A UNIFICATION ALGORITHM FOR INFINITE TREES

Kuniaki

Mukai

Institute for New Generation Computer Technology
Mita Kokusai Bldg. 21F

4-28 Mita

1-chome

Minato-ku Tokyo 108 Japan

ABSTRACT

A simple unification algorithm for infinite
trees has been developed. The algorithm is designed
to work efficiently under structure sharing imple-
mentations of logic programming languages, e.g.,
Prolog (Warren [3]). A relation, called "is covered
with", between two terms is introduced to terminate
the algorithm. The fundamental operations are to
compute the frontier set of two given terms and to
test the relation between them. A termination
proof is shown.

| INTRODUCTION

The objective of this paper is to explain a
practical unification algorithm for infinite trees.
In Colmerauer [2], he presents implicitly two algo-
rithms, a "theoretical" and a "practical" one. For
any given two terms, the theoretical algorithm has
to select the smaller one in view of length.
Although the practical one avoids the test, it is
not known to have guaranteed termination. We found
a relation which is called "is covered with" and is
able to play the same role as the "smaller" rela-
tion above. It depends on only the frontier
(Martelli [1]) of the two term given. This is a
main different point from Colmerauer [2].

To describe our unification model, we will use
a set of multi-equations to represent variable
binding information. A configuration of the uni-
fication process is represented by an ordered pair

of a list of equations and a set of multi-equations.

We view unification processes as transformations
between two configurations.

Now, we will briefly explain a key point of
the algorithm. Let's imagine the following situa-
tion: a current value of a variable v is a term b,
and v*t is the current equation, where t is a non
variable term. With this situation, we first test
whether b "is covered with" t. If this is not the
case, we change it so that the new value of v will

be t. All other points of the algorithm are usual.
I BASIC DEFINITIONS
Definition. A configuration of unification is

an ordered pair of the form (R, M), where R is a
list of equations of the form term-term, and M is a

get of multi-equations.

Example. The configuration
(ex=y,y=x>, {{x}=f(1) , {3}=Ff(y), {)=f(2)})
repregents the situation:
1) The current values of variables x, y and z are
f(x), f{y) and f(z), and
2) remaining pairs of terms to be unified are
{x,y} and {y,z}.

Definition. SUBTERM(t)is the set of all subterms
of t, and SUBTERM'(t) is the set of all proper sub-
terms of t. For the special term "undef", we use
the following definitions:
SUBTERM("undef")={"undef"},
SUBTERM' ("undef')}={} (empty set).

Example.
SUBTERM{f (g(x},1))={f{g{x},1),&(x),x,1}
SUBTERM' (£(g(x),1))={g(x),x,1}.

Far convenience, we will extend the definitions SUB-
TERM and SUBTERMS' for lists of equations, lists of
multi-equations, and configuratioms. Let R and M
be a list of equations and a set of multi-equations,

Definition. SUBTERM{R) is the set of all subterms
of the nonvariable left or right hand side of some
equation in R. SUBTERM'(R) is the set of all pro-
per subterma of the nonvariable left or right hand
side of some equation in R. SUBTERM(M) ig the set
of all subterms of the right hand side of some
multi-equation in M, SUBTERM'(M) is the set of all
the proper subterms of the right hand side of some
multi-equation in M. SUBTERM({{R,M)} is the union
of SUBTERM(R) and SUBTERM{M). SUBTERM'({R, M}) is
the union of SUBTERM'(R) and SUBTERM'(M).

Example.
SUBTERM(<x=],y=f(z)>») = {1,£f(z),z}.
SUBTERM' {<x=1,y=f(2z)>) = {z},
SUBTERM({ {x,¥}=1,{z}=f(2), {u}="undef"}} =
{1,£(2),z,"undef"}.
SUBTERM" {{{x,y1=1,{z)=£f(2),{ul="undef"}) = {z}.
SUBTERM{ (<x=£(y)>, {{x,y}=£(y) 1)) = {f(¥),¥}.
SUBTERM' ((<x=f(y) >, {{x,¥)}=£(¥))} = {y].

Definition. TERM{R) 18 the set of all nonvariable
left or right hand side of some equation in R.
TERM(M) 15 the set of all the right hand side of
some multi-equation in M. TERM((R,M)) 1s the union
of TERM(R) and TERM(M).

