QUTE: A PROLOG/LISP TYPE LANGUAGE FOR LOGIC PROGRAMMING

Masahiko Sato
Takafumi Sakurai

Department of Information Science, Faculty of Science
University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, JAPAN

ABSTRACT

A new Prolog/Lisp type programming language
called Qute is introduced. Qute computes (partial)
recursive functions on the domain S of symbolic
expressions in the sense of Sato[3], Sato and Hagiya[4].

Qute amalgamates Prolog and Lisp in a natural
way. Any expression that is meaningful to Qute is
either a Prolog expression or a Lisp expression and a
Prolog (Lisp) expression is handled by the Prolog
(Lisp, resp.) part of Qute. Moreover, the Prolog-part
and the Lisp-part calls each other recursively.

Compared with the traditional Lisp symbolic
expressions, our symbolic expressions are mathemati-
cally much neater and yet constitute a richer domain.
Qute is a theoretically well-founded language defined
on this domain of symbolic expressions.

Many interesting features of Qute are described in
this paper.

Qute has been implemented on VAX/UNIX and is
used to develop a programming system for proving pro-
perties of our domain of symbolic expressions.

0. Introduction

In this paper, we introduce a new Prolog/Lisp type
programming language called Qute that is designed to
compute (partial) recursive functions on the domain S
of symbolic expressions in the sense of Sato [3], Sato
and Hagiya[4].

Since Qute combines the features of Prolog and
Lisp quite naturally, it provides a comfortable environ-
ment for developing programs interactively. Users of
Qute can not only enjoy both Prolog and Lisp style pro-
gramming but also combine them in a unique way.

To be more precise, any expression that is mean-
ingful to Qute is either a Prolog expression or a Lisp
expression. A Prolog expression may contain Lisp
expressions as its subexpressions and conversely a Lisp
expression may contain Prolog expressions as its subex-
pressions. Prolog (Lisp) expression is handled by the
Prolog (Lisp, resp.) part of Qute. In this way, the
Prolog-part naturally contains the Lisp-part and the
Lisp-part contains the Prolog-part.

This paper is based on the result of activities of
working groups for the Fifth Generation Computer
Systems Projects.

Another characteristic feature of Qute is that, like
Lisp but unlike Prolog, symbolic expressions play the
double role of data and programs. It is therefore possi-
ble to write a simple metacircular interpreter of Qute by
Qute itself. In fact, we can write the interpreter using
only the Prolog-part of Qute. The interpreter of Qute
can be defined formally by inductive definitions as we
did for Hyperlisp[3]. This makes Qute a theoretically
well-founded language. In this paper, however, due
partly to the limitation of space, we will describe the
semantics of Qute rather informally.

LOGLISP[I] takes a similar approach towards
combination of Prolog and Lisp, but our concern
centers on formalism which we slightly mentioned
above. Therefore, we designed Qute so that programs
can be naturally regarded as symbolic expressions. (As
is explained later, we regard a 'variable' as a symbolic
expression unlike usual Prolog.)

Qute has been implemented on VAX/UNIX at the
Computer Centre of the University of Tokyo. The
language is used to develop a programming system for
proving properties of our domain of symbolic expres-
sions. Properties of Qute will be expressed and verified
in the system. See Sakurai[2] for more details of the
project.

In the rest of the paper, we first review our
domain S briefly and then describe the syntax and
semantics of Qute. Many interesting features of the
language will be described along the way.

1. Symbolic Expression

1.1. definition of sexp

Symbolic expressions (sexps, for short) are con-
structed by the following clauses:

1. 0Ois asexp.
2. Ifs and t are sexps then snoc(s, t) is a sexp.

3. If s and t are sexps and at least one of them is not
0 then cons(s, t) is a sexp.

All the sexps are constructed only by means of the
iterated applications of the above three clauses, and
sexps constructed differently are distinct. We denote
the set of all the sexps by S. Note that snoc is a total
function on SxS while cons is partial since it is
undefined for the argument (O, 0). We make cons
total by stipulating that cons(0, 0) - 0. We also put
snoc(0, 0) - 1.

