

foreach TERM in CLAUSE do 
begin 

case CellCompare (C, TERM) of 
Insido: remove TERM from CLAUSE; 
Outside: begin 

remove CLAUSE from S; 
goto next CLAUSE; 
end; 

Cut: ; 
endcase; 

end; 
if CLAUSE is nil 

then begin 
label C with full 
set S to n i l ; 
exit from SimplifyAndLabel; 
end; 

end; 
i f S is ni l 

then label C with empty 
else label C with mixed; 

end; 

Figure 4 illustrates the behavior of the algorithm. 
A sub-procedure CellCompare is UBed to compare a cell C 

with a single constraint, e say. It returns one of: 



802 R. Brooks and T. Lozano-Perez 

(1) Outside if no point of C is inside e, 
(2) Inside if no point of C is outside e, 
(3) Cut otherwise. 
The formulation of CellComparc depends on the form of 

constraints to be considered. Note also that in general the 
surface of a constraint (i.e., those points on the constraint) is 
of lower dimension than the configuration space in which it is 
embedded. Thus a constraint fills only a subset of measure zero 
of a cell. 

C. Comparing a Cell to a Single Constraint 
The idea of treating the spatial and rotational components of 
configuration space uniformly breaks down when comparing a 
cell to a constraint. This is because the constraint surfaces are, 
in some sense, "wel! behaved" with respect to x and y, but 
"poorly behaved" with respect to 0 - the surfaces can creep 
into, and out of a cell along an edge in the 0 direction, while the 
vertices at both ends are on the same side of the constraint. 

For a fixed 0o both type A and type B constraint surfaces 
become a single, infinite, straight line. Type A and B con­
straints are, therefore, ruled surfaces, which are valid over some 
range [01,02]- Consider the projections into the x-y plane of 
the portions of these surfaces in the range [01,02] (slice projec­
tions in the terminology of Lozano-Pcrez [1981, 1983a]). Points 
outside the projection must support columns in the 0 direction 
that are either completely inside or completely outside the con­
straint. Furthermore, there will be two disjoint regions outside 
the projection that correspond to these types of columns. Figure 
5 illustrates the projection of both a type A and a type B con­
straint. 

Thus the procedure CellCompare has been reduced to two 
more primitive operations; projection of the constraint surface 
into the x-y plane, and comparison of a rectangle to the two 
regions of the plane outside of that projection. If those regions 
are convex then the comparison is simple, as a convex polygon 
is contained in a convex set if and only if all its vertices are 
contained in the region. 

A type B constraint projects into a strip with parallel sides. 
On one side is a half plane corresponding to points inside the 
constraint, and on the other a half plane corresponding to points 
on the outside. The comparison computation it trivial. 

Type A constraints are considerably more difficult to deal 
with, as the orientation of the ruled line on the constraint surface 
rotates with changing 0. Consider Figure 5. Note that again 
both the inside and outside regions are convex, so a projected 
cell vertex test suffices. A point is in the outside region if it is 
outside both of the straight lines. It is inside if it is inside both 
of the straight lines and not in the small area between the circle 
and the point of intersection of the two lines. Such points have 
distance from bj greater than the radius of the circle, and are 
on the opposite side of the chord (joining the two intersections 
of the circle with the straight lines) as point bj 

Full details can be found in a longer version of this paper: 
[1982]. 

D. Bounding Configuration Obstacles 
In this section we describe how the set of bounding cells for 
each configuration obstacle is chosen. As 0 varies, the x and 
y bounds on the crosB section of COe

A(B) normal to the 9 axis 
varies considerably. Hence it is best to bound CO0

A(B) by a 
"stack" of cells in the 0 direction; see Figure G. The cells are 
obtained by, first, determining a number of sub-intervals of the 

E. Constructing an Initial Representation 
We are now in a position to construct an initial representation 
of configuration space. There are two operations. (1) Cut space 
into rectangloid cells. (2) Build a connectivity graph between 
the cells which are empty or mixed. By combining the second 
operation with the first it is possible to reduce its complexity 
to linear in the final number of cells. Full details can be found 
in a longer version of this paper: [1982]. The computation (as 
distinct from the actual algortihm) uses all the extreme x, say, 
values of bounding boxes to cut configuration space into strips 
and intersects all the boxes with those strips, cutting them when 
necessary. Then each strip is cut with all the extreme y values 
of boxes which lie within that strip. The process is repeated for 
each axis of configuration space. 

