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ABSTRACT 
A new Prolog/Lisp type programming language 

called Qute is introduced. Qute computes (partial) 
recursive functions on the domain S of symbolic 
expressions in the sense of Sato[3], Sato and Hagiya[4]. 

Qute amalgamates Prolog and Lisp in a natural 
way. Any expression that is meaningful to Qute is 
either a Prolog expression or a Lisp expression and a 
Prolog (Lisp) expression is handled by the Prolog 
(Lisp, resp.) part of Qute. Moreover, the Prolog-part 
and the Lisp-part calls each other recursively. 

Compared with the traditional Lisp symbolic 
expressions, our symbolic expressions are mathemati­
cally much neater and yet constitute a richer domain. 
Qute is a theoretically well-founded language defined 
on this domain of symbolic expressions. 

Many interesting features of Qute are described in 
this paper. 

Qute has been implemented on VAX /UNIX and is 
used to develop a programming system for proving pro­
perties of our domain of symbolic expressions. 

0. Introduction 
In this paper, we introduce a new Prolog/Lisp type 

programming language called Qute that is designed to 
compute (partial) recursive functions on the domain S 
of symbolic expressions in the sense of Sato [3], Sato 
and Hagiya[4]. 

Since Qute combines the features of Prolog and 
Lisp quite naturally, it provides a comfortable environ­
ment for developing programs interactively. Users of 
Qute can not only enjoy both Prolog and Lisp style pro­
gramming but also combine them in a unique way. 

To be more precise, any expression that is mean­
ingful to Qute is either a Prolog expression or a Lisp 
expression. A Prolog expression may contain Lisp 
expressions as its subexpressions and conversely a Lisp 
expression may contain Prolog expressions as its subex­
pressions. Prolog (Lisp) expression is handled by the 
Prolog (Lisp, resp.) part of Qute. In this way, the 
Prolog-part naturally contains the Lisp-part and the 
Lisp-part contains the Prolog-part. 

This paper is based on the result of activities of 
working groups for the Fifth Generation Computer 
Systems Projects. 

Another characteristic feature of Qute is that, like 
Lisp but unlike Prolog, symbolic expressions play the 
double role of data and programs. It is therefore possi­
ble to write a simple metacircular interpreter of Qute by 
Qute itself. In fact, we can write the interpreter using 
only the Prolog-part of Qute. The interpreter of Qute 
can be defined formally by inductive definitions as we 
did for Hyperlisp[3]. This makes Qute a theoretically 
well-founded language. In this paper, however, due 
partly to the limitation of space, we will describe the 
semantics of Qute rather informally. 

LOGLISP[l] takes a similar approach towards 
combination of Prolog and Lisp, but our concern 
centers on formalism which we slightly mentioned 
above. Therefore, we designed Qute so that programs 
can be naturally regarded as symbolic expressions. (As 
is explained later, we regard a 'variable' as a symbolic 
expression unlike usual Prolog.) 

Qute has been implemented on V A X / U N I X at the 
Computer Centre of the University of Tokyo. The 
language is used to develop a programming system for 
proving properties of our domain of symbolic expres­
sions. Properties of Qute will be expressed and verified 
in the system. See Sakurai [2] for more details of the 
project. 

In the rest of the paper, we first review our 
domain S briefly and then describe the syntax and 
semantics of Qute. Many interesting features of the 
language will be described along the way. 

1. Symbolic Expression 

1.1. definition of sexp 
Symbolic expressions (sexps, for short) are con­

structed by the following clauses: 
1. 0 is a sexp. 
2. If s and t are sexps then snoc(s, t) is a sexp. 
3. If s and t are sexps and at least one of them is not 

0 then cons(s, t) is a sexp. 
All the sexps are constructed only by means of the 
iterated applications of the above three clauses, and 
sexps constructed differently are distinct. We denote 
the set of all the sexps by S. Note that snoc is a total 
function on SxS while cons is partial since it is 
undefined for the argument (O, 0). We make cons 
total by stipulating that cons(0, 0) - 0. We also put 
snoc(0, 0) - 1. 
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is called a special sexp. We use V A R , QUOTE, 
Q Q U O T E , ESC, E V A L respectively to denote the 
above atoms. A sexp which does not contain a special 
sexp as its sub-sexp is called a constant sexp or simply a 
constant. 

We now explain the function eval that is used to 
evaluate Lisp expressions. The function eval is defined 
so that it preserves cons and snoc for non-special sexps 
and hence it becomes an identity function on constants. 
Therefore, we can make use of snoc (and cons which 
satisfies ( r3)) as a pattern constructor. This advantage 
comes f rom the fact that we have two constructors snoc 
and cons. 
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where prem is caar and ant is cadar. 
This describes only the pure part of eval. Qute has 

a built-in function 'set' which can change the environ­
ment. (We omit the explanation in this paper.) 

