Towards Knowledge Acquisition from Natural Language Documents

-- Automatic Model Construction from Hardware Manual --

Toyo-aki NISH1DA, Akira KOSAKA and Shuji DOSHITA

Department of Information Science
Faculty of Engineering, Kyoto University
Sakyo-ku, Kyoto 606- JAPAN

ABSTRACT

In this paper, we explore automatic model construction
by analyzing natural language documents. The
extracted model will be utilized by a CAD system. A
system called hmU, in the course of development, is
designed to allow knowledge on very complex hardware
module like LS| or VLS| to be incorporated into its
knowledge base. The acquired knowledge will be
utilized for helping human designer understand the
component from various levels of abstraction. The focus
of this paper is attentioned more to issues on knowledge
representation and model inference than that on
natural language analysis. Hierarchical model is
employed. In particular, cause-effect representation is
used to make it clear how actions of each module and
events are related to each other. A brief description is
given to illustrate our approach.

1. Introduction

One of the difficulties with expert system s
knowledge acquisition. The fact that most of human
knowledge is integrated as natural language
documents has led us to the development of a system
which can automatically acquire knowledge from
existing documents. In knowledge acquisition from
documents, expressive power of natural language, in
particular the ability of representing any complex
object or situation from various levels of abstraction,
should not be sacrificed but be effectively utilized by an
expert system for CAD. The essential problem to be
solved consists more in model representation and
inference problem than in parsing. For example, the
resolution of anaphoric expression depends more on
domain specific knowledge than on linguistically
general knowledge.

A system called hmU (hardware manual
Understander) is in the course of development, which
will analyze given natural language specification of LSI

chips (such as microprocessor and the like), and which

will construct a knowledge structure specifying the
behavior of the chip. The acquired model will be utilized
by intelligent symbolic simulator to give human
designer explanations about the chip. The intelligent
symbolic simulator is also under development [Nishida
1983].

hmU's main components are natural language
analyzer and model builder. Natural language
analyzer utilizes domain specific knowledge to resolve
ambiguities, anaphoras, etc. Accordingly, the model
builder and the natural language analyzer
communicates to each other. The details are described
in [Nishida 1982]. The model builder receives internal
representation obtained from natural language
analysis and builds an automaton-based hardare model
structure using common sense knowledge about
hardware, time, action, events, etc. In what follows, we
will describe the model representation and model
building procedure to more detail.

2. A Model for Representing Multiple Agent
Co-Operating Situation

This section describes the hardware model
which we used. The well defined hardware domain can
be modeled as a world where multiple agents are
cooperating each other to attain a common goal.
Actions are done in parallel and are synchronized
through events. Use of hierarchical representation
gives human designer good understanding of
hardware. For example, a phrase like "*MREQ is
asserted" can be given a good explanation, if a
statement like "it indicates that address to the memory
becomes valid" is accompanied.

Our hardware specification model is hierarchical.
Hierarchies are linked together by indicates relations.
Each hierarchy consists of an event model and a set of
action models. To each hardware module, an action
model is defined to specify the behavior of the module.
The notion of hierarchy is important in digital circuit
design [McDermott 1978, Mitchell 1981, Stefik 1982,
Sakai 1982, Sussman 1980]. In the event model, cause-

effect representation is used to corelate actions of each
agent along with the time axis. The notion of cause-
effect relationship has been advocated to be useful in
understanding cooperating actions and events [Rieger
1978]. The action model of an agent represents the
actions taken by the agent when a specified input event
takes place. This representation is independent of the
internal structure of the agent, and makes it possible to
give the abstract level description of any complex
hardware.

3. Model Inference Procedure

The model builder is given some information
from the natural language analyzer and other
information from the diagram analyzer (currently
pictures like time chart are manually encoded into
symbolic expressions), and it attempts to construct a
consistent model from inputs. Since the information
from the natural language analyzer may be vague or not
specified to full details, the model builder has to make
inference in the hardware domain. Sometimes model
revision may be needed to correct arbitrary choices that
are made due to the lack of information. Accordingly,
the task has much in common with truth maintenance
system [Doyle 1979]. The model builder mainly makes
forward inferences using common sense knowledge. In
this paper, we concentrate on the descriptions on
hardware behavior and assume other parts of the
hardware manual such as pin descriptions, have
already been analyzed and converted into the
knowledge structure. The below illustrates a part of the
knowledge:

Action-Event Definition

Example 1. asserts

a agserts s at t {(a: agent, s: signal, {: time)

presupposition
aisan agent for s.
P:sisavaliable forsatt.
a believes P at t-.
sis not active at t-.
definition L
< gate level operation is given here>
effect
s becomes active at t+.

Example 2. sends

asendssto b through xatt
(a, b: agent, x: data transfer device, t: time)

presupposition
a has s at t-.
abelieves b at t-.
a believes x isavailable for aatt.

definition

T.-A. Nishida et al. 483

aputsson xatt.

a requests b to sample s from x at t+.
effect

bhassatt+ +.

Module Definition

Example 3. bus

bus : [isa data-transfer-device
with (consists-of address-bus data-bus
*MREQ ...)...]

Example 4. signal and line

*MREQ : [isa signal with (asserted-hy CPU)...]
*MREQ-line : {isa line with (type NEG)
(indicates *MREQ) ... }

Example 5. schema of a line

line: [isa : data-transfer-device
has-attribute (type NEG POS)
(state HIGH LOW (HZ))
where

if type=POS then
state = HIGH indicates ACTIVE
state=LOW indicates NEGATIVE
else
state = HIGH indicates NEGATIVE
state = LOW indicates ACTIVE]

The model inference procedure involves the
following types of reasoning:

(a) Seeking an action which causes a given event: this
task will be done using action-event definitions.

(b) Seeking values of case slots which were not filled by
the natural language analyzer: this task will be done
using definitions for individuals.

(c) Linking descriptions of each hierarchy using
indicates liks.

(d) Reasoning about cause-effect relations between
events: this reasoning utilizes action-event definitions.

(e) Making vague expressions more accurate: this task
is done using axioms for event and action. Example of
such axioms can be found in [McDermott 1982].

(f) Revising a model if needed: each position where
arbitrary acoice was made is marked. Those positions
are candidates for reconstruction when any
contradiction takes place.

(g) Verifying constraint condition.

Fig.l illustrates how the description: "*MREQ lines
goes low at T1" is incorporated into the model. As is
seen from the figure, action and event models of each
hierarchy are revised so as to be able to give explanation

484 T.-A. Nishida et al.

to the input. Symbols attached to the figure indicates
which inference rule is made.

4. Conclusion

Currently, a simplified version of hmU is in the
course of development, where the focus is mainly
attentioned to rather basic issues, i.e., natural language
analysis, discourse analysis, canonical transformation,
and reasoning about action, time, and event. However,
the initial experiments by hand reveal fundamental
validity of our approach. Some of them are illustrated
in the appendix.

References

[Doyle 1979] Doyle, J., A Truth Maintenance System,
Al 12(1979), 231-272.

