
"LOCAL": ALGORITHMIC CONTROL STRUCTURES FOR PROLOG

D. C. Dodson
A. L. Rector

Department of Community Health
Un ivers i ty of Nottingham Medical School

Queens Medical Centre
Nottingham NG7 2UH

U.K.

ABSTRACT II A GENERALIZED LOOP CONSTRUCT

In p rac t i ca l Prolog app l i ca t i ons , d i f f i c u l t
and opaque uses of control p r im i t i ves are of ten
unavoidable. To re l ieve these d i f f i c u l t i e s , a pre
l iminary set of h igh- leve l contro l predicates has
been developed. Two technical goals were achieved.
The f i r s t was to cast contro l f a c i l i t i e s found
desirable in conventional languages into a l og i c -
programming form. The second was to provide con-
venient h igh- leve l s t ruc tures for a l l the sor ts of
a lgor i thmic rout ines a Prolog clause might sensibly
perform. The a v a i l a b i l i t y of such s t ruc tures
should make de l i be ra te l y a lgor i thmic use of Prolog
respectable and may help win Prolog wider use.

I INTRODUCTION

Many Prolog users accept that Prolog programs
tend towards one of two extremes in a way that
corresponds to two d i f f e ren t sor ts of problem. On
the one hand, for many problems there are l o g i c a l l y
elegant so lu t ions in Prolog. These require l i t t l e
resort to " c u t " , " f a i l " and "repeat" beyond some
well s t ruc tured use of "cu t " in binding and
f i n a l i z i n g clauses. Prac t ica l app l i ca t i ons ,
however, o f ten involve many predicates which
display an a lgor i thmic f l avour , w i th opaque and
d i f f i c u l t uses of " c u t " , " f a l l " and " repeat " . These
d i f f i c u l t uses of the control p r im i t i ves severely
d isrupt the otherwise luc id self-documentat ion of
sensibly w r i t t e n Prolog. This is cos t l y , both In
comprehension time and induced e r ro rs . Regarding
control f a c i l i t i e s , then, we would concur w i th
the content ion of (Hardy 1982) that Prolog o f f e rs
only low level p r im i t i ves comparable to the
assembler level of conventional programming.

We assume that a much higher level of logic
programming remains a r e l a t i v e l y d is tan t goa l .
Meanwhile, a lgor i thmic programming s t ruc tures
are desirable both in p r i n c i p l e and in p rac t i ce . In
p r i n c i p l e , even at the program s p e c i f i c a t i o n l e v e l ,
a lgor i thmic content Is o f ten Important. This can
a r i s e , for example, due to the r e l a t i o n of
algor i thms to time complexity. Wel l -s t ruc tu red
a lgor i thmic programming can thus have i n t r i n s i c
self-documentary v i r t u e . With regard to p rac t i ce ,
programmers rare ly have the opportuni ty to r e w r i t e ,
In log ic programming s t y l e , rout ines already well
understood In a lgor i thmic terms, and f requent ly
there are no elegant Prolog formulat ions ava i l ab le .

There is thus a need to add to Prolog the
means of we l l - s t r uc tu red a lgor i thmic expression.
We have been pleased to f i nd how extensively the
desirable f a c i l i t i e s from conventional languages
coutd be incorporated without damaging Pro log.
This report presents our f i r s t implementation of
the "Logal" cont ro l s t ruc tu res , which run on the
PDP-11 UNIX Prolog system, version NU7, as sketched
in appendix F of (Clocksln and Mellish 1981).

Our o f f e r i n g comprises two programming
const ruc ts , a condi t ional and a general ized loop.
The loop is the more innovative and important of
these. It fo l lows the pract ice of languages such
as ALG0L68 in having a "bu i l d ing block" syntax for
loops. The fo l low ing f ixed-order sequence of four
opt ional " bu i l d i ng blocks" or "phrases" is used.

Each of these phrases consists of an appropriate
keyword fol lowed by a predicate to be c a l l e d , for
example "whi le read_l ine(L) ' ' or " u n t i l X=Y". We
have allowed ourselves two a r b i t r a r y r e s t r i c t i o n s
on the se lec t ion of phrases. F i r s t , a loop cannot
consist of a while-phrase or un t i l -phrase alone.
Second, no loop can include both a while-phrase
and an un t i l - ph rase . Whatever se lec t ion of phrases
is made for a given loop, the phrases are executed
in the order in which they appear, r e p e t i t i v e l y ,
u n t i l a terminat ion cond i t ion ar ises . Adaptations
of the conventional loop necessary to su i t the
Prolog environment are de ta i led below. D i s t i n c t i v e
keywords are used to signal modif ied semantics.

