"LOCAL": ALGORITHMIC CONTROL STRUCTURES FOR PROLOG

D. C.
A L

Dodson
Rector

Department of Community Health
University of Nottingham Medical School
Queens Medical Centre
Nottingham NG7 2UH
UK.

ABSTRACT

In practical Prolog applications, difficult
and opaque uses of control primitives are often
unavoidable. To relieve these difficulties, a pre-
liminary set of high-level control predicates has
been developed. Two technical goals were achieved.
The first was to cast control facilities found
desirable in conventional languages into a logic-
programming form. The second was to provide con-
venient high-level structures for all the sorts of
algorithmic routines a Prolog clause might sensibly
perform. The availability of such structures
should make deliberately algorithmic use of Prolog
respectable and may help win Prolog wider use.

| INTRODUCTION

Many Prolog users accept that Prolog programs
tend towards one of two extremes in a way that
corresponds to two different sorts of problem. On
the one hand, for many problems there are logically
elegant solutions in Prolog. These require little
resort to "cut", "fail" and "repeat" beyond some
well structured use of "cut" in binding and
finalizing clauses. Practical applications,
however, often involve many predicates which
display an algorithmic flavour, with opaque and
difficult uses of "cut", "fall" and "repeat". These
difficult uses of the control primitives severely
disrupt the otherwise lucid self-documentation of
sensibly written Prolog. This is costly, both In
comprehension time and induced errors. Regarding
control facilities, then, we would concur with
the contention of (Hardy 1982) that Prolog offers
only low level primitives comparable to the
assembler level of conventional programming.

We assume that a much higher level of logic
programming remains a relatively distant goal.
Meanwhile, algorithmic programming structures
are desirable both in principle and in practice. In
principle, even at the program specification level,
algorithmic content Is often Important. This can
arise, for example, due to the relation of
algorithms to time complexity. Well-structured
algorithmic programming can thus have intrinsic
self-documentary virtue. With regard to practice,
programmers rarely have the opportunity to rewrite,
In logic programming style, routines already well
understood In algorithmic terms, and frequently
there are no elegant Prolog formulations available.

There is thus a need to add to Prolog the
means of well-structured algorithmic expression.
We have been pleased to find how extensively the
desirable facilities from conventional languages
coutd be incorporated without damaging Prolog.

This report presents our first implementation of
the "Logal" control structures, which run on the
PDP-11 UNIX Prolog system, version NU7, as sketched
in appendix F of (Clocksln and Mellish 1981).

I A GENERALIZED LOOP CONSTRUCT

Our offering comprises two programming
constructs, a conditional and a generalized loop.
The loop is the more innovative and important of
these. It follows the practice of languages such
as ALGOL68 in having a "building block" syntax for
loops. The following fixed-order sequence of four
optional "building blocks" or "phrases" is used.

(for-phrase?
¢while-phrase>
(do-phrase>
<untll-phrase)

Cgenerator of Instancesl
Cexit test before main bodyl
["main body” of taopl

[exit test after main bodyl

Each of these phrases consists of an appropriate
keyword followed by a predicate to be called, for
example "while read_line(L)" or "until X=Y". We
have allowed ourselves two arbitrary restrictions
on the selection of phrases. First, a loop cannot
consist of a while-phrase or until-phrase alone.
Second, no loop can include both a while-phrase
and an until-phrase. Whatever selection of phrases
is made for a given loop, the phrases are executed
in the order in which they appear, repetitively,
until a termination condition arises. Adaptations
of the conventional loop necessary to suit the
Prolog environment are detailed below. Distinctive
keywords are used to signal modified semantics.