3. The Prolog-part of Qute 
The Prolog-part of Qute is similar to an ordinary 

Prolog, but there is an important difference, i.e., the 
argument list of the predicate and the parameter list of 
the assertion are evaluated before they are unified with 
the assertions. 

We give examples in 3.1, explain syntax of Qute in 
3.2 and mechanism of unification in 3.3, 3.4. 
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When a sexp / is evaluated, it is necessary to 
know the values of the free variables in /. However, 
the intended meaning of a free variable in a predicate is 
an unknown sexp which may be known after evalua­
tion. We introduce the notion of an undefined value 
(it is an imaginary element outside of S). We suppose 
that each free variable has a different undefined value. 

3.4. unification 
Before evaluating the predicates in a goal, an 

environment which is a list of pairs of a free variable 
and an undefined value is set up. Before an unification 
is made with a predicate definition, an environment is 
set up similarly, using free variables in the parameter 
and the body of the predicate definition. An undefined 
value plays the role of a 'variable' in unification. 
Example 3.1. 

— appendll [prolog, lisp], [qute], X ]; 
creates an environment 

[[X . undf1]] 
before evaluation, where undf\ is an undefined value. 
Evaluating [[prolog, lisp], [qute], X] results in 

[[prolog, lisp], [qute], undf1 (1) 

According to the definition of appendl in (P5), the first 
parameter list [0, Y, Y] is evaluated first and its result 
is [0, undf2, undf2]. This is not unifiable with (1). So 
the second parameter list [ [XI . X2], Y, [XI . Z]] is 
evaluated and its result 

[[undfs . undfA], undf5, [undf3 . undf6]] 
is unified with (1). At this time, the environment is 

[ [XI . prolog], [X2 . [lisp]], [Y . [qute]], 
[Z . undfi)] 

and undf\ is instantiated to [undf3 . undf6. In this 
way, execution goes on. After execution, the first 
environment is instantiated to 

[[X . [prolog, lisp, qute]]] D 

Since no restriction is imposed on the parameters 
of an assertion, they may contain any special sexp as is 
seen in (P7). Unification with such an assertion goes 
like the following. 
Example 3.2. 

(P8) is executed under the definition (P7), where 
append is a function defined in (LI5). [[prolog, lisp], 
[qute], X] is evaluated with the result 

[[prolog, lisp], [qute], undf1]. (1) 

A parameter list [X, Y, append(X, Y)] of (P7) is 
evaluated and its result is 

[undf2 undf3 undf4 (2) 

with the condition 
undf4 - append(undf2,undf3). 

That is, since we cannot evaluate append (X, Y) with 
free variables X and Y, we assume that its value is 
undf4 and impose the above condition. (1) and (2) are 

unified and as a result undefined values are instan­
tiated, i.e., undf2 — [prolog, lisp], undf3 — [qute] and 
undf4 — undf\. The condition is instantiated to undf\ 
= append ([prolog, lisp], [qute]) and it is checked, 
append ([prolog, lisp], [qute]) is evaluated and undf\ is 
instantiated to [prolog, lisp, qute]. D 

4. Connecting Lisp and Prolog 
One of the most important features of Qute is that 

the Prolog-part can be called from the Lisp-part. It is a 
mechanism similar to Hilberfs epsilon symbol, that is, 
a mechanism to find a value which makes a certain 
predicate to hold. 

4.1. examples 
(El) > append3(X, Y) 

- Epsilon(V; append3[X, Y, V]) ; 
append3 defined 

(E2) 4- append3 
[] [], Y, Y 
[x . X] , Y, [x . Z] 

. - append3[X, Y, Z] 

append3 defined 
(E3) append3([lisp, prolog], [qute]); 

— [lisp, prolog, qute] 
(E4) > append4(X, Y) 

= Epsilon(V; append4[X, Y, V]); 
append4 defined 

(E5) + append4 
I [ ] , Y, Y 
I [x . X] , Y, [x . append4(X, Y)] 

append4 defined 
(E6) + member 

| x, [x . X] 
I x, [y . X] 

— member[x, X] 

member defined 
(E7) Epsilon(x; membertx, [apple, orange]]); 

— apple 
(E8) — eq[orange, 

Epsilon(x; memberlx, [apple, orange]])]; 
yes 

4.2. epsilon expression 
A special sexp (APPLY . [val, prds, vars]) is 

called an epsilon expression where val is a sexp, prds is a 
predicate or a cons list of predicates (i.e., conjunction 
of predicates) and vars is a snoc list of variables that 
are local in the epsilon expression. We introduce a syn­
tax sugaring for an epsilon expression. It is 