[McDermott 1978] McDermott,D., Circuit Design as
Problem Solving, in Lamtombefed.), Artificial
Intelligence and Pattern Recognition in Computer Aided
Design, North-Holland, 1978, 227-252.

[McDermott 1982] McDermott,D., A Temporal Logic for
Reasoning About Processes and Plans, Cognitive
Science 6, 1982, 101-155.

[Mitchell 1981] Mitchell, T.M. et al., Representations
for Reasoning About Digital Circuits, in Proc. 1JCA1-81,
1981,343-344.

[Nishida 1982] Nishida,T., Kosaka,A., and Doshita,S.,
On Automatic Extraction of Information from
Hardware Manuals, Technical Report AL-82-68, IECE
of Japan, 1982, (in Japanese).

[Nishida 1983] Nishida,T., Kosaka,A., and Doshita,S.,
On Action Description Model and its Inference for
Hardware Manual Understanding, in Annual
Convention Records of IPS Japan, 7C-1, 1983, (in
Japanese).

[Rieger 1978] Rieger,C. and Grinsberg,M., A System of
Cause-Effect Representation and Simulation for
Computer-Aided Design, in Lamtombe (ed.), Artificial
Intelligence and Pattern Recognition in Computer Aided
Design, North-Holland, 1978, 299-333.

[Sakail982] Sakai,T., etal., An Interactive Simulation
System for Structured Logic Design, in Proc. ACM IEEE
19th Design Automation Conference, 1982, 747-754.

[Stefik 1981] Stefik,M. and Bobrow,D.G., Linked
Module Abstraction: A Methodology for Designing the
Architectures of Digital Systems, KB-VLSI-81-9,

XEROX PARC, 1981.

[Sussman 1978] Sussman,G.J., SLICES: At the
Boundary between Analysis and Synthesis, in
Lamtombe (ed.), Artificial Intelligence and Pattern
Recognition in Computer Aided Design, North-Holland,
1978, 261-298.

]
requests
memory read |°

’ higher
level

A.[*MREQ]_,?

sample

data
T

©)

(d).,1
s

CAUSE

Tevel 1

Figure 1. An Example of Model Inference.

Appendix: Overview of the Simplified Version of

hmU

This appendix illustrates an overview of the
simplified version of hmU. Usually, input text can be
divided into diagrams and natural language text
portion. The acquisition task consists of diagram
analysis and natural language analysis. After each step
is completed, the results are matched together and
consistent model will be instantiated.

Diagram Encoding

Diagrams are assumed to be somehow encoded
into symbolic expressions. The encoding rule is as
follows:

(step 1) labeling clock:
name each clock pulse.

generating new symbols to

Example 1.

Tla Tib

T11 T

{step 2) assigning symbolic names to events other than
clock: This labeling is carried out in terms of
Active/Negative insted of High/Low.

Example 2.
¢
*MREQ :
a bit after
aafterT1l : asserted(*MREQ)

Example 3. If n name is given to the event, itis
copied to the symbolic expression,

PC

placed-on(PC)

T.-A. Nishida et al. 485

(step 3) special cases:

Example 4. indication of sampling a signal,

T2

at T2 :

sampled(*"MREQ)

In time chart arrows are often used to indicate
causal-effect relationships. Such information should be
effectively utilized during the process of diagram
encoding. For example,

B
state-1: A T : —>state-2;
state-2: $/ : asserts(B);

Analysis of Diagram

From encoded diagrams, simple model inference
rules can be used to extract model structure. Here,
automaton description is based on DDL [Duley 1968].

(rule 1) supplementing agents: signal specification is
used. For example,

from: AafterTl |/ : asserted(*MREQ),
infer: AafterTl /| : asserted(*"MREQ) by CPU.
(rule 2) inference of automaton transition arc:

for example,

from: AafterTl / : asserted(*MREQ),
infer: Tla: $i : asserts(*MREQ).

486 T.-A. Nishida et al.

Natural Language Analysis

Natural language portion of input text is
analyzed sentence by sentence. The result of the phrase
structure analysis is translated into intermediate
representation. The intermediate representation is
desingned using the formalism of lexical functional
[Kaplan 1982]. Then it is further transformed into
canonical representation. During the process, discourse
analysis is carried out to solve simple cases of definite
noun phrase reference and ellipsis. Intermediate
structure is used as a discourse structure.
intermediate

The below illustrates an

representation and canonical form for a simple
sentence:
The CPU turns off the *RD signal. ... (1)

The Intermediate Representation

Category = Sentence
Subject = Category = NounPhrase
Determiner = [Lexicon = The, ...]
MainNoun = [Lexicon = CPU o
SemanticFunction
= Ewvaluate[T Determiner)
Predicate = Category = VerbPhrase
MainVerb = [Lexicon = Turn, ...}
SemanticFunction = T MainVerb
AderbialParticle = Off
Object = Category = NounPhrase
Determiner = The
MazinNoun = [Lexicon = *RD-Signal, ...]
SemanticFunction
=Evaluate[I Determiner]
SemanticFunction = Evaluate[T Predicate)

Semantic Mapping Function for "turn”

AdverglalPhrase —{ 'On’ B
— Create Unit: 'Igrpe'— venl’,
f'Agserts’,
Level+—"DDL’,
Agent+— 1 Subject,

ﬂlect" t Object}
AdverbialPhrase = "0
— Create Unit: {Tgpe — 'Event’,
el ‘—'NegabeS .
Level—"DDL/,
Agent—1 SubJect
Object+ T Object}.

Canonical Form

Unit:a: = Event
mility = Description
Self = Ne
Level = DDL
Agent = Unit:b
Object = Unitie

Unit:b: Type = Individual

Isa = CPU
Unitie: Type = Individual
Isa = *RD

Comparing Outputs from Natural Language
Analyzer and Diagram Analyzer

Roughly speaking, information from diagrams
like time charts, tells a lot about the described
hardware. So our strategy is first to construct a model
based on the information from diagram and then to
check it against natural language information. Figure
A-l illustrate this process for a version of sentence (1):

This same edge is used by the CPU to turn off the
*RD and *MREQ signal. - (1)

References of Appendix

[Kaplan 1982] Kaplan,R.M. and Bresnan.J., Lexical-
Functional Grammar: A Formal System for
Grammatical Representation, in Bresnan(ed.), The
Mental Representation of Grammatical Relations, The
MIT Press, 1982, 173-281.

[Duley 1968] Duley,J.R. and Dietmeyer,D.L., A Digital
System Design Language (DDL), IEEE Trans.
Computers, Vol. C-17, No.9, 1968.

*Examples are cited from: Z80-CPU/Z80A CPU
Technical Manual,

CPU:
negates { *RD}
nagatas ('MREC?

5x: negat.ed(f)=

negated (*RD}

Causes

l/ \{ CPU negates *RD

clock is negated CBU nagates *MAEQ
Canonical Form

Fig.A-1. Matching input against the Model.