508 M. Sato and T. Sakurai

We denote the image of the function cons by M
and that of smoc by A, so that we have two bijective
functions:

cons: Sx8—M
snoc: SxS—A

Moreover, we have S = MUA and MNA = ¢; ie., §
satisfies the domain equation

S = 8x8 + 5x8§

Elements in M are called molecules and those in A are
called atoms. By the above discussion, we can define
total functions car and ¢dr on S by the equations

car(cons(x,y}) = car(snoc(x,y}) = x
cdrlcons(x,y)) = cdrisnoc(x,y)) = y

1.2. dot notation and list notation

We introduce dot noiation and list notation as
notations for sexps. A sexp is also called a fist when it
is written in dot notation or list notation.

[x . y] = snoctx.y)
(x . y) = cons(x,y)
[. x]=x
SERRTE A 1 Ll T o SRR A Y)
['tla Y Xy -{xls "'axn'ol
(.x)=x
O m s Xy o Xg) = (xq . (g ooy X))
(xy, * o x)={x;, -, x, .0
e =0

A list which begins with (is a cons list and a list
which begins with [is a smoc list. (. x) is a cons list
and [x] is a snoc list, though they denote the same
sexp.

1.3. name

Let L be the set of ASCII graphic characters. We
define a function p : L—A by using 7 bit ASCII codes.
We explain by exampies.

pla) = [I, 1000011
p(A) = [1,0,0,0,0,0, 1)
p(1) =10,1,1,0,0,0, 1]
p(*) -[0.1.0, 1,0,1,0]

Note that the ASCII code of ‘a’ is 1100001 in binary.

A name is a string of alphanumeric characters
whose length is longer than 1 and which begins with a
lowercase.

A name denotes a sexp as follows:

Let n = {4y - - - I, be 8 name, then # denotes

[pﬂl), o ,pﬂg)]

2. The Lisp-part of Qute

The top level read routine of Qute reads in an
expression and processes il. An expression is either a
Lisp expression or a Prolog expression. A Lisp (Pro-
log) expression will be processed by the Lisp (Prolog,
resp.) part of Qute. We will explain the Lisp-part of
Qute in this section. Evaluation mechanism of Lisp

expressions in Qute mostly follows that of usual Lisp.
However, our treatment of variables and function appli-
cations radically differs from usual Lisp.

We give some examples in 2.1, give informal
explanation of eval in 2.2-2.6 and summarize definition
of eval in 2.7.

2.1. examples
(LD 0

Ly [ap le, orangel;
Fpple orarlge]
(L3) > cons(X,Y) = (X.Y)
cons defined
(L4) cons(apple, orange);
= (apple . orange)
(LS} > snoc(X,Y) = [X.Y];
snoc defined
(L6) cons(apple orange));
= (X, cons (apple, orange)]
)] [cons(lefl right), X, \!Y "tsnoc(left, right)};
- lcons(lcft nght) LAY, left . nghlﬁ
(L8) > car((X. = X;
car deﬁned
(L9 > cdr({X.Y)) =Y,
cdr defined
(L10} car(s?toc(left, right));
= |e
{L11) > atomn{Z = (X . Y)) = eq(Z. [X.Y]:
atom defined
(L12) eq(ilpple, orange);

{L13) eq(gpple, apple);
{L14) ato{r)n(snoc(app]e, orange));

(L15) > append(X = (X1 .X2}, Y)
= Cond[eq(X, 0) — .
0 —> {X1 . append{X2, Y)} I;
append defined
(L16) append([aa, bbl lcc dd, eel);

= [aa, bb, cc eel

(L17) > apply(F, x’) := (APPLY, [F . X]);
apply deﬁned

(L18) apply(cons, {lisp, prolegl);
(lisp . prolog)