Figure 7 shows a configuration space for polygons without 
rotation cut into rectangular cells. A cell is represented by a rec­
tangloid, a constraint sentence in constraints that cut it, a label 
from among full, empty, and mixed, and pointers to neighboring 
cells. The neighbors are grouped according to their direction, 
e.g. +x, —x, +y and —y for two dimensional configuration 
space. Figure 8 shows its corresponding connectivity graph. 

An important refinement to the simple connectivity graph 
is possible. Two neighboring cell C1 and C2 intersect in a 
rectangloid cell C one dimension lower than the original cells. 
Both constraint sentences S1, from C\, and S2, from C2, apply 
to the intersection cell. If either SimplifyAndLabel(C, S1) or 
SimplifyAndLabel(C, S2) label C as full then the configuration 
point cannot move directly from cell C\ to C2 Hence, although 
spatially neighbors, none of their empty interior points are con­
nected by a path for the moving object's configuration point. 
Thus their neighbor relation can be omitted from the connec­
tivity graph. For this reason, link A of Figure 8 can be deleted. 



R. Brooks and T. Lozano-Perez 803 

Figure 9. Given two intersection points of a constraint and boundary 
edges, the cell is cut at the intersection point closest to the center 
of the boundary edges. The two cases that are illustrated here show 
that this produces the simpler cell with maximal volume. 

This refinement significantly cuts down the number of links in 
realistic connectivity graphs, greatly increasing efficiency. 

A major drawback to cellular representations as above is 
that a number of small obstacles localized in one part of space 
can have significant global effects on the representation of space 
elsewhere, e.g., the effect of x bounds in Figure 7. This can 
become a significant problem in three -dimensional configuration 
space. 

This problem is solved by first boxing the stack of 6 slices 
for a single configuration obstacle into a single cell that extends 
over the range [—pie,pie] in the 0 direction. Such cells are em­
bedded into the configuration space that is sliced in the x and y 
directions. Then, within each cell, the cutting procedure is used 
all over again, first cutting normal to the 0-axis then normal to 
each of x and y. 

The efficiency of the algorithm can be further enhanced by 
arranging for the second stage of cutting to be carried out only 
when it first becomes a candidate path cell as found by the A 
search algorithm. 

ITT. Search 
The representation described above for configuration space is 
useful only if some efficient way can be found to search it for 
collision free paths. Our algorithm uses the A* (Nilsson [1971]) 
algorithm as its primary search engine to search the cell con­
nectivity graph, both for paths through purely empty cells and 
for paths that include mixed cells. 

Once a set of empty cells linking the initial point to the 
goal has been found, an actual point path through those cells 
must be chosen. Again the A* search procedure is used, but this 
time using a selected set of points in the cells along the solution 
path. 

If no path through empty cells is available, then the rep­
resentation of configuration space must be refined through cell 
division. It is necessary, however, to decide where the space 
should be refined, and how much effort should be expended 
in subdivision, before a new search is initiated. The point 
path search mentioned above is used to direct the refinement 
of configuration space as well as to produce a final solution path 
for the problem. 

The efficiency of the overall search can be greatly improved 
by using the divide and conquer paradigm. There are some 
complications in this application, however, as each subproblem 
is capable of changing the global data base by refining the 
representation of space within its area of search. This turns 
out to be a significant problem and some care must be taken 
to minimize its adverse effects. There is an additional problem 
with divide and conquer in this application. The division of a 
problem into subproblems cannot guarantee that if the original 
problem is solvable then so are all the subproblems. A form 
of resource limited computation is used to back out of problem 
subdivisions that do not look promising. 