PROLOG I'N IO FIGURES

Alain Colmerauer

Centre Mondial d' In-formatique
22 avenue Matignon, 75008 Paris
and
Faculte des Sciences de Luminy
case 901, 13288 Marseille Cedex 9

Abstract; Prolog is presented in a rigourous way,
through 10 easily understandable figures. Its
theoretical model is completly rewrought. After
introducing infinite trees and inequalities, this
paper puts forth the minimal set of concepts
necessary to give Prolog an autonomous existence,
independent of lengthy considerations about first
order logic and inference rules. Mystery is
sacrificed in favor of clarity.

486 A. Colmerauer

Artificial Intelligence interacts with many fields
including psychology, linguistics, history,
geology, biology, medical science These
sciences are complex, and special tools are needed
to represent and process the knowledge they deal
with. Furthermore, these tools should not
introduce new problems, inherent to computer
science. Traditionally, the science of knowledge
has been mathematical Ilogic. Therefore it was
reasonable to turn to logic for help in developing
a tool for Artificial Intelligence: that was how
Prolog was born.

Prolog, developed in 1972 by A.Colmerauer and
P.Roussel, was at first a theorem prover, based on
A.Robinson's resolution principle (1965) with
strong restrictions to narrow the search space.
Credit is given to R.Kowalski and M.an Emden for
having pointed out these restrictions as
equivalent to the use of clauses having at least
one positive literal (Homm clauses), and for
having proposed the first theoretical model of
what is computed by Prolog: a minimal Herbrand
interpretation.

However, Prolog's close links with Logic proved
sometimes to be inhibiting vis-a-vis its
implementation. It was necessary to reformulate

the theory to take into account implementation
constraints: this new theory is unencumbered by
distinctions necessary only in logic, and is
enriched by concepts indispensable for programming
purposes (such as inequalities). We can say that,
after a careful implementation, a new theoretical
model of Prolog emerged and it is this new model
that we present here in 10 commented figures.

The reader interested in further readings on this
subject is referred to the following:

On automatic theorem proving and logic:

ROBNSON J.A. (1979). "Logic: Fom and Function",
Edinburgh University Press and Elsevier North
Holland.

On the links between logic and Prolog:

KOWALSKI R.A. (1979). "Logic For Problem Solving”,
Artificial Intelligence series, (Ed- Nilsson,
N.J.), North Holland.

On the genesis of Prolog:

COVERALER A., KANOU H., PASEHRO R. et ROUSSH. Ph.
(1973), "Un systeme de communication homme-machine
en frangais", Research Report, Groupe Intelligence
Artificielle, Faculte des Sciences de Luminy,

Marseille.
ROUSSH. Ph. (1975). "Prolog, Manuel de Reference
et d'Utilisation, Groupe Intelligence
Artificielle, Faculte des Sciences de Luminy,
Marseille.

A Prolog system, based on the ideas developed
here, and implemented on several computers (Apple
11, VaxVms, etc.), is described in three Internal
Reports of the Groupe Intelligence Artificielle,
Faculte des Sciences de Luminy, Marseilles

COVERALER A. (1982). "Prolog |1, Reference Manual
and Theoretical Model".

VAN CANEGHEM M. (1982). "Prolog IIl, User's
Manual".

KANOUI H. (1982). "Prolog |1, Manual of Examples.
1. TREES

From an abstract point of view, one may say that
the knowledge of an intelligent being on a given
subject, is the set of facts that he or she can
generate on the subject. Therefore, knowledge can
be viewed as a set of facts, specified by a set of
rules. Each of these facts can be represented by a
declarative sentence. In our case we represent a
fact by a tree, drawn upside down, as the one
shown in Fig la. Each leaf and each node is
labeled with an "atom" of information: this atom
can be a word, a group of words, a number, or a
special character. Only the structure of the tree
is relevant. Therefore, Figs Ila and Ila' are
equivalent. Trees in Figs Ia, Ib and Ic are
examples of facts in three different fields:
arithmetic, (stylistic) permutations, and meal
planning. Facts are always trees, but not all
trees are facts: obviously the trees in Figs Id
and le are not facts in arithmetic, even if free
in Fig Id is a sub-tree of the fact in Fig la.

Trees were purposely chosen as data structures:
they are capable of expressing complex information
and, at the same time, simple enough to be handled
algebraically, and by a computer.

2. TERVS

Formulas are used to represent tree patterns.
These formulas called "terms", consist of atoms of
information, variables, parentheses and commas.
Recall that an atom of information is either a
group of words, a number, or a special character.
In the left column of Fig 2a the syntactic
structure of a term is defined; this is a
recursive definition where complex terms are
defined from simpler terms; the simplest terms are
variables or atoms of information. Examples of
terms can be found in the left part of Figs 2b and
2c.

Je remercie Jacques Cohen de m'avoir aide a
rediger cet article en anglais.

A. Colmerauer 489

la

5 bimes the difference belween 2 Limes 3 amd L equals 0

that s ko soy : 5 x (a r3 .47 = 10
1b is- permotation- of le meol
'dll{.\\. "bumblf-ol mr{us:"\ rodishes seole cake

S
of ,;;\/ "your beackiful ™ _

v brio ve dishe, sole ca ke comtitdts a meal

.mutl‘¥u‘ Mnrq‘,i‘?\>'n . ud /D- \

"your beautiful eyes > o Ioé-\m"[
"make me* il

" ¥

The sequence : ‘diey, “oflove, "hoautifud mameise ; Your beavtiful eyes '

‘mae ma’, i o pumotation of the uqewe . beautiful mequise

“yow beoutifol tyes”, ‘moke me’, die”, "eof love’.

14

times

7\
£ 3

1e

equal

7/ \
F) 3

490 A. Colmerauer

Variables occurring in terms represent unknown
trees. Therefore, the tree expressed by a term
will depend wupon the trees assigned to the
variables. Such an assignment "X", called a
"tree-assignment", is just a set of pairs
"xi:=ai", "ai" being the tree assigned to the
variable "x;". The right column of Fig 2a gives

the tree "a" represented by the term "t" after the
application of tree-assignment "X". It is assumed

Figs 2b and 2c depict two examples of
tree-assignments. Example 2b shows that it is
possible to find in the assignment "X", variables
which do not occur in the term, but the contrary
is not possible. In example 2c, the term contains
no variable; this means that the corresponding
tree does not depend on the assignment. The last
example shows a systematic way of coding a finite
tree by a term without variables.

that if "t" contains no variable, an empty

tree-assignment can be applied.