(L19) > and{. x = (x]1.x2))
= ‘Cond[eq('/x, 0) —> 0,
/x1 => Andl. /x2]};
and defined
(L.20) Ang[eq(aa, aa), 0];

2.2. constant and special sexp
A molecule whose car-part is

[[0') l| 01 l| Os 1| 0]]9 (- (‘)])
fl1,0,1,1,1,1,0]l, (= [p)D
[[0| lv 01 0; 1, 1| lnl (- (')])
fl1,1,0,0,0,0, 0], (= [p(")D
([1,0,1,1,1,0,0 or (= (>)])
ffo,1,0,1,1,1,1]] (= [p(/OD

is called a special sexp. We use VAR, QUOTE,
QQUOTE, ESC, EVAL respectively to denote the
above atoms. A sexp which does not contain a special
sexp as its sub-sexp is called a constant sexp or simply a
constant.

We now explain the function eval that is used to
evaluate Lisp expressions. The function eval is defined
so that it preserves cons and snoc for non-special sexps
and hence it becomes an identity function on constants.
Therefore, we can make use of snoc (and cons which
satisfies (r3)) as a pattern constructor. This advantage
comes from the fact that we have two constructors snoc
and cons.

(r1) eval(0) =0
(r2) eval([x. y]) = [eval(x) . eval(y)}
(r3) eval{{x.) = (evallx) . evai(y))
where x # VAR, APPLY, QUOTE,
QQUOTE

The expressions (L1}, (L2) in 2.1 are evaluated by
these rules. Note that a name is a constant.

We explain evaluation rules for special sexps in the
following.

2.3. variable and environment

A special sexp (VAR . x) is called a variable. We
introduce a syntaX sugaring for a variable. A single
lowercase character followed by a string of digits or a
nonempty string of alphanumeric characters which
begins with an uppercase character denotes a variable.
Let the string be /; - - - [,. It denotes

(VAR . [p(1y), - -, p(t,J))

Example 2.1.

var = ([{0,1,0,1,0,1,0]] .
[[1,0.1.0.1.1.0],
{1,1,0,0,0,0,1], [1,1,1,0,0,1,01) D

The value of a variable is determined relative to an
environment. An environment is a list of pairs of a
variable and its value. It is created when a function or
a macro is called.

Besides this environment, there is a global
environment, though we do not go into details in this
paper. If a variable is not found in an environment, 8
global environment is searched. A giobal environment
is preserved even after evaluation.

2.4. quote and guasi-quote

For a sexp £, each of "¢, '¢, \zand /¢ denotes a spe-
cial sexp (QUOTE . 1), (QQUOTE . ¢), (ESC.) and
(EVAL . 1) respectively. We say 1 is in the scope of °,
*.\ and / respectively. ~ and " plays a similar role in
eval as that in usual Lisp. " plays the role of quote.
(rd) ewaiCi} = ¢
In the scope of °, & special sexp loses its special mean-
ing. * plays the role of backquote in Maclisp, but our
is not a read-macro.

Erg% emf(" (%)- qgval(t)

16} geval(0) =

N i{x. 1) = {geval(x) . qeval(y}]
8) aeval(Ge.) = (gevallo) . gewl()

M. Sato and T. Sakurai 509

where x = ESC, EVAL
9 geval(\t) = ¢
(r10) geval(f/t) = ewai(t)

In the scope of °, only / and \ have a special meaning.
/ evaluates a sexp in its scope and \ plays the role of
quotation. For examples, see (L6), (L7), (L19). Note
that quasi-quotation is useful if we want to suspend
evaluation of applications.

2.5. definition of function and macro
A function definition is of the form

> func fml = body,

where func is a name, fmi is a formal parameter which
is a cons list and body is & sexp. Similarly, a macro
definition is of the form

> mae fmi = body,

where mac is 8 name. We cannot associate a function
and a macro to the same name. For examples, see
(L3), (L&), (L9}, (L11), (L15), (L17), (L19}.