Our keywords are declared as operators so
that the phrases can be concatenated wi th a minimum
of parentheses. This technique makes an addi t iona l
mandatory c los ing keyword useful to avoid ambiguity
and help catch syntax e r ro rs . We use "od" in t h i s
ro le for loops. Relying on ava i lab le syntac t ic
f a c i l i t i e s has meant that parentheses are s t i l l
required around arguments whose top level operator
has a p r i o r i t y equal or greater than that of the
keywords, as in the fo l l ow ing .

We have not I n i t i a l l y provided for-phrases
generating number ser ies . Rather, a f te r the s t y l e
of "every" in Icon (Griswold e t . a l . 1981) a ser ies
of outcomes is generated by c a l l i n g a predicate and
then repeatedly backtracking and resa t i s f y i ng it
u n t i l I t f a i l s . To signal t h i s we w r i t e the f o r -
phrase In the form " f o r each <term>". " f o r each"
conveys the not ion " for -each Ins tan t la t lon~o f "
concisely and n a t u r a l l y . Generating ar i thmet ic
ser ies is reasonably easy wi th th i s arrangement.

The next adaptat ion Is fundamental to the
semantics of loops In the Prolog environment.
It concerns the act ion to be taken i f , on any cycle
of i t e r a t i o n , the main body of the loop (I . e . the
do-phrase) should f a l l . Two a l te rna t i ves have been
provided. Loops wi th do-phrases Introduced by the
keyword "do any" succeed regardless of any cycles
of I t e r a t i o n in which the i r body f a l l s . Loops w i th

D. Dodson and A. Rector 537

do-phrases introduced by the keyword "do one",
however, f a i l immediately should the i r body once
f a l l . For example, i f the predicate:

for_each ru!e(R)
do_one (t ranslate(R,RT), store(RT)) od

succeeds, then for each rule a t rans la t i on has
been found and stored. "for_each G do_one P od"
in fact equivalent to the well known construct
"not (G, not P)". The "do_one" form is in fact
the general case, as "do_any X" is equivalent to
"do one (X ; true)". The "do any" opt ion is
provided for convenience and e f f i c i ency . Loops
which include a "do_one" phrase and a "wh i le " or
" u n t i l " phrase Incur overheads in d i s t i ngu ish ing
between two modes of terminat ion, whereas the
corresponding "do_any" loops do not.

The syntact ic l im i t a t i ons of the Prolog
in te rpre ters we use require a f i n a l adaptat ion.
Special treatment is required for phrases which are
sometimes but not always the f i r s t phrase of a
loop. For instance, when a for-phrase precedes a
do-phrase, the do-phrase is not the f i r s t phrase in
a loop, thus i t s f i r s t keyword has to be a dyadic
i n f i x operator. When a do-phrase is the f i r s t
phrase in a loop, however, i t s f i r s t keyword must
be a monadic p re f i x operator. This in turn requires
the use of d i s t i n c t keywords. For tunate ly , when a
loop begins wi th a do phrase, It is natural to say
"repeat" instead of "do" , as in Pascal. L ikewise,
we use "repeat one" instead of "do_one" and
"repeat_any" instead of "do_any" in th i s context .
This produces s t ructures such as the fo l l ow ing .

repeat_one P u n t i l U od
repeat_any P od

Neither for-phrases nor unt i l -phrases can appear
in both monadic and dyadic contexts, leaving the
case of the whi le-phrase. At the s ta r t of a loop,
we Introduce a while-phrase wi th p la in " w h i l e " ,
but use " w h l l e _ s t i l l " otherwise, as shown below.

whi le W do_any P od
for_each G~whlle_still W do_one P od

The complete Implementation of the general ized
loop Is given In Appendix I. This includes a clause
for each format of loop that can be constructed
using the above ru les . Although there are 15 such
clauses at the top l e v e l , th i s does not amount to a
great deal of code. However, much of t h i s code is
excruc ia t ing ly d i f f i c u l t to wr i t e and read,
under l in ing the ergonomic d i f f i c u l t i e s presented
by the control p r i m i t i v e s . The fo l low ing r e l a t i v e l y
simple case i l l u s t r a t e s something of t h i s .

repeat_one P u n t i l U od :- I,
repeat,
de tva l (P,V) , /I set V to success of P 17
(not V ; determine(U)),
I, V, I. /I whether the loop succeeds 17

where

determlne(X) : - c a l l t o (X) , I . / ! a ca l l that
/I can ' t be backtracked into from outside 17

de tva l (X , t rue) : - c a l l t o (X) ; I . / I ca l l X *17
d e t v a l (X , f a l I) : - ! . / I " d e t e r m i n a t e * " and

/I advise whether it succeeded 17

ca l l t o (X) : - X. / I un l ike the system " c a l l "
/ I pred icate, a real ca l l to f a l l back
/ I to In case X executes " I , f a l l " . * /

This works as fo l lows , "repeat" always succeeds, so

every time the loop is to be repeated, control w i l l
backtrack to th is point and work forwards again,
"de tva l " is then used to ca l l P and according to
whether or not P succeeds, set V to true or f a l l .
Now, provided V=true, a ca l l w i l l be made to U. If
e i ther V = f a i l , or V=true and the ca l l to U suc
ceeds, the loop must terminate. A l l th is Is handled
by (not V ; determined!)). If t h i s f a l l s , contro l
backtracks to the repeat for the next I t e r a t i o n .
If it succeeds, a cut is then passed which throws
away the backtrack h is to ry of the ca l l to the loop.
The f i n a l ca l l to V f a i l s the loop if the body of
the loop, P, f a i l e d .