Epsilon(val; body) 

where val and body are sexps. It denotes 
(APPLY . [val, body, vars]) 

where vars is the snoc list of the free variables in val. 
According to the definition of eval in 2.7, 
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eva/((APPLY . [val, body, vars]), env) 
= trueival, body, vars, env) 

It is computed as follows. A new environment E is set 
up by appending to the head of the current environ­
ment env a list consisting of pairs of a free variable in 
vars and an undefined value, body is executed by the 
Prolog-part under this environment E with the result 
that the environment is instantiated to an environment 
E' that makes body true. According to the formal 
specification of Qute, any E' that makes body true is 
accepted, but the actual implementation finds E' in a 
depth-first way. Then val is evaluated under the 
instantiated environment E" and the result is the value 
of (APPLY . [val, body, vars]). When E' is created a 
marker to this frame is also made, so that a later back­
track will return to this point. 
Epsilon expression is therefore a multi-valued function, 
however only one value is returned at a time and 
further values may be obtained by using backtrack. 
Example 4.1. 

(E3) is evaluated under the definitions (El) , (E2). 
append3 is called and the environment 

[[X . [lisp, prolog]], [Y . [qute]]] 

is created by pairup. Epsilon expression which is the 
body of append3 is evaluated. First, a new environ­
ment 

[[V . undf1], [X . [lisp, prolog]], [Y . [qute]]] 

is created. A goal append3[X, Y, V] is executed under 
this environment according to the definition (E2). The 
environment is instantiated to 

[[V . [lisp, prolog, qute]], [X . [lisp, prolog]], 
[Y . [qute]]] 

and V is evaluated under this environment with the 
result [lisp, prolog, qute]. It is the value of the epsilon 
expression and of append3([lisp, prolog], [qute]). □ 
Example 4.2. 

(E6) defines an ordinary membership relation on a 
list. In (E7), the Lisp-part of Qute sets up an environ­
ment 

E - [[x . undf1]] 
and calls the Prolog-part. The Prolog-part tries to find 
an instance of E that makes membertx, [apple, orage]] 
true. The following two instances of E both give a 
correct instance: 

E1 - [[x . apple]], E2 - [lx. orange]] 

However, the actual implementation does a depth-first 
search and returns E1 as a new environment. The 
Lisp-part evaluates x in this environment and returns 
apple as the value of (E7). 

In executing (E8), the two arguments of the predi­
cate eq are evaluated first. The second argument, 
which is the same epsilon expression as (E7), is 
evaluated similarly as above and apple is returned as its 
value. Since orange and apple are not 'eq' (equal), a 
backtrack occurs. This forces Qute to find a second 
value of the epsilon expression and the value orange. 

will be returned this time. Since orange and orange are 
'eq' 'yes' is returned as the answer to the question 
(E8). □ 

5. Conclusions and Future Plans 
We have shown that it is possible to amalgamate 

Prolog and Lisp in a natural way. A comparison of the 
evaluation of a Qute predicate with that of an atomic 
formula in a first order language will make this natural­
ness clear. Consider a first order language that 
includes: 

a binary predicate symbol < (for less than), 
a binary function symbol + (for plus) and 
constants for natural numbers 

with their usual interpretations. Then the truth value 
of the atomic formula 

2+3 < 6 
is evaluated as follows. First evaluating the terms 2+3 
and 6, we get 5 and 6. Then by the meaning of < we 
see that 5 is less than 6, which implies the truth of the 
formula in question. The evaluation in Qute is com­
pletely analogous. With appropriate definitions of 
"less_than" and "plus", the question: 

— less_than[plus(2, 3), 6]; 
is evaluated by Qute resulting in the answer "yes". 

According to this analogy, the evaluation of a sexp 
by the Lisp part of Qute corresponds to the evaluation 
of a term. Here, an epsilon expression corresponds to 
Hilbert's e-term. 

We have defined the semantics of Qute informally 
in this paper. We wish to give a formal definition of 
Qute in a forthcoming paper. (See also Sakurai[2].) 
This will be done as follows. First, we will define a for­
mal intuitionistic theory of symbolic expressions called 
SA which is proof theoretically equivalent to Heyting's 
arithmetic HA. It will then become possible to define 
Qute within SA. Moreover, to mechanize these 
processes, we will implement a proof checking system 
for SA using Qute. In this way, we will be able to for­
mally reason about the properties of Qute within Qute 
itself. 
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