A formal parameter is defined as follows:
(i} a variable is a formal parameter.
{(ii) 0is a formal parameter,
{ii) if f, and f; are formal parameters, so are

(f1. fDand [y . fa).
In a formal parameter, f; = f; denotes [f . f5l.

2.6. apply

A special sexp (APPLY, x} is called an applica-
tion. We introduce syntax sugarings for an application,
They are

Junlarg,, -
Funlarg,, --

., arg,) (1
-, org,} (2

where fun is & name, Fun is 2 nonempty string of
alphanumeric characters whose length is longer than 1
and which begins with an uppercase character and arg,
is a sexp. Fun is distinguished syntactically from a vari-
able by the following ‘[’

(1), {2) denotes respectively
(APPLY, (fun . largy, - -, arg,]))
(APPLY, [fun’, argy, - - -, arg,])

where fun'is a name obtained by replacing the leading
uppercase character of Fur by the corresponding lower-
case character.

Example 2.2.

cons(apple, orange)

= (APPLY, {(cons . {apple, orange]))
Cons/[apple, orange}

= (APPLY, [cons, apple, orange]) O

(1) and (2) are evaluated by the following rules.
(r11) eval(fun(arg;, - - -, arg,))

- (fun, evallarg,, - - - , arg,}))
(r12) ewai(Funlarg,, --?’,8;13,,]) “8

= apply(fun’, larg,, -, arg,))

510 M. Sato and T. Sakurai

Note that in (r11) ewal also plays the role of evis in
ordinary Lisp because of the rules (r1}, (r2). Whether
an argument list is evaluated or not is decided not by a
function or macro but by the form of a function or
macro call.
apply(fun, argl) is computed as follows. If fun is

an atom other than eq or cond, it is regarded as a func-
tion or macro name and its definition is searched. If
found, a new environment is created by the following
rules from the argument list argl and the formal param-
eter fm/ of the definition.

pairup®, argl) = [}

pairup(y, argl) = [[v . argil]

where v is a variable

poirup((f, . f3). (argly . argly))

= append(pairup(f . argl,), pairup(fy, argh))

pairup((fy . 1), largly . arghyl)

= append(pairup(f. argl\). pairup(fy, argly))

pairup(lf | . f4l. argl)

~ append(pairup(f |, orgl), pairup(f,, argl)
where append concatenates two lists,
Example 2.3,

pairup((Z = (X, YD), [laa, bbll)
= [[Z . (aa, bbi], [X . aal, [Y . bb]]

Recall that fl - fz denotes Ul . f:] 0

Note that a formal parameter is used as a skeleton
that is matched with the argument list and that a formal
parameter matches any sexp because of the totality of
car and cdr.

i fun is a function, its body is evaluated under
the new environment.
Example 2.4.

See (L3) and (1L4).
evaluated as follows:

Evaluating the argument list fapple, orange] results
in [apple, orange]. The forma! parameter of cons is
(X, Y) and the body is (X . Y). Pairup of (X, Y) and
{apple, orange] creates a new environment

[[X . applel, [Y . orangel]

cons(apple, orange) is

Under this environment, (X . Y) is evaluated and
results in

{apple . orange) O

If fun is a macro, its body is evaluated under the
new environment and the resuit is evaluated again
under the environment that was current when the
macro was called.