A. Deciding Where to Cut a Cell 
During search, the representations of mixed cells that lie on 
the candidate path are refined. A cell C with sentence S 
is cut into two cells, C\ and C2, by splitting along one of 
its coordinates. Then, each sub-cell is labeled by calling 
SimplifyAndLabel(C1,5) for i = 1,2. 

The cutting operation can help the search converge on a, 
path through empty cells but only if it makes it easier to deduce 
if at least one of the C1's is full or empty. This will be the 



804 R. Brooks and T. Lozano-Perez 

case if the number of constraints appearing in at least one sen­
tence S1 is reduced from the number that appeared in S. Such 
simplification can be achieved if one of the new cells lies wholly 
inside or outside a constraint. We refer to it as the simpler 
sub-cell. 

Two heuristic principles have also been used in the imple­
mented algorithms described here. First, it is desirable that the 
new cell with simpler constraint sentence should have the max­
imal volume possible. This offers the possibility of finding that 
a large volume is either empty or Full. In one case it makes the 
search for a free path easier and in the other eliminates a large 
volume from further consideration. The second heuristic prin­
ciple is that large amounts of computation in choosing the place 
to cut a cell, would be better spent in cutting the cell into more, 
less well chosen, pieces, as more cuts result in greater likelihood 
of actually finding empty or full sub-cells. 

Thus there are three problems; (1) find cuts that lead to 
simpler S1 and S2; (2) choose the one that gives the simpler 
cell a large volume; (3) compute (1) and (2) quickly. Here we 
show how to choose a good cut according to these criteria. The 
method is stated in more generality than necessary so that it 
can easily be extended to the higher dimensional cases later in 
the paper. 

The basic approach is as follows. Consideration is given 
to cutting the cell in each direction (x, y and 0 in this case) at 
some number of points for each constraint in the cell's constraint 
sentence. Candidate cuts are chosen wherever a constraint sur­
face will go through a vertex of one of the new cells. A score is 
assigned to each such plausible cut, and the cut with minimal 
score is chosen as best. 

It remains now to define the scoring function. If the length 
of the cell in the x direction is scaled to 1.0 then the score of 
a cut is its distance in those units from the center in the x 
direction. Note that this score is a proportion of the volume of 
the original cell that is added or subtracted from half its volume 
to get the volumes of the two new cells. Thus the scale of this 
measure is independent of the constraint or the direction of cut. 
The same scoring function is used in the y and 6 directions. 

If a given constraint and direction of cut produces two 
candidate cuts then in configuration space without rotations the 
one with lowest score is the one that produces a simpler cell with 
maximal volume (helping in the achievement of (2)). This can 
be shown by considering two cases, illustrated in Figure 9. It 
does this without analysis of the constraint other than where it 
cuts the edges of the cell. 

In our implementation we choose the cut by picking the 
candidate with the lowest score from among all cutting direc­
tions and single constraints. This has the effect of choosing a 
cut that produces a simpler cell with volume closest to half the 
original cell volume. The chosen cell may not be the best pos­
sible choice in terms of condition (2), but it is certainly not a 
poor choice. If all possible simpler cells have volume less than 
half the original, then this algorithm will in fact choose the cut 
that results in the largest such cell. If there are cells bigger than 
half, then the biggest one might not be chosen; condition (3) is 
well satisfied, however. 

B. A* Cost Functions 
While searching for a path of connected cells, a candidate point 
path through each partial cell path is "constructed". Each 
adjacent pair of cells intersect in a cell of one lower dimension. 
In the case of two dimensions without rotations, the interaction 

cell is a line segment and the centroid its midpoint, for example. 
The centroids of such interaction sub cells are used as the entry 
and exit points of the path through the cell, and a the path 
segment within a cell is the straight line joining them. 