Our keywords are declared as operators so
that the phrases can be concatenated with a minimum
of parentheses. This technique makes an additional
mandatory closing keyword useful to avoid ambiguity
and help catch syntax errors. We use "od" in this
role for loops. Relying on available syntactic
facilities has meant that parentheses are still
required around arguments whose top level operator
has a priority equal or greater than that of the
keywords, as in the following.

do { pi, p2 ) until p3 od
do { do gt until p2 od ) untll p3 od

We have not Initially provided for-phrases
generating number series. Rather, after the style
of "every" in Icon (Griswold et. al. 1981) a series
of outcomes is generated by calling a predicate and
then repeatedly backtracking and resatisfying it
until It fails. To signal this we write the for-
phrase In the form "for each <term>". "for each"
conveys the notion "for-each Instantlatlon~of"
concisely and naturally. Generating arithmetic
series is reasonably easy with this arrangement.

The next adaptation Is fundamental to the
semantics of loops In the Prolog environment.
It concerns the action to be taken if, on any cycle
of iteration, the main body of the loop (l.e. the
do-phrase) should fall. Two alternatives have been
provided. Loops with do-phrases Introduced by the
keyword "do any" succeed regardless of any cycles
of Iteration in which their body falls. Loops with



do-phrases introduced by the keyword "do one",
however, fail immediately should their body once
fall. For example, if the predicate:

for_each rule(R)
do_one ( translate(R,RT), store(RT) ) od

succeeds, then for each rule a translation has
been found and stored. "for_each G do_one P od"
in fact equivalent to the well known construct
"not ( G, not P )". The "do_one" form is in fact
the general case, as "do_any X" is equivalent to
"do one ( X ; true )". The "do any" option is
provided for convenience and efficiency. Loops
which include a "do_one" phrase and a "while" or
"until" phrase Incur overheads in distinguishing
between two modes of termination, whereas the
corresponding "do_any" loops do not.

The syntactic limitations of the Prolog
interpreters we use require a final adaptation.
Special treatment is required for phrases which are
sometimes but not always the first phrase of a
loop. For instance, when a for-phrase precedes a
do-phrase, the do-phrase is not the first phrase in
a loop, thus its first keyword has to be a dyadic
infix operator. When a do-phrase is the first
phrase in a loop, however, its first keyword must
be a monadic prefix operator. This in turn requires
the use of distinct keywords. Fortunately, when a
loop begins with a do phrase, It is natural to say
"repeat" instead of "do", as in Pascal. Likewise,
we use "repeat one" instead of "do_one" and
"repeat_any" instead of "do_any" in this context.
This produces structures such as the following.

repeat_one P until U od
repeat_any P od

Neither for-phrases nor until-phrases can appear
in both monadic and dyadic contexts, leaving the
case of the while-phrase. At the start of a loop,
we Introduce a while-phrase with plain "while",

but use "whlle_still" otherwise, as shown below.

while W do_any P od
for_each G~whlle_still W do_one P od

The complete Implementation of the generalized
loop Is given In Appendix |. This includes a clause
for each format of loop that can be constructed
using the above rules. Although there are 15 such
clauses at the top level, this does not amount to a
great deal of code. However, much of this code is
excruciatingly difficult to write and read,
underlining the ergonomic difficulties presented
by the control primitives. The following relatively
simple case illustrates something of this.

repeat_one P until U od :- |,
repeat,
detval(P,V), /l set V to success of P 17
not V ; determine(U) ,
l, VvV, L /I whether the loop succeeds 17

where

determine(X) :- callto(X), I. /! a call that
/I can't be backtracked into from outside 17

detval(X,true) :- callto(X). I. /I call X *17
detval(X,fall) :- 1. /I "determinate*" and
/1 advise whether it succeeded 17

callto(X) :- X. /I unlike the system "call"
/I predicate, a real call to fall back
/1 to In case X executes "I, fall". */

This works as follows, "repeat" always succeeds, so

D. Dodson and A. Rector 537

every time the loop is to be repeated, control will
backtrack to this point and work forwards again,
"detval" is then used to call P and according to
whether or not P succeeds, set V to true or fall.
Now, provided V=true, a call will be made to U. If
either V=fail, or V=true and the call to U suc-
ceeds, the loop must terminate. All this Is handled
by ( not V ; determined!) ). If this falls, control
backtracks to the repeat for the next Iteration.