Example 2.5,

See (L17) and {L18). apply{cons, llisp, prolog)) is
evaluated as follows:

Evaluating the argument Jist [cons, [tisp, prolog]}
results in [cons, [lisp, prolog)]. The formal parameser
of apply is (F, X) and the body is CAPPLY, [F. X]).
Pairup of (F, X) and [cons, [lisp, proiogll creates a
new environment

[[F . cons], [X . liisp, prologl]]

Under this environment, CAPPLY, [F . X1 is
evaluated and resuits in

(APPLY, [cons, lisp, prologl)

This sexp, ie., Consllisp, prolog), is evatuated under
lhe]prcvious snvironment yielding the result (lisp . pro-
log). C

Quie has two built-in functions eq and cond. eq
returns 0 if its two arguments are equal, | otherwise.
The definition of cond follows that of usual Lisp,
except that O represents rruth and other sexps faisity.
}Ve have a syntax sugaring for an argument of cond.

hat is,

c—> & denotes {c, b)

Example 2.6.
See (L19) and {L20). Andleq(aa, aa), 0] is
evaiuated as follows:

The argument of And is not evaluated. Pairup
creates an environment

[[x . [eqlaa, aa), 011, [x1 . eqlaa, aa}], [x2 . [O]}]

Under this environment, the body of and is evaluated
and the result is

Condl eq(’[eq{aa, aa), 0], 0) —> 0,
eqfan, aa) —> Andl. [0]]]

This result is evaluated again. As eval(eq({eqaa, as),
0], 0)) = 1 and ewai(eq{aa, aa)) = 0, Andf0] is
evaluated. And[0] is evaluated similarty and the result
is0. O

In addition to a function and macro call, Qule also
has a lambda expression, which we explain in 2.7.

2.7. summary

We summarize the definition of ewal in this sec-
tion. Here we define ewal as a function from $xS to S,
that is, eval(x, env) = y means that evaluating x under
the environment env results in p.

evallx, env)
= §f x = () then 0
elif atom(x) then
snoc{eval(car(x), env), evallcdr(x), env))
elif car(x) = VAR then gei(x, env)
elif car(x) = APPLY then
if mole(cdr(x)) then
if atom(appi(x)) then am;y(fn(xl, arg(J, env)
else apply(fn(x), evailarg(x), env), env) i
else true(value(x), prd(x), hars(x), env) i
elif car(x) = QUOTE then cdr{x)
ellf car(x) = QQUOTE then gevallcdr(x), env)
else cons(eval{car(x), env), eval(cdr(x), env)) B

(For the explanation of true, see section 4.)

geval(x, env)
= if x =0 then 0
elif atom{x) then
snoc(geval(car(x), env), gevalledr(x), env))
ellf car(x) = ESC then cdrix)
elif car(x) = EVAL then ewal{cdr(x), env)
al=s mpcfoevallenrt-) spy) sousl{edefic) snvi}

where appl is cadr, fn is caadr, arg is cdadr, value is
cadr, prd is caddr and lvars is cadddr.

get(v, env)
= if v = var{env) then vai(env)
else get(v, resi(emv))

where var is caar, val is cdar and rest is cdr.

apph(f, arg, env)
= if atom{f) then
if / = eq then eqlcar(are), cadr(arg))
elif / = cond then ewonfarg, env)
elif firmc(f) then
evallbody (), pairup(formal(f), arg))
elif macro(f} then
a eval{eval(body(f), pairup(formal(f), arg)), env)

else eval(bdy(f), append(pairup(fmi(f), arg), env)}) fi

where func(f) and macro{f) decides whether f is a
function or a macro, body(f) is the body of a definition
of f, formal(f) is the formal parameter, bdy is cadr
and fml is car. (else-part corresponds to lambda
expression.}

eveon(cis, env)

= if cis =[] then 1

elit evai{prem{cis), env} = 0 then eval(ant{cis), env)
else evconirest(cls), emv) i

where prem is caar and ant is cadar.

This describes only the pure part of eval. Qute has
a built-in function 'set' which can change the environ-
ment. (We omit the explanation in this paper.)

3. The Prolog-part of Qute

The Prolog-part of Qute is similar to an ordinary
Prolog, but there is an important difference, i.e., the
argument list of the predicate and the parameter list of
the assertion are evaluated before they are unified with
the assertions.