Example.
TERM(<x=f (x) ,y=z>) = {£(x)}.
TERM{{{x}=1,{y,z}=2}) = {1,2}.
TERM((<xwf(x) ,ymz>, {{x)}=l, {y,2}=2])) =
{£(x),1,2}.

548 K. Mukai

Let v, € and M be a variable, a variable claes,
and a set of multi-equations.

Definition. Lf there ig a unique multi-equation in
M of the form C=b for some b, we write BIND{(C,M)
for b, If there is a unique multi-equation, say
C'=b', in M such that v ia in C', we wrlte CLASS
{v,M) and VALUE(v,M)} for C' and b'.

Example.
BIND({z,u}, {{x,y}=1,{z,ul=2, {v w}i=3}) = 2,
CLASS{z,{{x,y}=1,{z,ul=2,{v,w}=3}) = {z,ul}.
VALUE(z, {{x,y}=1,{z,u}=2,{v,wl=3}) = 2,

111 UNIFICATION ALGORITHM

An initial configuration of our algorithm is
the form (R,M}, where R is a system of input equa-
tione. Without loss of generality, we can suppose
that 1) either right or left hand side of each
equation in R is a variable, 2} for each variahle
v occurring in R or M, there is a unique variable
clags C occurring in M such that v iz in C, and 3)

_the "undef" does not occur in R. Since our basic
transformations defined below conserve the proper-
tiesa, we can suppose that these three conditions
always hold.

Our uniflication processa terminates if and oniy
if the current R is empty, or FRONTIER operation
defined below returns "clash™, '"clash' means the
failure of the unification.

The primitive operations on Lrees{terms} in
the unification process are to compute the
"frontier" of two given terma and to test whether
the one given term "is covered with" the other one.

Definition: Let t and u be terms. FRONTIER ig the
function which satisfies the following conditions.

1) FRONTIER(t,u) = <t=u> if t or u is a varlable.

2) TFRONTIER{f(tl,t2,...,tr),f{ul,ul,...,ur))=
F14F2+. . .+Fr.
where r>=@, f 18 a funetor, for each i{l=<im<r],
Fi=FRONTIER{ti,ul) and Fi1 is not "clash", and
"+" 1g the concatenation operator for lists.

3) FRONTIER(t,u) = <>, 1.e.. empty list if t or u
16 "undef",

4) FRONTIER(t,u) = "clash" otherwise.

Example.
FRONTIER(£{1l,x),f{y,2)) = <lwy, xm=2>,
FPRONTIER(g(1),g(2)) = "clash”.

Definition, For two given terms, t and u, we say

t covers u if and omly 1f:

1) t is "undef" or

2} u 1ig not "undef™ and FRONTIER(t,u) =
<tl=yl,t2mv2,,.,,,tr=vr> for gome r>=f, where
for each 1 (l=<i=<r) vi is a variable or atomic
term.

Example.
f(g(1),2) covers f(x,y).
f(x,y) 1s covered with £(g(l),2).
f(x,g(y)) does not cover £{g(x},y).

Bemark. If a term tl is an instance of another
term t2, then tl covers t2. Therefore this rela-
Eion is a generalization of the instance relation.

Given FRONTIER(tl,t2}, the time complexity to test
the covering relation between ti and t2 is only
proportional te the length of the frontier.

Next, we will define basic tranaformations,
Suppose the configuration {(R,M) 1s given. The re~
sulting configuration (R',M') 18 defined as follows.

Let v=t or t=v be the top of R, where v 1a a
variable and t is a term. Although the R-component
of a configuration 18 used as either a stack or a
queue in the algorithm, it is treated as a set in
the following definition for brevity.

Definition. Let {R,M) and (R',M') be twe configu-
rations. We write (R,M)->(R',M') if gnd only 1if
one of the following conditions holds.

RULEl: t is a wvariable, CLASS(v,M)=CLASS(t, M), M'=
M, and R'=R-{v=t}, where "-" 1is the difference
operator for aets.

RULEZ: t 18 a wvariable, CLASS(v,M) is not CLASS
(t,M}, M'=(M={CLASS(v,M)=VALUE(v,M),CLASS(t,M)=
VALUE(t,M)}} U {C=g}, and

R'«(R={v=t}) U FRONTIER(VALUE(v,M),VALUE(t,M}),
C=CLASS{v,M) U CLASS(t,M}, and z is "undef" if hoth
VALUE(v,M) and VALUE(t,M) are "undef", otherwise
any of them which 18 nor "undef",

RULE3: t is not a variable, VALUE{v,M) is not
covered with t,

M'=(M-{CLASS(v,M}=VALUE(v M) }) U {CLASS(v,M)=t},
and R'=(R-{v=t}) U FRONTIER(t,VALUE(v,M)}.