26 ‘x“.:al
Kz{xy:zQy

Tree “0" obtuined from the term LT

The. 3 powitle forms of o term "t"‘l

Application of Hhe
tree- assignment X

.1_] "x" Iy u "
=D
a \-mr‘ia:h_i_g bree [» 8
2] "W — tree “a" veduced
an_afowm of informakion| To tw leaf lobeled "K"
. LY o' labDeled "K'
o k(k,,te, r""')l u:.':'h r:o,m.(-::;‘ from
lege T right in the
sequence of, sub - brpeg)
whue "W”™ (s an b by <3 b ahfmned
afom of informakion — by aphri:‘mll'non I?t{- X"
and wheve the bi's fo "t "L, m
are terms produced K
{ollowing +he above — T
3 roles. A
z .
b s 1= P/I“E /hme:s\
- n}{n{f .Plos\
Xz { xq:=times Eimes 3 |/ 2
- P
®,:z 3 plus io
times(minvs (times (%, |10),%24), %,) =—— —t
! £
2c equals

rd e
/hln!{ 10

equals(bimes (5 | minvs (Fimes(2,3),4)),10)

= PN
2 3

3. CONSTRAINTS

Prolog is a language which
"aj" represented by variables ''xi". This
computation is done by accumulating constraints
that final trees must satisfy. These constraints
limit the values variables can take, that is the.
tree-assignment of variables "xi" by trees "ai".
As shown in Fig 3a, a constraint "C" consists of a
set of elementary constraints, each of them to be
satisfied. An elementary constraint is either a

"computes" on trees

pair of terms "<S8J,SJ'>" which will represent
equal trees, or a pair of terms " <tk,t|<")" which
will represent unequal trees. Fig 3a illustrates
the general condition under which a
tree-assignment "X" satisfies a constraint "C".
"X" is also said to be a solution of "C". Fig 3b
shows an example of a constraint "CI" satisfiable

by the tree-assignment "XI". In Fig 3c there are
three constraints which cannot be satisfied by any
tree-assi gnment.

During the exscution of a Prolog program, the

basic operation gonsists of verifying whether a
constraint is “satisfiable" or not (by at least
one tres-assignment). This is done by "reducing”
1t, as seen in Fig 3d: the purpose af "reducing"

is to simplify the constraint 1n order to make all
its solutions explicit. This 1nvalves exhibiting
variables distinct from pach other as left members
of equalities. To do so, wWe use a specific
property of trees: the unique decomposition of a
tree inta immediate subtrees. This property
permits us to replace:

{pair tequal (v, 10} ,yi=pairix,times{S,z) 13}
by
{equal (y,10)=x, y=times(5,z)1.

Note that 14 this property would hold for numbers,
we would wrongly conclude that the two constraints
"{x#3=2+y}" and "{n=2,3=y}" are eguivalent' If we
sucteed 1n praducing equalities where left members
are distinct variables and where there are no
inequalities, then the constraint 1s satisfiable.
Its solutions are directly ohtained by assigning
arbitrary trees to variables not appearing as left
members.

If inequalities are left, let “n" be their number.

A. Colmerauer 491

fnother basic property allows us to split the
initial problem into "n* independent and simpler
sub—problems: a constraint of the form
"Cui{tydty ", ..., tn#tn 3" is satisfiable if and only
1f each of the constraints "Cuf{t,#t," ", N
"Cultp#tp*+" is also satisfiable. Again, this 1s
not true in the domain of natural integers
"0y1,2,...", betause it would be possible to show
that the constraint "{ux+y=I,u#0,xfl,x#2}" has at
least one solutian since the constraints
"{uey=t,ug0r", "xby=l,x# 13" and "{uty=l e#EZ2"
have at least one' In order to verify that the
constraint "Cui{t;#t; 3" 15 =atisfiable (knowing
that "C" already 1s) we must check that the
tonstraints “C" and "Cu{ty=t;’;" are not
equivalent. If the constraint "Coft,=t; 7" 1% nat
satisfiable, we can even remove the 1nequality
"ti#ti"", as in example 3d.

In the same way as we simplify equalities, it s
possible to simplity :nequal:i:ties. This allows us

to present any satisfiable constraint n E
"reduced farm": this reduced farm shows that the
constraint is satisfiable by making all its

solutions explicit. The general! form of a reduced
constraint containing inequalities i1s beyond the
scope of this paper (see Colmerauer 1982).

3a
t ¢ ’
NI VAREE vaR M ER AL
y: f dilteren & g dcl:{tre.nb
Sﬂ-mt. tree same frec {-::‘:-\ ov&te ancfher {-lp: au: ansthey
ib . _ .
= ;=49 =849 x:= equal 2= Eimes = Ml hug
xl{v‘aﬂ wi=3 2 ‘{"\\) 5/---...,__’?J P
times o 5 minug times
- - A
5 /'“'-..'!_‘:5 Fimes & 2 3
bimes A
~ 2 3

minus (I‘i’m@ﬁw =

.
‘-
t.qv((“times.

+inf;’

T minus
5"’ ‘w\ni!:i ,5@5E; meq
Eimds 4
: \-..5) 3
r val ime 3 times (3, ti (5’
{q ‘(1:::?’(-:"{:(2) } { "-5(n?gq.%h's{-'::hk

C::{'x: equl(%,la)ﬁ_-, himes (5,5))

Ct:{Eir!:ij“!lo), 4), = ﬁir ‘ %, bimes {5 ‘11).}4)t'1:_;nir(_\:'J
X:‘h‘\3>pnh- X

\g
t
P“,,:\.
499

3

ming { times (2 3)‘

N

times (=, u)= & n.e; (na,'x.

'ﬂ.h !

3)) mu@, g)#mmvs(g.ti

o)

) 3‘*‘3}

bnnr w,

\'3 minug (mc% 3)1“)}

492 A. Colmerauer

43 is - u\dltss-Po-H\ kb
;.quulec
left =~ yequence
ekt stq_:_:nu
le H’ scqu:nu
'“Ft rtquince
v.%ht sequem.e
lt[lt .
N 15-endless - P°H‘ 4 c:s-txdlfSS'Pd-‘l'h ?5?£ni'.tss-Pnr&
Sequehce sequ e Sequence
cequence left* Sequence ff "E/cqu;:m
- . WENEES
rgut Sequence hight }:qu__t’ncc hﬁhrltft‘/ o Heqoence
|¢fl.- e equence
n'akt ‘{léqueucf_
Ld x = is-etndless - poth CHI he o/F\ Iy be'
8, = sequence (feft yy) ?/ M/F“-IF_H \, F
; 5

s artoc i T A «lﬂ e
3'. =i2quence Cl'ight'l lé,g) 'lo 3‘

ﬂ,,_:seqowaﬂ{-t‘, 4) '

I,.d'{ x = is-endless - path (‘3) 5

Yy = Sequence {left, sequemce (vight, sequence (left v)} }

4. INFINITE TREES

As surprising as it may be, it is also possible to
handle in-finite trees. Such a tree is shown in Fig
4a: it represents an endless path along the
cross-like -figure shown in Fig 4b. It is possible
to present this tree by the diagram with a loop in
4c, obtained by merging all the nodes from which
isomorphic subtrees arise, that s, -from which
equal subtrees arise. If we omit to merge a -few
nodes, we obtain the different diagrams in 4c? and
4c'' which still represent the same tree. That Fig
4c is a finite diagram means that the initial tree
in 4a contains a finite set of configurations or,
more precisely, that the set of its subtrees is
finite: this is the definition of a "rational"
tree. Of course, all finite trees are rational.
Although finite trees can be defined by simple
terms without variables, infinite rational trees
can only be defined by the constraints they must
satisfy. Taking into account successively all
sides "1,2,...,12" of the cross-like figure in 4b,
we construct the constraint 4d which is satisfied
only in case of the assignment of "x" by the tree
in Fig 4a. From the diagram shown in Fig 4c, we
can construct a simpler constraint 4d', having the
same property.