The cost of an individual path segment is just its Euclidean 
length within the configuration space, and the cost of a path 
is the sum of the segment costs. The lower bound heuristic 
estimate for reaching the goal point, is just the Euclidean length 
from the last point on the path to the goal point. 

The running time of the search algorithm can be improved 
by making the cost of traversing a mixed cell greater than the 
cost of traversing an empty cell. The relative cost can be used 
to trade off running time of the search algorithm for length of 
the final path. With a large relative cost, the A* algorithm will 
strongly tend to concentrate on empty cells. Hence, paths that 
require only a small amount of additional trail blazing through 
mixed cells will be chosen, even if they are very long. 

C. Choosing a Point Path 
When a final cell path consisting of empty cells has been found 
it is still necessary to find a path for the configuration point 
of the moving object through configuration space. In general, 
the choice of final path should be based on domain specific 
considerations such as kinematic or dynamic characteristics, 
not on purely geometric criteria. In the absence of domain-
specific considerations we suggest that a desirable property of 
the final path is that it be smooth, essentially nulling out the 
artificial effects of the tesselation of configuration space by the 
cell structure. Our approach is to consider alternative paths 
going through a small set of candidate points in the interaction 
cell between adjacent cells in the chosen path, and to choose the 
one that minimizes the cost function by another A" search with 
the same cost function as detailed above. 

D. Refining the Search Space 
After a search has found a sequence of empty and mixed cells, 
the mixed cells along the path should be cut into at least two 
sub cells and the search re-executed. This simple strategy leads 
to a very slowly converging search algorithm, however. The 
ratio of cutting to searching is too low. Arbitrarily cutting cells 
can also be wasted effort, however, so it is better to find some 
selective method of determining places to make more cuts. We 
use the point path search to identify such places. 

The point path search of the previous section is used to 
find a point path through the empty and mixed cells. All points 
at the interface between cells on that path are then examined. 
It is easy to determine if a point is actually in free space by 
evaluating the constraint sentence associated with one of the 
containing cells. If the point is actually in free space, but its cell 
is mixed, then the cell is repeatedly divided until the point lies in 
a newly created empty cell. (This same procedure is used to cut 
the space representation about the initial and goal points to get 
empty initial and goal cells for the original search.) The effect of 
this is to create small islands of empty cells along the trajectory, 
which will be useful for defining recursive subproblems (see next 
section). 

Initially there may be many large cells in the configuration 
space representation. If an arbitrary point on the interface 
between two adjacent cells were chosen as a center of refinement 
of the cell representation, it could well be that it is far from 
the optimal path. By only expanding points on a candidate 
optimal path, the overall search operation is not misled into 



R. Brooks and T. Lozano-Perez 805 

grossly suboptimal areas of "easy pickings". 

E. Divide and Conquer 
The efficiency of the search for a free cell path can be greatly 
improved by hierarchically decomposing it into more localized 
and smaller problems. The search space is smaller for a localized 
problem, resulting in reduced time for the overall search. 

The problem is how to break up a global search into smaller 
ones when there is no a priori knowledge of what the smaller 
subproblems are. The approach taken here is to use the global 
search through mixed cells, and subsequent selection of a point 
path as a plan for the lower level subproblems. If there are 
points on the path that, after cell refinement as above, are in 
a known empty cell, then they are used as points at which the 
problem is broken up. The global problem then becomes a series 
of local ones, each from an initial point to a goal point where 
both are in empty cells. 

Surprisingly, the order in which the subproblems are at­
tempted is important. This is because each subproblem may 
require that the global data base, the cell connectivity graph, be 
altered, as mixed cells are cut. If the subproblems arc evaluated 
with the one closest to the global initial point first, and followed 
sequentially by those closer and closer to the goal point, then 
this cutting has adverse effects on search efficiency. 