If it succeeds, a cut is then passed which throws
away the backtrack history of the call to the loop.
The final call to V fails the loop if the body of
the loop, P, failed.

In general, variable bindings made In a phrase
which succeeds remain in scope for all subsequent
phrases within a cycle. In the clause above, for
Instance, "detval(P,V), ( not V ; determlne(U) )"
ensures that variable bindings from successfully
calling P remain in scope when calling U. Writing
"( not P ; determlne(U) )" would not achieve this.
At the end of each cycle, all variable bindings
are undone ready for a further cycle, unless
Iteration is terminated by a while-phrase or
untll-phrase. After termination by a while-phrase
or untll-phrase, all bindings made in the last
iteration remain in force. These rules are quite
natural; they were formulated only after we had
exploited them for some time. When not required,
variable bindings introduced by a call are easily
discarded by surrounding the call with a double
"not". (Variable bindings, or Instantiations,
represent existence. For any set of variables,
their concurrent instantiations (those currently
in scope) are things of which the successfully
called predicates mentioning them are true.)

Il THE CONDITIONAL CONSTRUCT

Apart from loops, two other high-level
intramodular control structures are conventionally
recognised, the conditional and the case structure.
A case structure suggests a direct access control
step. Such a step cannot be programmed within a
Prolog clause, though some interpreters provide it
in the form of indexed clause selection. We use the
following predicate for conditionals. It is an
extension of a "cond" predicate described in (Bundy
and Welham 1977). The operator declarations
illustrate the technique used In both constructs.

7~ op(150,fx, | f_any). 7- op(188,xf,fl).

7- op(i4b,xfy,then), 7- opt1d5,xfx,else).

7- optlab,xfy,eise_Lf_any},

/% 145..180 are Increasing operator dominances
between those of ~“not” and *,”. &/

If_any X then Y slse_If_any Z fi :-
1, , b, X if_any Z f1 ).
if_any X then Y else 2 fi
I, ¢ %X 1,Y
11_any X then ¥ f1 ;-

¥
;2 ).

I, ¢ X, 1,Y ; true }.
If_any X :- bad_format{|f_any).

Recursive application of the else if any option
allows case-like structures. Note~that backtracking
through antecedents is prevented whilst backtrack-
ing through selected consequents is unhindered.

IV EXAMPLE OF USAGE

This example Is chosen to Illustrate recursive
application of the loop format discussed in detail
above, rather than for elegance or even realism. It
repeatedly performs a "consultation". After each
consultation It repeatedly asks the user whether



538 D. Dodson and A. Rector

anpther |s desired until |t gets a valid reply.
“read_line” obtalns a line of input and returns
it as a list of symbals.

toploop -
repeat_one
{
consultation, /B whatever this Is %/
writei‘Care far another consultation?”)
}
until
t
/% tirst ensure 3 valld response: ¥/
repeat_one read_LIna([H]_1) /E use first
/% word of uSer’'s response K/
unt |
{
tf_any not [ pos_ans{H} ; neg_ansi{H) )
Then

t
writel'Sorry, would you like '},
vritel{ 'another consultation?’), nl,
write{‘say y (yes) or n (no): '},
fail
H
fi
i
od ,
neg_ans{H} /& finish |f neg.
1
od,

response: ¥/

pos_ans(y).
neg_ansin},

pos_ansiyes).
neg_ans(no) .

VvV CONCLUSIONS

Extensions to the syntactic facilities of
Prolog interpreters would allow certain Improve-
ments and might be of wider Interest. If binary
prefix operators were allowed, keywords could be
defined as "fxy" operators of equal dominance, and
distinctions such as that made between "while" and
"while_still" could be dropped. Some arrangement to
eliminate the remaining uses of parentheses around
control predicate arguments may also be practical.

The generalized loop could be further refined.
The option of writing for-phrases generating number
series in the conventional manner would be an added
convenience. More radically, it may be better to
extend the the building block approach to allow an
arbitrary sequence of do-phrases and loop
termination phrases, optionally preceded by a
for-phrase, using recursive definition along the
lines employed here in the conditional construct.