For the ~curious reader
example of a non-rational

we provide in Fig 4e an
infinite tree. After

merging all possible nodes this tree yields the
infinite diagram in Fig 4e'. Note that it would be
necessary to have a constraint, made from an
infinity of elementary constraints, to completely
describe this type of tree.

5. A PROLOG FROGRAM: LET’S EAT WELL

theoretical development ta
present an example of @ Prolog program. The
program computes the composition aof "light" meals
and consists of the three parts ghown 1n Figs Sa,
Sb and Sc.

We now 1nterrupt our

In Fig Sa we describe, by 11 rules, a possible set
of meals, regardless of their dietetic qualities.
The first rule states that:

~ if "a" is an appetizer and,

- if "m" is a4 main course and,

- if "d" is a dessert,

then the triplet "a,m,d” is a amsal.
The next two rules state that:

- if "m" is a fish, "m" is a main course and,

- if "m" is a meat, "n" ix a main course.
The remaining eight rules classify & few courses.
In Fig 5a’, the computer answers two guastions
based on the knowledge described in Fig 5a. The

first question is:

what are the values of “m",

that make “m* a main course?
There are several possible answers and each ANEWET
15 given as a reduted constraint on "m", The
serond questian 1s:

what are the triplets "a,m,d"

which constitute a meal?

The rcorresponding answers are alsg presented 1n
Fig 3a’.

In Fig 5b we introduce a3 minimal tnowledge of
arithmetic of positive integers: the addition
“uky=z? with “r10m, dengted by
"small-sumiz,y, 20", The fact that "x+y=z" implies
"ix+l)+y=iz241)" is used to define the notion
"small-sum” from the notion “small-successor”,

utilizing two rules. The notion “small-successor"
15 defined by eight rules 50 that
"small-successar {x,y)" corresponds to the equality
“y=x+l" with t"ydI0". Fig ob’ presents the

A. Colmerauer 493

computer’s answers to a few questions about
arithmetic. Observe that, according to the
formulated questiang, the same small Prolog

program of Fig 5b also computes the sum, the
difference, or decomposes a number 1n all possible
sums of two numbers.

Fig 5c defines a light meal (based on Figs 3a and
Sb) by assigning a certain amount of caloric units
to each course, and restricting to meals which add
up to a number of units smaller than {0. The main
rule of Fig 5c states that:

~ if the triplet "a,m,d" is a meal and,

- if the number of units of “a" 1s “x" and,

- if the number of units of "m" is "y* and,

~ if "x+y=u" and "u{l0" and,

- 1f the number of units of "d* is "z* and,

= 1f "z+u=v" and “"wii0%,

then the triplet "a,m,d" is a light meal.
In Fig %5c¢', the camputer lists the seven allowed
meals!

Sa 5b

meal {a,m,d} -,
appetizerial

mainim)
dessert (d) } little-sumil, sy} -3 meal {a,m,d)
little—successor (x,y}; units{a,x)
mainim) -> fish(m); little-sumix’,y,27) > units(m,y)
main(ml - meat(mls little~successor (x,x") little-sumis,y,u)
little~sumix,y,z) unitedd,z}

appetizer iradishes) --}
appetizer (pate! -}

fish(spole) ->3
fishitunal -3;

meat (porc) -3
meat (heef) ->}

dessert (cake) —ij
dessert (fruit) ->;

little-successoriz,z’ls

Jittle-successoril,2} ->;
little-successor (2,3) ->j
little—surcessor (3,4) ->;
littie—successor{4,5) ->;
jittle~successor (3,6) =>;
little-successor (&,7) =3
little—successor (7,8) -3
little-successar (B, 9) —3;

light-meal (a,m,d) ->

little—sum(z,u,v);

units{beef,3) -
units{fruit,) ->;
unitsicake,S) ->;
unitsipate,&) ->;
units{pore,7} -»;
units{radishes,1} ->;
units(sole,2) ~»;
units{tuna, 4} ->;

5b°

]

Sa main(m:?
{m=splegl
ia=tuna?l
{m=porcl
{m=beef}

{n=72

meal {a,m,d)? {x=33

{asradishes, mascle, d=cake}
{asradishes, m=sole, dafruit}

little—sum{d,3,x17

littie—sumid,x,?)?

{ittle—sumix,y,5)7

5¢

light-~maal {a,m,d)”

{azradishes, s=sole, d=cake}
{acradishes, mcscle, dofruitl
{a=sradishes, ms=tuna, d=fruit}
{a=radishes, m=porc, dafruit}
{a=radishes, msbesf, d=cake}
{a=radishes, me=bpef, d=fruitl

{a=radishes, m=tuna, d=cake} {xfl’ y=4)

: - {(x=2, y=3}
{a=radishes, m=tuna, d=fruit} _ _

X {x=3, y=2}
{a=radishes, m=porc, d=caks} =4, w=l3
{a=radishes, m=porc, defruitl » ¥
(a=radishes, m=heef, dvcake}

{a=radishes, m=beef, d=fruitl

{ampate, m=scle, d=cake)

{a=pate, m=sole,
{axpate, s=tuna,
(a=pate, m=tuna,
{a=pate, m=porc,
{aspate, m=porc,
{a=pate, w=huef,
{a=pate, m=bmef,

gefruit}:
dxcakel
d=fruit}
d=cakel
d=fruit’
d=cakel
dwfruitl

{a=pate, m=sole, dzfruit}

494 A. Colmerauer

#:.,’:'*
whu I: -a alom
manl{radishey, m_d

Plﬂu?a PROGHHJ‘!‘.
{-m-h b;tt?ncz Wks ﬂ" 4'

LI) te b I C;
(.l)l_to —"t til.vc.-!
apphisradishe) 15 thee c::“.':*:?::";':?,
W:R{Pah)—); (often empty

main ((

¥nain ﬂoll-) >3 ,

desserc (fadte) >

dessert (fRit) =

imenl (a,m, d) S eppeliter(a) mam(m) deswri(cl) 5

INEINITY OF mULES OV TREES

ﬂ“hs: Y Hﬂ:m:;wuhh:.:k ctn.llw
B ory
inc ol l';t
2, S e ol A
!nfus.h na ﬂm_ role’s constming C.

predezr &’a:“m%ﬁz s ot one d

Misbes () gy ;
: L’l) A, - a . By
“::i:,ur the ;-"; htil% t."ré.;

maal ._;,aﬂlzl‘lnr Prain dexert
el J,..T“v.l wal vl wal
u\g-d - Wh‘w i &n!rl:
.p& sdgcnh'f_ pn‘h sok cdfc

SET ©OoF ALL TREES

6. FORMAL MEANING OF PROL06 PROGRAMS

Fig 5 informally described a Prolog program. We
now formalize its meaning. For most languages, the
meaning of a program is given by the succession of

elementary operations which the computer s
supposed to perform. This is not true of Prolog
which, as presented, is a formalism capable of

representing knowledge and to express questions
about it, independently of any computer. The
computer's simply computes the answers to these
questions.