We give examples in 3.1, explain syntax of Qute in
3.2 and mechanism of unification in 3.3, 3.4.

1.1. examples
(P1) + cons|X, Y, (X.Y);
cons defined
r2) - cons[apple orangc, Xl;
= (apple . orange)
(P3) +cadr X, Y — eqlY, car{cdr(X)));

cadr defin ed

(P4) — cadrlcons(left, (right)), X},
X = right

(PS) + appendl

[0,Y,Y
VX1 x21, Y, [X1. 22
- appendl X2, Y, 221
append] de

(P6) — apifendlllaa bbl, X, [as, bb, cc, ddl];

(P7) + appcndZ X Y, append(X, Y);
appcnd! defin

(P8) [[prolos. lls%l [qute], XI;
X = [prolog, lisp, qute

M. Sato and T. Sakurai 511

3.2. definition of predicate

A predicate is of the form prd arglist where prd is a
name and arglist is a snoc list. Its denctation is
lprd . arglist). prd is called the predicate name of the
predicate and arglist is called the argument list of the
predicate.

A predicate definition (assertion) is of the form
+ prd | param, body,
| paramy bodyy

1 param, body,
where prd is a name, param; is of the form
| . & 1
Pis » p:k or .y or
pfla T Ty pv’r . pi‘lr"ll
where p/ is a sexp, and body; is empty or of the form

- predica:e,—‘ - ,im"(ﬂ:i’:'r:::aw,—2 s = predicate,m'

where predicate{ is a predicate.
The corresponding Marseille notation is

+prd|param,|—predicate} ~ - - - —predicate]"

+prdparam,1—predicate)— - - - —predicate, ",

We call {param,] a parameter list of the assertion.
A goal is of the form

— predicate| — predicatey - -+ — predicate,,,
where predicate, is a predicate,

3.3. variable and its value
First, we define the notion of free varigble. The

following function vars(f) is used to define the set of
free variables in 1.

vars({f)

= if £ = {) then ¢

elif /= [/, . £,] then vars(F) U vars(f,)
elif / = (VAR . ¢} then {/}

elif f = fun(argy, - - -, arg,) then
ars(largy, -, arg,
elif f = Funlarg,, -+ -, arg,] then ¢

elif /= Epsilon(val; body) then
vars(body)— vars(val)

elif /="t then ¢ .

elif f = ‘1 then gvars(t)

elif /= (/. f1) then vars{f) Uvars(fy) fi

(For)simplicity, we omit the case of lambda expres-
sion.

gvars(p

= if f =0 then ¢

ellf £ =[f, . fa] then gvars(f)V gvars(f;)
elif 7 =\!then ¢

elif / =/t then wars(t)

elif /= (f} . f2) then gvars(f1) U quars(f,)

512 M. Sato and T. Sakurai

When a sexp / is evaluated, it is necessary to
know the values of the free variables in /. However,
the intended meaning of a free variable in a predicate is
an unknown sexp which may be known after evalua-
tion. We introduce the notion of an undefined value
(it is an imaginary element outside of S). We suppose
that each free variable has a different undefined value.

3.4. unification

Before evaluating the predicates in a goal, an
environment which is a list of pairs of a free variable
and an undefined value is set up. Before an unification
is made with a predicate definition, an environment is
set up similarly, using free variables in the parameter
and the body of the predicate definition. An undefined
value plays the role of a 'variable' in unification.

Example 3.1.