Consider the first subproblem in a sequence. In general, 
many cells near the goal point will have been refined by the 
time a sub path through empty cells has been found. Now 
the second subproblem is attacked. Its initial point is the goal 
point of the previous subproblem. When the A search starts 
at that point it finds many small empty cells from the recent 
search. These cells are in the wrong direction relative to the new 
goal, however; they are, nevertheless, "attractive" to the search 
algorithm, because the evaluation function favors empty cells. 
In addition the empty cells are small and, therefore, many can 
be appended to partial paths near the new initial point without 
sharp increases in the heuristic estimate of remaining cost. The 
result is that the A* algorithm can spend inordinate amounts 
of time breadth first searching backwards over areas covered by 
the previous subproblem. 

Fortunately, this wasted work can be avoided by solving 
the subproblems in the reverse order taking the one nearest 
to the global goal point first. 

Another consideration in the use of divide and conquer is 
the possibility that a subproblem may be poorly chosen so that 
there is no very direct path between its initial and goal points. 
This can be the case even when the global problem is soluble. 
If unlimited effort is expended on solving the subproblem then 
it can happen that the final path "backs" out from the initial 
point, finds a path around the obstacles that block a more direct 
route from the initial to final position, then "backs" into the 
goal position. The two subproblems on cither side backtrack 
over those initial and final parts of the path. See Figure 10 for 
an illustration of this effect. 

In such cases, after some effort has been expended to deter­
mine that the direct path is blocked, it is better to back up to 
the more global problem and look for a new path through mixed 
cells. This can be simply achieved by placing a path length 
limitation on subproblems. Once it is exceeded the subproblem 
exits with failure, forcing a new search at a higher level. In the 
examples given in this paper the cost limitation for subproblems 
is 1.5 times the cost of the global path, or 1.5 times the best 
cost ever computed for the sub-path, whichever is smaller. 

IV. Conclusion 
The algorithm described here has been implemented and tested 
on many randomly generated examples. Figure 11 shows two 
difficult cases that the algorithm solves. We believe these to be 
among the most difficult findpath problems ever solved by a pro­
gram. The running time of the algorithm on these examples is 
very high, however. The actual running times for these difficult 
problems are on the order of tens of minutes of "wall clock" 
time on a single- user MIT Lisp Machine without floating point 
hardware; these times also include a very significant paging over­
head. Simple problems, of course, run much faster: on the order 
of tens of seconds to a few minutes. This should be. contrasted 
with running times on the order of less than a minute for prob­
lems of moderate complexity using the algorithm described in 
Brooks [1982]. This latter algorithm cannot solve problems such 
as illustrated in Figure 11, however. 

While the running times of the algorithm described here 
could be made significantly shorter by implementation changes, 
the fact remains that the complexity of the algorithm is high. 
Informal timing experiments seem to indicate that the algorithm 
spends much of the running time in the A* search procedure, 
which is used at several points in the algorithm. If the number 
of cells to be searched could be reduced, the running time could 
be significantly reduced. One approach to doing this is to use an 
algorithm such as described by Brooks [1982] to identify a likely 
path, using a smaller and simpler moving object, and then apply 
the algorithm described here to verify and refine the path for the 
actual moving object. This would reduce the size of the search 
space for the algorithm. There are a number of conceptual and 
technical problems to be solved before this hybrid approach is 
practical. As of now, the algorithm described here can solve 
very complex problems, albeit slowly. 

The questions (a) through (e) posed in section 1 have been 
answered for the case of polygons with rotations. Section HA 
addressed question (d), 1IB and Hc addressed (a), HD and HE 
addressed (b), HA addressed (c), and HB, HC, HD and HE 
addressed (e). In generalizations of the solved problem case it is 
necessary to further refine only a subset of these andsers. 

The approach followed in this algorithm can be directly 
applied to configuration spaces for three-dimensional polyhedra 
whose orientation is fixed. This case generates a three-
dimensional configuration space with linear constraints - all 
of section 2 applies in simplified form. We believe that the 
generalization to a four dimensional configuration space, such 
as for a polyhedra with a single rotational degree of freedom, 
will be straightforward. A new type of constraint surface must 
be dealt with, however, arising from the interaction of pairs of 
edges (Lozano-Perez [1983a]). 