In Fig 6 we derive in two steps the set of facts
(a circle) specified by a Prolog program from the
original program (a block). This set represents
the potential knowledge contained in the program.
Each of the facts is a tree, taken from all

possible trees. The first step is required since
the rules of a Prolog program are, actually,
pattern of rules, and since it is first necessary
to generate precise rules dealing with trees. The

second step can be performed in two ways: either
by considering the rules as rewriting rules
(definition 1), or by considering them as logical

implications (definition [I1I).

Fig 6 also —caracterizes the set of facts which
yield the answer to a Prolog question. A question
is a single term "t" which stating:
what are the facts of the form "t"?

The set of wvalid answers is the intersection of
the set of specified facts with the sub-set of
trees, obtained by assigning all conceivable trees
to the variables of term "tM.

A. Colmerauer 495

Fa.

(l)appc(‘iztr(mdidlfs) - ;
(Dappetizer (parey " .
@) LY T (Vlﬂ.l) _5-)

(‘1) mixin (Salc) -
(5) dessert (caue) 5
(6) dessert {frvie)—,

(1) meal (@,m,d) 5 appehizev(a) main(m Yolesiert ()9

76 meol(radishes, m, 437

?i";[N:Vﬂl,d:c«m] (3dfm=sole , d= cake}
L!){ n = veal d:frail"l Lﬁ)ﬂm zsole d= froit}

14 1Cs

)

To | meal(redishes, m ,d)

VR T

€. [foment s d agrer(imcison)]

C. | fmel (rois,) = nent o, m')]

{_ insatiafiable

jo'=mdiges, m=m’, d=d'}

dead end

['!I lﬂﬁ&fm(o.')main (m') demert (o)

: T W
dead - ands

Ca,|C. v {orpetioee(o’)oppetiequdisia)

{a‘:méﬂus, mem!, d=d']

[E main (m') dessert (d)

s TP
Cg[C:_g{mojn(m'): m:u'h(vml)]
{L":V&d'ﬁl\ts I,l‘ll.:l'v\', d:d'gﬂ': \Aa‘:'l

%?ﬁ?en‘;
Ca l Cg v {main ()= mainsole)}
i' o'z vodishes mzm!, o= o', m%; sole}

h@‘ dessert (d')] l Ts dessert ()

VAR e 1% e R R 5 9
MCS L {d“‘“t("l% *""*(“9]1 Ci|Cyv {dtssett(d'): densere(jit)]
[{&E'ﬂidﬂ}l!:ﬁ,d: 45"‘"-’}4"*}] {Q’:bdl‘ibt!,ll: lll',d: d‘l',lh':ﬂt‘ dfzfﬁl
(=]] a _

- - . = Sove
“w"{:;:«'ﬂ [y, [Cq i fdesari(d’) = desert (it} e | €y, v {dessertld) = dasart (o)) "‘“"““-""-{L"‘: frut
[{n!: ﬂld'“l(s' m= I'II'l d- d‘)‘l\":\ﬂ-lj J‘-‘l’uil_‘]_] [J&'=bdd\¢$, m= ll":d: d: m‘:a&,dﬁn&ﬁ

i J

Ta

aniwey -?,;{m = veal d-froit }

7. THE SEARCH SPACE

Fig 6 illustrated the
meaning of a Prolog program. Althougt both
definitions are conceptually satisfying, they
cannot be directly used to compute the answer to a
given question.

double definition of the

However, this computation can be performed on the
light of definition | by rewriting trees patterns
instead of trees, with the use of a finite set of
rules patterns instead of an infinite set of
rules. A tree pattern is a "term-constraint" pair,
the constraint limiting the represented trees; a
rule pattern is, in fact, just a Prolog rule.

In Fig 7b the question on program 7a, states:
under which constraints does "meal(radishes,m,d)"
represent only facts? To compute these constraints
the computer inspects the tree-shaped search space

angwer 3 - { w z Sole, d = cake]

of Fig 7¢. At each node there is a pair "(C;,Tj}",
"Ci" being & constraint to be satisfied, and "T{"
being a seguence of terms to be erased. At the
root of the tree we have the pair "(Cp,Tg!", where
“Co" 1is empty and the sequence "Tp" is the term
which constitutes the Prolog question., If at a
given node the constraint “C;" is not satisfiahle,
this node btecomes a dead end. If not, there will
be as amany arrows emanating from this node,
labaled “{(Cj,Ti}"*, to nodes labeled " (Ci+y Tisgl"s
as there are rules. In this particular example
there are seven arrows., The constraint "Cis+" is
abtained by adding to the constraint “C;" the
constraint "{bg=agl}", whers “bg" is the first
®lement of sequence "T;" and "ag" the laft mamber
of the rule which one attempts to apply. "Tiw" is
obtained by replacing the first slement of "Ti" by

the right mesbar of tha rules which is baing
applied. Before considering & rule, it s
important to rename variabiss (e.g. by adding

primes}, so ¢that the rule has no variables in

496 A. Colmerauer

common with already existing variables. The
constraints "C," which are satisfiable are those
which can be reduced; in this case, we place their
reduced forms just below them. The answers are

subparts of the reduced constraints "C,"s"
appearing ih nodes which cannot longer be
erpanded, since their "Ti’s" are empty. The four
valid answers are found in Fag 7c.

8

Ci is sohsfiable
&t T i3 not empty

in (ase Co

is sofisfiable
primt the
relevant

£ of Co

Toei:="S, . Sm, by b

8., THE PROLDG CLOCK

The best way of explaining in detai]l haw a Prolog
program runs on a computer 1s to i1dealize this
computer by a simple abstract machine. We call our
abstract machine "the Frolog clock” because its
basic function 15 to keep track of the time. This
machine consists of:

l. & cell "1”, containing & non negative i1nteger
representing the tame;

2. an 1nfinity of cells "Cq,Cq,Cqy..."
containing the constraints to be satisfied
at times 0,1,2,...3

(2]

. an infinity of cells "T5, Ty, 7g,..."
containing the seguences of terms which, at
times ¢,1,2,..., remain to be erased;

4, an infinity of cells "Rg,Re Rg,es.”
containing the numbers of the rules which
have been chosen at times 0,1,2,...

The rules are numbered "1” to "rmax" and the
machine has means of acessing them.

The machine’'s operation is depicted by two
concentric circles in Fig B: one of them is swept
clockwise ag time increases by one unit, the ather
is ‘swept in the opposite direction as tiee

Liconfains oh inkeger
‘Rpftﬁlht{ns time ,
C'L; tontaing the twwshraint Lo
be sabisfied ab me o,
TL: tombaing Hhe Sequence of
terms which remain te he
erosed ot bime o,
Ri: Contnins the number of the
rie dhosen at time o,
Fmox: 15 the mumber of the
last nile,
the welevant
port of Ci: is the subcowstTaint 'n a
Rduced [orm, concerning
the vanrabies oa:.w:'k: in
He opueshon .

decreases by one unit. It is possible to reverse
the time progression by crossing one of the two
one-way bridges which link one circle to the
other.