In general , var iab le bindings made In a phrase
which succeeds remain in scope for a l l subsequent
phrases w i t h i n a cyc le . In the clause above, for
Instance, "de tva l (P ,V) , (not V ; determlne(U))"
ensures that var iab le bindings from successful ly
c a l l i n g P remain in scope when c a l l i n g U. Wr i t ing
"(not P ; determlne(U))" would not achieve t h i s .
At the end of each cyc le , a l l var iab le bindings
are undone ready for a fu r ther cyc le , unless
I t e r a t i o n is terminated by a while-phrase or
un t I l -ph rase . Af ter terminat ion by a while-phrase
or un t I l - ph rase , a l l bindings made in the last
i t e r a t i o n remain in force. These rules are qui te
na tu ra l ; they were formulated only a f te r we had
explo i ted them for some time. When not requi red,
var iab le bindings introduced by a ca l l are easi ly
discarded by surrounding the ca l l w i th a double
"no t " . (Variable b indings, or I ns tan t i a t i ons ,
represent existence. For any set of va r iab les ,
the i r concurrent i ns tan t ia t i ons (those cur ren t l y
in scope) are things of which the successful ly
ca l led predicates mentioning them are t rue .)

I l l THE CONDITIONAL CONSTRUCT

Apart from loops, two other h igh- leve l
intramodular contro l s t ructures are convent ional ly
recognised, the condi t ional and the case s t r uc tu re .
A case s t ruc tu re suggests a d i rec t access contro l
step. Such a step cannot be programmed w i t h i n a
Prolog clause, though some in te rpre ters provide it
in the form of indexed clause se lec t i on . We use the
fo l lowing predicate for cond i t iona ls . I t is an
extension of a "cond" predicate described in (Bundy
and We I ham 1977). The operator declarat ions
i l l u s t r a t e the technique used In both const ruc ts .

Recursive app l i ca t i on of the else if any opt ion
al lows case- l i ke s t ruc tu res . Note~that backtracking
through antecedents is prevented wh i l s t backtrack-
ing through selected consequents is unhindered.

IV EXAMPLE OF USAGE

This example Is chosen to I l l u s t r a t e recursive
app l i ca t ion of the loop format discussed in de ta i l
above, rather than for elegance or even real ism. It
repeatedly performs a " consu l t a t i on " . Af ter each
consu l ta t ion It repeatedly asks the user whether

538 D. Dodson and A. Rector

V CONCLUSIONS

Extensions to the syntac t ic f a c i l i t i e s of
Prolog in te rp re te rs would al low ce r ta in Improve
ments and might be of wider In te res t . If binary
p re f i x operators were al lowed, keywords could be
defined as " f xy " operators of equal dominance, and
d i s t i n c t i o n s such as that made between "wh i le " and
" w h i l e _ s t i I l " could be dropped. Some arrangement to
e l iminate the remaining uses of parentheses around
control predicate arguments may also be p r a c t i c a l .

The general ized loop could be fu r ther re f i ned .
The opt ion of w r i t i n g for-phrases generating number
ser ies in the conventional manner would be an added
convenience. More r a d i c a l l y , it may be bet ter to
extend the the bu i ld ing block approach to al low an
a r b i t r a r y sequence of do-phrases and loop
terminat ion phrases, op t i ona l l y preceded by a
for -phrase, using recursive d e f i n i t i o n along the
l ines employed here in the condi t ional const ruc t .

We have i d e n t i f i e d the sor ts of intra-modular
cont ro l constructs that can use fu l l y be programmed
In Prolog and developed s t ruc tured ways of w r i t i n g
them. The two constructs have been in regular use
in subs tan t i a l l y the form presented since last
August. Appendix I defines the current implement
a t i o n . We f i n d the Logal constructs of great value
In developing medical decision support systems. We
hope they w i l l make the mixed use of a lgor i thmic
and log ic programming w i t h i n Prolog more open and
respectable, and help gain users fo r whom the
language might otherwise seem too exo t i c . We would
be in terested to know of possible improvements.

ACKNOWLEDGMENTS

Special thanks are o f fered to a l l con t r ibu to rs
to the excel lent UNIX Implementation of Prolog at
Edinburgh and to J. B. Brooke whose c r i t i c i s m of
Prolog provided the st imulus fo r t h i s work.