We have identified the sorts of intra-modular
control constructs that can usefully be programmed
In Prolog and developed structured ways of writing
them. The two constructs have been in regular use
in substantially the form presented since last
August. Appendix | defines the current implement-
ation. We find the Logal constructs of great value
In developing medical decision support systems. We
hope they will make the mixed use of algorithmic
and logic programming within Prolog more open and
respectable, and help gain users for whom the
language might otherwise seem too exotic. We would
be interested to know of possible improvements.

ACKNOWLEDGVENTS

Special thanks are offered to all contributors
to the excellent UNIX Implementation of Prolog at
Edinburgh and to J. B. Brooke whose criticism of
Prolog provided the stimulus for this work.

APPENDIX 1

Togather with the detval, determine, callto,
and 1f_any predicates given above, the folloving
predicates for the generatized loop and for error
detection complete the Logal package.

?-op{150,fx,for_each),
T-op (150, fx,repeat_any).
7-optidb,xf,o0).
T-opl147 afx while_stiil),
T-op(145,xfy,do_any!}.

7-pp {150, fx,while),
?-op{150,fx,repeat_one).

T-pp{ldb, xfx,untll),
7-opi145,xfy, do_one) .

for_sach G while_sti{l W do_one P ad :- |,
for_each_whlle_do_x{&,W,P), |, do_true, I,
for_each G while_stitT W do any Pod -1,

TG, detvaliw,¥), ( not ¥V7; determinetP), fait )
; true ), t,

for_each G uhlle_still Wod - I,
t G, not W ; true !, I.

for_each G do_one P until U od :- |,

( G, detval(P,v}, If_any not ¥V then
asserti{do_one_failed) else determine(U) fi
; true }, !, do_true, .
for_each G do_any P until U eod :- 1,
{ G, detval(P,_), determinatt)) true ¥, |,
for_each G do_one P od :- !, nat { 6, not P 1.

for_each G do_any P od :- |,
{ G, determineiP), fail ; true }, |,
for_each G until U od :- 1,
{ G, determinedtdy ; true 3, |,
for_each G od :- {1, { G, fall ; true ), t.
for_each X :- bad_formati{for_each).
while W do_any P od :- |, repeat, detvaliWw,v),
{ not v ; determinei{P), fall J, 1.
while W dec one P od :- |,

for_each_while_do_xi{repeat,w,P), |, do_true, |.
while X :- bad_formatiwhile).
repedt_one P untlil U od :- !, repeat, detval (P, V),
{ not v ; determineil’ 3, |, V,
repeat_one X od :- t, repeat, not X, |, fall,
repeat_one X :- bad_format{repsat_qne’). '

replat any P untii U oo :- |, repeat, detval(P,Vv),

not v ; determinetU) 3, t. /Rrule exception¥/
r!pait_iny P od :- 1, repeat, notiP), 1. /& do. &/
repeat_any X :- bad_formatirepeat_any}.

for_each_while_do_xi(8,W,P} :- G, detval{w, v},
t not v ; not™P, assertldo one failedg) ; fall 1.
for_each_white_do_xi{X,Y,Z).

do_true :- not retractido_one_falled}.
= nl, write{("bad "), wrlteiX),

vrite{’' format'}, bug.
bug :- nt, backtrace, break.

bad_format (X}

REFERENCES

[11 S. Hardr "Languages for Knowiedge Based
Systems®. Verbal presentation at B. C. S,
Expert Systems 82 Conference, London, 14/9/82,

[2] Clocksin W, F. and Mellish . S. "Programming
In Prolog”. Springer-variag, New York 1981,

€3} R, E. Griswald et, al. “Generators In Icon™.
A, C. M. Transactlons on Prograsming Languages
and Systems 3:2 (April 1981) 144-1b1.

[41 Bundy, A. and Waiham, B. "Utility Proceadures
In Prolog™. 0.A.1I. Occaslonal Paper No. 9,
Dept, of A.1., University of Edinburgh, 1977,