The execution of a Prolog program consists of
answering a question represented by a term. All
answers to be computed are constraints by which
the term represents specified facts. We start with
the pair "Cy,To)", "Co» being empty and the
sequence of terms "T," being reduced to the term
that constitutes the question. Each turn around
the outward circle increases the current
constraint "C" and transforms the sequence "T;'.
Note that if the rule already contains a
constraint "B", this constraint is added to the
current set of elementary constraints. The process
stops as soon as a non-satisfiable constraint is
generated, or the sequence "T;" becomes empty: in
these cases, we backtrack to the "past", to try
other rules. On the fly, if "Ci" is satisfiable,
an answer is printed.

In fact, the above process corresponds to sweeping
the tree-shaped search space of Fig 7, from top to
bottom and from left to right, the time "i" being
the level of the visited node.

The two programs in sections 9 and 10 provide
additional examples of more intricate Prolog
programs.

A. Colmerauer 497

Y

. "heautiful marguise”
"your heautaiful eyes"
"make me”

"die"

. "of love"

(LI

9
E,f'\u\ =>-(3,-(1,-2
3 /'\
1 P
Q‘ LT f

Pl"'-f-l ¥ 'nobu.h on

L)) = (3. (F.(2- O N=3 3.2 mt
iniv nobbdion

S¢

permutationinil,nil)

permutationie.x,z? -
permutationfs,y)
insertion{e,y.z};

-y

insertionie,x,e.x) -y
insertionie,f.x,f.y) ~>

1nsert10n(e. PV H

9d

permutation(!.2.3.m11,
u=1.2.3.nil2

®)7?

I
(&)

- 1 .3.mli

a o ey

permutationiZ.a.l.b.ml,2.84.c.d.,ni2}"?
{a=2, h=4, c=3, d=1}
{a=2, b=4, c=1, d=3I}
{a=4, b=2, c=3, d={3
{a=4, b=2, c=1, d=3}

Se

permutation {"beautiful marguise”."your beautiful eyes"."make me"."die"."of love".ml,x)"

ful -.ku1|
el Lavet t w

‘ol lowves -
cat Lsvnt t
T T
autiful oxd

“your Brduiiful &
Tmreutful

Tymur Wemutiiyl wy
lnur D!.ul‘!ul l!’!l

: beputrful mardqu
Cpbur Redufaiul w
Tpour oedurviul e

= ol Love
T
“mi vowve
tut loww

syour bebutsful spea” @ Lave” drec MREMTRLT I
Cpmar beaubtibul RPEeRT OE Lawe" T Cmaes mET O BERLTTfGE
peawtiiuk marouite- ‘al (Gué’ Cwaut BrauTiful myre

[r- Draulitul saraursr Ate oAb laeR” adt) {1 FRawrido o prur hesul mabe me ol lowe :1- :::b
f1s your bllulllul P aves cat lawas milj It Brant Gsme Dl ines due l.
Lrs your b aie” cal Lpve” min] o e mare me Lmauridub marmquiss o of Lowr an: n‘lI
1e-vour “heautibul mecquene ol Lowds RAE) e Aird we heAultinl waAuaE m r.-.I
[rr your breutsiul pyns CMiet i Anue brasliivl kerguine A1) I wave mr aen meastidun malgutan n.‘:
Bl akrauiwe Swtur BEAuTfwl eyesc cdie 6l layR’ a1l T nare mr alul myrs md veee n
THERUE I fyl marquie prur Beduldful rpens Toirc CAF Lowd® nild o T ne ul marauise Pul myrL et lues nlg
TRRur p#NUTiful Sord” hraeriful mErguiseT Air nf lawe” aill 14 wur ERRUTIUANE eyen BAdad Pl marauiar il dnue i
kOUF BERUTN UL Epes” Cdim Bravlslul magui e Bl Lowr I gruf Erautiun Eyry LARTTEY) hrepgttdu: marguiare b
Tyeur b ful Eyrs” “air o1 Toee BEEubIUh margut e yrul BEgybifuL tyer ol tnve e BARLTdTuL n\ll
NarguiEe ‘diec CyDul beautilul syes T {2 k¢ mE OF Inws youw BREUTC D0l ey At
TEEAGT RUl mATOUIER' CdieT Cpnur BEaubilul PyesT 1 Aiivr Bl tewE ynur ReAUTYDul wesy n::l
L IER TR R TLE Y Y LU LY T RN P) L nloLhue LI TN IS TTE TRl T Fudr Lrauliful eyrs L IJ
TEieT Cpaer tesut s tul © beaubtiiul mErquise” I DY Lavs paur Deavitful #pes” ::‘;
din’ Cyour brlutnrun ey BT AU CEEpub el marqut (o= mave #¢ Dl Lawe' " naawlllrll o
- pre " Tul marqurse R
e geiniTa i i S0 T dele W G weautite eeen i)
X veur Brautiiul r o AbwE Bequtrfyl mErAuLITA dre yAW bBemulidal ayewt oneld
L of lpse’ Chrsuliful sErquise” Cpaur Braulsful » ol 1Avr dre fwgala bl masgquine” ynol beauliduy ByEd REL]
THIEY el LluweT Cpeur Besutiiul Fyed bedwl oyl margul . Arcab Inue @18 your BERuTtlul yEST. bERL1tel marguive :::1
JOur BEANEIFal e - T LT {1 mesut1iul Rarm vour BeRLNITUL Even CRE o lOveT Cmaka me g1F '
‘DeRyl iUl maron "al Love' il L= yoaur pEagytul brautelul marquige of INwET mEkh ReT. ddT AN
"Drautiful mErouteec *or lowe" nil {1- peur BERubIF 4 ol luwé BFRUTAIUE marguiNe” makr &st Cdid” onil)
“make mET Cheastilul am nu {1. yOur bemutiful dyas OF ined masd BR o BemsaTiful mgcguide”. cdimt onily
ake me DA inwst nn o= your Dwmubidul #gat of laer makd Rp CgrR BEAMPadul margquite’ AtLE
avtiful sarguinr ¥our Bemutalul ey LI1} [v- Boenliful merguise ol LAvE Cynul BREuEsiul o rydt Ckabe bl et AL
“heBuTiiol mErgu I LTI I niy frecet tows beautcdul RErooiaf yOur BRautaful S¥EE RRLE AR _¢:._.n-:)
Tyour bEmettful LT TTRENTIE TOY | LN} {1-"0f Toee CpBur beautiful pyed” hPAliduy mErguiae o omale mee SdveT oo 1
TRAUT BERUNITUL ryfET mEbe mr Desufiful marguiae” C ntep fr--af Luwe your Besutiful epes ware mp Leawli'sl marguaise’ din” piidh
Tyout Weaubibyloey D4 .ove CBedutily nrLy . Cydur BAMME UL eyER mELE RE Erful maragine® niig
LT TYTIRY IR I niLy . marquiae Al jgus makr mes fai wyee cduee nl:l
TN prAULIFUl mprquiae CRARE mEC O Tub eyrwc TdiET AiLy
mil} Cmakd My neductful =mErAutEd
TeRRUTY LN mefaviae” alL Cmakr mec Tyaur Besulsiul trent
"ol lowe" neau nrl ‘maka mrc Cymar puaulilul wpen