RULE4: t 18 not a variable, VALUE(v,M) is covered
with t, M'=M and

R'={R—{w=t]}) U FRONTIER(t,VALUE{v,M)}.

Example.

RULEl: (<x=y>,{{x,y}=1 } -» (<>, {{x,y}=1]}

RULE2: (<x=y>,{{x}="undef",{yl=1}) => (<>, {{x,¥y}
=1}1)

RULE3: (<x=f(y}>,{{x,y}=f(£(x)}1} —> {<y=f(x)>,
Hx,yi=£(y) 1}

RULE4: (<x=f{f(x))>,{{x,¥I=f(y)}) — (<y=f(x}>,
{ix,¥}=i(v)

Algorithm.

Input data: a configuration, say (R@,Md).
Output data: "elash" or a set of multi-equa-
tions.

Method: @) B=:Rf and M=:MJ.

1) 1if R i@ empty then return M.

2) 4Aif (R,M)->(R’,M") for eome R' and M' then BR~:R’
and M=:M',
otherwise return "claseh".

3) gote 1. []

Example. Thie example shows that the relation "is

covered with" is essential for the termination of

unification processes.
(ex=f(y,£(g(y),x)),x=f(g(y),x}>,
[{x}="undef",{y}="undef"})

> {<x=f(g{y),x}>,

{{x}=f(y,£(g{y),x)), {y}="undef"}) {RULE4)}
->(<g(y) =y, x=f(g(y),x)>,

{{x}=£(g{y),x),{y}="undef"}) (RULE3)
-»(<x=f(g(y) ,x)>,

Hx}l=£(g(y),x), {y}=g{y) }) (RULE4)
=>(<y=y, xmx>,

({{x}-f(a(y).x}.{yl-s(r)}> {BRULE4)
—»(<>,

{{x}=£{g{y) %), {y}=g(v)) {RULE1,RULE1}

Rematk. It ls easy to check that 1f we do not re-
place the value in RULE3 above, the unification
process does not terminate.

Iv PROOF OF TERMINATION

In this section, we treat a system of equa-
tions as a “"queue" for convenience. Our proof for
"stack'" version is omitted here because it uses
similar techniques for the "queue" version and is
more lengthy.

Definition. We write (R1,M1)=>(R2,M2) 1i and only
if the following conditions hold: {R2,M2) is
obtained from {R1,Ml) by successive applications
af basic tranaformations n (>3} timea, where n is
the length of R1,

Example.
(<x=y,y=z>, ({x}=£(x), {y}=£(y) , {2}=f(2)]}) =>
(<xey,xez>, {{x,y,2}=f(x) D).

Lemma 1. If (R1,M)=>{R2,M) then TERM(R2} 15 a sub-
get of SUBTERM'(R1l}

Proof, From the definition of "=>", there exists
a series of configurations {(51,Ni);@#=<i~=<n)} such
that (S0,N0)->{81,Nl)->...=:(Sn,Nn}, where S@$=R1,
N@=M, Nn=M, and n is the lengrh of Rl.

Suppose there exlsts a term d in TERM{R2} but
net in SUBTERM'(R1}. Then, from the definition of
"=>" we can select an integer j, a variable v, a
term t, a variahle clags C, and a term b, satilafy-
ing all of the fellowing conditions:

1} l=<q=<n~1, the top of S} 1s either t=v or v=t,
2) v 1s in C, BIND{(C,M)=b, BIND{C,Nj)=b,

3) b is not in TERM(R1}, b is not covered with t,
4) d 1s in TERM(FRONTIER(t,b)).