The approach could, in principle, also be generalized to 
configuration spaces of higher dimension, such as those for 
polyhedra that are allowed to rotate. The actual generaliza­
tion presents a large number of problems, e.g., the CellCompare 
operation is substantially more difficult, and the number of 
cells grows extremely fast. Other algorithms suggested for this 
general case have the same drawback. The algorithm for the 
general findpath problem given by Schwartz and Sharir [1982], 
for example, has a very high polynomial time complexity for a 
fixed number of degrees of freedom and is exponential in the 
degrees of freedom. Our belief is that, in practice, the general 
six degree of freedom problem should be heuristically reduced 
to cases involving four or fewer degrees of freedom. 



806 R. Brooks and T. Lozano-Perez 

ACKNOWLEDGEMENTS 
The presentation of this paper has benefitted greatly from] 

the detailed comments of John Hollerbach and the IJCAI 
referees. 

REFERENCES 
Brooks, Rodney A. (1982). Solving the find-path prob­

lem by representing free space as generalized cones, Artificial 
Intelligence Laboratory, Massachusetts Institute of Technology, 
Al Memo 674, May. 

Brooks, Rodney A. and Tomas Lozano-Perez (1982). A 
Subdivision Algorithm in Configuration Space for Findpath 
with Rotation, Artificial Intelligence Laboratory, Massachusetts 
Institute of Technology, Al Memo 684, December. 

Lozano-Perez, Tomas (1981). Automatic Planning of 
Manipulator Transfer Movements, IEEE Trans, on Systems. 
Man and Cybernetics (SMC ll):681 -698. 

(1983a). Spatial Planning: A Configuration Space 
Approach, IEEE Trans, on Computers (C 32): 108-120. 

(1983b). Task Planning, in Robot Motion: Planning 
and Control, M. Brady et al. eds., MIT Press. 

Lozano-Perez, Tomas and Michael A. Wesley (1979). An 
algorithm for planning collision-free paths among polyhedral 
obstacles, Communications of the ACM (22):560-570. 

Moravec, Hans P. (1980). Obstacle Avoidance and 
Navigation in the Real World by a Seeing Robot Rover, Ph.D. 
Dissertation Stanford AIM-340, Sept. 

Nilsson, Nils J. (1971). Problem Solving Methods in 
Artificial Intelligence, McGraw-Hill, 1971. 

Schwartz, Jacob T. and Micha Sharir (1981). On the 
Piano Movers Problem I: The Case of a Two-Dimensional Rigid 
Polygonal Body Moving Amidst Polygonal Barriers, Department 
of Computer Science, Courant Institute of Mathematical 
Sciences, NYU, Report 39, October. 

Schwartz, Jacob T. and Micha Sharir (1982). On the 
Piano Movers Problem IT. General Properties for Computing 
Topological Properties of Real Algebraic Manifolds, Department 
of Computer Science, Courant Institute of Mathematical 
Sciences, NYU, Report 41, February. 

Udupa, Shriram M. (1977). Collision Detection and 
Avoidance in Computer Controlled Manipulators, Proceedings 
of IJCAI 5, MIT, Cambridge, Ma., Aug. 1977, 737-748. 

Figure 10. If no restriction is placed on the path length used to solve 
a subproblem, very inefficient paths may be found as illustrated here. 

Figure 11. Paths found by the algorithm for (a) a convex moving 
object and (b) a non-convex moving object. The final representation 
of configuration space for problem (a) has 766 cells of which 122 are 
full, 524 are mixed and 120 are empty. The cells are linked by 2157 
connecting arcs and the final path goes through 87 of the empty cells 
(i.e. 71.3%). For (b) there are 2138 arcs linking 1063 cells; 336 full, 
570 mixed and 127 empty, while the final path goes through 79 of 
these (i.e. 62.2%). 