— appendll [prolog, lisp], [qute], X];
creates an environment

[[X . undfi]]

before evaluation, where undfl is an undefined value.
Evaluating [[prolog, lisp], [qute], X] results in

[[prolog, lisp], [qute], undf; (1)

According to the definition of appendl in (P5), the first
parameter list [0, Y, Y] is evaluated first and its result
is [0, undf, undf,]. This is not unifiable with (1). So
the second parameter list [[XI . X2], Y, [XI . Z]] is
evaluated and its result

[[undfs . undf,], undfs, [undf; . undfg]]
is unified with (1). At this time, the environment is

[[X1 . prolog], [X2 . [lisp]], [Y . [qutel]],
[Z . undfi)]

and undf\ is instantiated to [undf; . undfs. In this
way, execution goes on. After execution, the first
environment is instantiated to

[[X . [prolog, lisp, qute]]] D

Since no restriction is imposed on the parameters
of an assertion, they may contain any special sexp as is
seen in (P7). Unification with such an assertion goes
like the following.

Example 3.2.

(P8) is executed under the definition (P7), where
append is a function defined in (L15). [[prolog, lisp],
[qute], X] is evaluated with the result

[[prolog, lisp], [qute], undfy]. (1)

A parameter list [X, Y, append(X, Y)] of (P7) is
evaluated and its result is

[undf, undfs undfy (2)

with the condition
undf, - append(undf,,undfs).

That is, since we cannot evaluate append (X, Y) with
free variables X and Y, we assume that its value is
undf,; and impose the above condition. (1) and (2) are

unified and as a result undefined values are instan-
tiated, i.e., undf, — [prolog, lisp], undf; — [qute] and
undfy; — undf\. The condition is instantiated to undft
= append ([prolog, lisp], [qute]) and it is checked,
append ([prolog, lisp], [qute]) is evaluated and undfl is
instantiated to [prolog, lisp, qute]. D

4. Connecting Lisp and Prolog

One of the most important features of Qute is that
the Prolog-part can be called from the Lisp-part. It is a
mechanism similar to Hilberfs epsilon symbol, that is,
a mechanism to find a value which makes a certain
predicate to hold.

4.1. examples
(El) > append3(X, Y)
- Epsilon(V; append3[X, Y, V]);
append3 defined
(E2) 4- append3
any,y
[x.X1,Y, [x.Z]
- append3[X, Y, Z]

append3 defined
(E3) append3([lisp, prolog], [qute]);
— [lisp, prolog, qute]
(E4) > append4(X, Y)
= Epsilon(V; append4[X, Y, V]);
append4 defined
(E5) + append4
I, Y,Y
I [x.X],Y, [x.append4(X, Y)]

append4 defined
(E6) + member
| x, [x . X]
Ix, [y .X]
— member[x, X]

member defined
(E7) Epsilon(x; membertx, [apple, orange]]);
— apple
(E8) — eq[orange,
Epsilon(x; memberlx, [apple, orange]])];
yes

4.2. epsilon expression

A special sexp (APPLY . [val, prds, vars]) is
called an epsilon expression where val is a sexp, prds is a
predicate or a cons list of predicates (i.e., conjunction
of predicates) and vars is a snoc list of variables that
are local in the epsilon expression. We introduce a syn-
tax sugaring for an epsilon expression. It is

Epsilon(val; body)
where val and body are sexps. It denotes

(APPLY . [val, body, vars])

where vars is the snoc list of the free variables in val.
According to the definition of eval in 2.7,

eval/((APPLY . [val, body, vars]), env)
= trueival, body, vars, env)

It is computed as follows. A new environment E is set
up by appending to the head of the current environ-
ment env a list consisting of pairs of a free variable in
vars and an undefined value, body is executed by the
Prolog-part under this environment E with the result
that the environment is instantiated to an environment
E' that makes body true. According to the formal
specification of Qute, any E' that makes body true is
accepted, but the actual implementation finds E' in a
depth-first way. Then val is evaluated under the
instantiated environment E" and the result is the value
of (APPLY . [val, body, vars]). When E'is created a
marker to this frame is also made, so that a later back-
track will return to this point.

Epsilon expression is therefore a multi-valued function,
however only one value is returned at a time and
further values may be obtained by using backtrack.
Example 4.1.