From 2), and since b is not covered with t, BIND(C,
N{j+l)) must be t. From 3), BIND{C,Ni} is not b
for each 1 (}<i=<n). Since Nm=M, these imply that
BIND(C,M) is not b. This is a contradiction to 2}.
Therefore, TERM{R2) 1s a subset SUBTERM'(R1l). []

Ceorollary 2. There deoes not exist an infinite
sequences of configurations {((RL,M);i»=1} such that
(R1,M) => (RZ,M) =>

Proof. 1If the sequence exists, for any integer
i>=1, TERM(R{i+l}) i3 a subset of SUBTERM'(Ri}.
But, it is imposaible. []

Lemma 3. There doea not exist an infinite sequences
of configurations ({Ri,Mi);i>=1) such that all of
the following conditione heold:

1) (R1,Ml) =» {R2,M2} => ..., => (Rn,Mn) => ...,

2) for each k>=l and variable class C occurring in
Mk, thera exists such j (j>k) that BIND(C,M3) i=s
not BIND{C,Mk).

3) Mi's numbers of elements are equal to each other,
i.e. no application of rule RULEZ appear in the
sequence (i»=1),

Proof, From the infinite sequence abowve, we derive
a contradiction. From 2), for any k there exists
such j (k<i) that for any variable class C, the
cardinality of the set {ijk<i=<j, BIRD{C,Mi) is

noet BIND(C,M(i-1)}} 1@ &t least 2,

For each variable clams C occurring in the sequence,
let 1(C) be the maximal integer 1 {im<j} such that

K. Mukai 549

BIND{C,Mi) iE not BIND{C,Mj)}. From the condition
for 3, for each C, 1(C) must be greater than k, and
BIND{C,Mj} 4is in TERM(Ri(C}). Since for any i>k
TERM(Ri) 15 a subset of SUBTERM'{(Rk,Mk)}),BIND{C,M
is in SUBTERM' ({Rk,Mk))}.

By succesgsive spplications of this process, we can
build the sequence kl<k2<.,, such that TERM{{Rk({i+l),
Mk{i+1))} is a subset of SUBTERM'{{Bk{i),Mk(1))})
(1»=1). Thie is, as sesid before, impossible. []

Theorem 4.4. There does not exist an infinite se-
quence such that
(Rl,M1) => (R2,M2) =» ...

Proof. We can prove this by induction with regard
to the number of elements of M1,

=> (Rn,Mn) => ...

1} Suppeose that the number of elements of Ml is 1.
Because of the corpllary 1, there exisat no in-
teper k>=1 guch that Mk=M(k+1)=M{k+2)=....

On the other hand, the lemma 2 says that it 1o
{impossible for Mi to change infinitely many
times. So, the foundation 1z proved.

2) Suppose that the number of elements of Ml is
mt+l, and that the theorem holds for the sequence
such that the number of the variable classes of
the aequence is at most m.

If for some k>=1, the number of the elements of Mk
is lesa than that of M(k-1), then from the induection
hypothesis, the sequence (Bk,Mk)=>(R({k+1) ,M(k+1))
=»,,. s finjte, Then, the theorem holds in this
cage. Therefore, we suppose that the zet of all
variable classes occcurring in ML is {ndependent of
i {(i»=1).

We derive a contradiction from the existence of the
infinite sequence. For each i>=1, let Li be the
set of all the common multi-equations in Mj (j>=f}.
And let L be the union of all Li {i>=1). L is not
empty because of lemma 2, Fix integer k>=1 so that
for all j*>=k L 15 a sBubset of M].

From the definitions of L and the basic transforma-
tions, TERM(Ri} is a subset of SUBTERM'((Rk,Mk-L))
for any j*k. By a similar method used in lemma 2,
we can construct the infinite sequence of integers
k=<11<12<13<... such that TERM{(RL{i+1) M1{i+1)-L})
is a subset of SUBTERM'((R1(i),M1(1}-L)) (i>=1}.
But thie ia impossible, sc the theorem is proved.|[]

ACKNOWLEDGMENT

Kazuhire Fuchi, Director of ICOT Remearch Cen-

ter, and Toshio Yokoi, Chief of 3rd Labolatory, in-
spired me in this work. 1 also want to thank my
colleague, especially Dr. Tekashi Chikayama, for
thelr valuable comments.

REFERENCES

[1] Martelli, A., and Montanmari, U. An Efficient
Unification Algorithm, ACM Trans. on Program—
ming Lang. and Syst., Vol.&, No.2, April 1982.

[2] Colmerauer, A. Prolog and Infinite Trees.
Logle Programming, Academic Preas, 1982.

[3] Warren, D.H.D: Implementing Prolog — Compll=-
ing Predicate Logic Programs, Dept. of AI,
Univ, of Edinburgh Research Report 33&id, 1977,