LTI T T
marquies mEEF mEC
“heautitul MEFQuINe
Sk Chedutiful mErquin
gin your Besuttiul ey
"yhur Brautiiul Epey
“hamuitiub nefaurer BT

yrur Brautttul e¥
CpOur BAEUTIfuL e

Braursfu
lowe die
Love Qe
A

Tef LoveT CmEEUlTRUl mAFQuIER

“hraufiful ®EFquise your Beawt ifulow

ynur Brautcful ey

ToeRutiral WErguis
tarr Cbeautiiul
. nake meo

your Beaurtbul ®
“pour brautilul ¢
covaurrlur marqurts Tyour beaulatul sy
Tvmur Gwgutiful a4y
“pour BRgutilul

Terpul it
Cyowe paEuti
- anutilur oy

E1Pul margut

“neaylt bul “youf basutilyl Ay LINN]

PR L P '.‘y::‘:lll::llllul aya ':=|uuw| EErmuld .n‘\l] LT LT -‘:Iu.-" AR -.. -:::‘:‘L::al.::::u:‘u'::rn:l.u-l:'t"-itu:u“lu .:‘llllj
9. STYLISTIC PERMUTATIONS Also, since each node is labeled with a single
character, a dot, readablity is improved by using
In Moliere's play, "Le Bourgeois Gentilhomme", a infix notation: "u.v", instead of prefix notation:
bourgeois who wants to act as a lord (gentilhomme) (u,v) To further simplify, we omit parentheses

compliments a noble woman (marquise): whenever left-right association is implied.

"Beautiful marquise, your beautiful . .

eyes make me die of love." To assert that sequence "y" is a permutation of
Let us construct all of the compliment's possible sequence "x" we write “"permutation(x,y)". The
variations, as the bourgeois tries to do in the first rule of Fig 9c states that the sequence of

play.
parts,

The sentence is first decomposed into five
which are given in Fig 9a, each part made
up from one, or a few unseparable words. Starting
from an initial sequence with these five
components we produce all variants by generating
all the permutations of the sequence.

We first have to choose a way of coding a sequence

length zero, that is the empty sequence,
one permutation, itself.

has only
The second rule specifies

that, in order to permute a non-empty sequence,
that is a sequence of length "n+1", we remove its
first element "e" and obtain a sequence "x" of
length "n"; we then compute any permutation "y" of
this sequence "x" and insert the element "e" in
any position of this sequence and produce the

by a tree- Since it is necessary to have a desired sequence "z". To insert an element "e" in
notation for the empty sequence, the sequence a sequence “x" and obtain a sequence 'y", we
"3,7/2" is represented by the tree in Fig 9b. introduce the term "insertion(e,x,y) We either

498 A. Colmerauer

insert "e" be-fore "x" (third rule of Fig 9c¢), or have to be added to each column of the sum.
we insert "e" in the sequence which has its -first
element removed (-fourth rule of Fig 9c). These The program consists of the three parts shown in
four rules of Fig 9c constitute the entire Figs 10b, 10c and I0Od. In Fig 10d, the table of
permutation program. sums up to 20 is programmed: any elementary school
student knows this table by heart but the machine
Fig 9d presents the computer's answers to two has to compute it over and over again since it
questions: only knows how to add "1" to a number. We use
what are all permutations "x" of the "plus (x,y,z)" to mean “x+y=z". Each number, is
sequence "1,2,3"? represented by two digits, with a dot between them
and (we use infix notation as in Fig 9). Fig 10c
what are the values of the variables presents the definition of a sequence without
"a" "b" "c" and "d" so that "2.4.c.d" repetition (note that the last rule of Fig 10c
is a permutation of "3,a,l,b"? contains a non-empty constraint). In Fig 10b, it
Finally in Fig 9e, we ask the question producing is stated that to compute a solution it s
the 120 stylistic variants that the "bourgeois necessary to assign distinct values to the letters
gentilhomme" might have said' "S,E,N,D,M,0,R,Y", and that, in each column of the
sum, a property called "admissible", has to be
satisfied between the carry-over, the three
10. SEND MORE MONEY letters of the column and the preceding
carry-over. Of course, this property "admissible"
The purpose of this example is to solve a is defined using the property “plus” and the
classical cryptarithmetic puzzle: assign 8 property "plus-one". Since the numbers "SEND",
different digits to the 8 letters "MORE", and "MONEY" should not begin with the
"S,E,N,D,M,0,R,Y", such that the sum digit 0, an inequality constraint is added to the
"SEND+MORE=MONEY" becomes valid. To do so, we first rule of Fig 10b. In Fig 10e, we challenge
introduce in Fig 10a’ the four carry-overs "ri", the computer to provide us with the three mystery

"r2", "r3" and "r4" which can be null and which numbers.

A. Colmerauer 499

100 10 % EeR 10 d
+ ﬁﬁ:@ SEND PIUS(0.0,%, K} =)
_____ + MORE less—than-twenty(x};
- plusix’,y,z") -»
roNEY MONEY plus=pne(x,x")
plusix,y,2)
0b I0¢ plus-onetz,z");

solution(S.E.N.D,M.D.R.E,M.0.N.E.¥) —>

without-repetition(S.E,N.D.M.0.R.Y.nil)

admissible(rl,0,0,M,)
admissible(rz,5,m,0,r1)
admissible(r3,E,0,N,r2)
admissibleird4,N,R,E, r3l
admissibled 0,D,E,¥,rd;,
{5=0, M=0>;

admissible(Q,ul,u2,u3, r) -5
plus{0.ut,C.u2,r,u3);
admissiblefl,ul,u2,u3,r} ->
plusiC.ul,0.u2,)
plus—one{x,r.ul);

without-repetitioninil) =33

withogut-repetitien{u.l? -
out—of lu,l}
without-repetitiontl);

out-of tu,nil} =23

out—of luyv.1) =~
out-of {u,l7,
{u=vl;

0 e

solutionix,y,z)?

(xx9.5.6.7, y=1.0.B.5, z=1.0.6.5.2}

less—than-twenty (0.0} -3
less~than—twenty(y) -2
plus—anelx,yl;

plus-one(0.0,0.1) =>;
plus—one(0.1,0,2) =>;
plus—one{0.2,0,3} —33
plus—one(0.3,0,4) ->;
plus-one(0.4,0.5) ->;
plus—one (0.5,0.8) ->3
plus-one (0.4,0.7) —3;
plus—ane(0.7,0.8) =>;
plus—one(0.8,0.9) -i;
plus—one(0.%9,1.0) -i;
plus-ocnef1.0,1.1} ->%
plus—onre{1.1,1,2) ~2>;
plus—one(3.2,1.Z2) -3;
pius-onefl.3,1.4} -3
pius—oneil.4,1.9} -;
plus—one(i.3,1.8) -
plus-one{l.&,1.7) -3
plus-one(1.7,1,.8) ->;
plus—one(l1.B,1.7} ->;