(E3) is evaluated under the definitions (EI), (E2).
append3 is called and the environment

[[X . [lisp, prolog]], [Y . [qute]]

is created by pairup. Epsilon expression which is the
body of append3 is evaluated. First, a new environ-
ment

[[V . undfi], [X. [lisp, prolog]], [Y . [qute]]]

is created. A goal append3[X, Y, V] is executed under
this environment according to the definition (E2). The
environment is instantiated to

[[V . [lisp, prolog, qute]], [X . [lisp, prolog]l,
[Y . [qute]]]

and V is evaluated under this environment with the
result [lisp, prolog, qute]. It is the value of the epsilon
expression and of append3([lisp, prolog], [qute]). o

Example 4.2.

(E6) defines an ordinary membership relation on a
list. In (E7), the Lisp-part of Qute sets up an environ-
ment

E - [[x . undfi]]

and calls the Prolog-part. The Prolog-part tries to find
an instance of E that makes membertx, [apple, orage]]
true. The following two instances of E both give a
correct instance:

E; - [[x . apple]], E; - [Ix. orange]]

However, the actual implementation does a depth-first
search and returns E; as a new environment. The
Lisp-part evaluates x in this environment and returns
apple as the value of (E7).

In executing (E8), the two arguments of the predi-
cate eq are evaluated first. The second argument,
which is the same epsilon expression as (E7), is
evaluated similarly as above and apple is returned as its
value. Since orange and apple are not 'eq' (equal), a
backtrack occurs. This forces Qute to find a second

value of the epsilon expression and the value orange.

M. Sato and T. Sakurai 513

will be returned this time. Since orange and orange are
'eq' 'yes' is returned as the answer to the question
(E8). o

5. Conclusions and Future Plans

We have shown that it is possible to amalgamate
Prolog and Lisp in a natural way. A comparison of the
evaluation of a Qute predicate with that of an atomic
formula in a first order language will make this natural-
ness clear. Consider a first order language that
includes:

a binary predicate symbol < (for less than),
a binary function symbol + (for plus) and
constants for natural numbers

with their usual interpretations. Then the truth value
of the atomic formula

2+3 < 6

is evaluated as follows. First evaluating the terms 2+3
and 6, we get 5 and 6. Then by the meaning of < we
see that 5 is less than 6, which implies the truth of the
formula in question. The evaluation in Qute is com-
pletely analogous. With appropriate definitions of
"less_than" and "plus", the question:

— less_than[plus(2, 3), 6];
is evaluated by Qute resulting in the answer "yes".

According to this analogy, the evaluation of a sexp
by the Lisp part of Qute corresponds to the evaluation
of a term. Here, an epsilon expression corresponds to
Hilbert's e-term.

We have defined the semantics of Qute informally
in this paper. We wish to give a formal definition of
Qute in a forthcoming paper. (See also Sakurai[2].)
This will be done as follows. First, we will define a for-
mal intuitionistic theory of symbolic expressions called
SA which is proof theoretically equivalent to Heyting's
arithmetic HA. It will then become possible to define
Qute within SA. Moreover, to mechanize these
processes, we will implement a proof checking system
for SA using Qute. In this way, we will be able to for-
mally reason about the properties of Qute within Qute
itself.

REFERENCES

[1 Robinson, J. A., and Sibert, E. E., 1982:
LOGLISP: an alternative to PROLOG, Machine
Intelligence 10.

[2] Sakurai, T., 1983: Formalism for Logic Program-
ming, Master Thesis, Department of information Sci-
ence Faculty of Science University of Tokyo.

[8] Sato, M, 1983: Theory of Symbolic Expressions, I,
Theoretical Computer Science, 22,19-55.

[4] Sato, M. and Hagiya, M., 1981: Hyperlisp, Algo-
rithmic Languages, Proceedings of the International
Symposium on Algorithmic Languages, (eds. J. W- de
Bakker andJ.C van Vliet), North-Holland.

