
T o w a r d s K n o w l e d g e A c q u i s i t i o n f r o m N a t u r a l L a n g u a g e D o c u m e n t s

- - A u t o m a t i c M o d e l C o n s t r u c t i o n f r o m H a r d w a r e M a n u a l - -

Toyo-ak i N ISH1DA, A k i r a K O S A K A and Shu j i D O S H I T A

Depar tmen t o f I n f o r m a t i o n Science
Facu l ty o f Eng ineer ing , Kyo to Un ive rs i t y

Sakyo-ku , Kyoto 606- J A P A N

A B S T R A C T

In th is paper, we explore automatic model construct ion
by analyz ing na tu ra l language documents. The
extracted model w i l l be ut i l ized by a C A D system. A
system called h m U , in the course of development, is
designed to al low knowledge on very complex hardware
module l i ke L S I or V L S I to be incorporated into i ts
knowledge base. The acquired knowledge w i l l be
u t i l i zed for he lp ing human designer understand the
component f rom var ious levels of abstract ion. The focus
of th is paper is at tent ioned more to issues on knowledge
representat ion and model inference than tha t on
na tu ra l language analysis. H ierarch ica l model is
employed. In par t icu lar , cause-effect representat ion is
used to make it clear how actions of each module and
events are related to each other. A br ie f descript ion is
given to i l lus t ra te our approach.

1 . I n t r o d u c t i o n

One of the d i f f icu l t ies w i t h expert system is
knowledge acquis i t ion. The fact t ha t most of h u m a n
knowledge is in tegrated as na tu ra l language
documents has led us to the development of a system
which can automat ica l ly acquire knowledge f rom
ex is t ing documents. In knowledge acquis i t ion f rom
documents, expressive power of na tu ra l language, in
par t i cu la r the ab i l i t y of represent ing any complex
object or s i tuat ion from var ious levels of abstract ion,
should not be sacrificed but be effectively u t i l i zed by an
expert system for CAD. The essential problem to be
solved consists more in model representat ion and
inference problem than in parsing. For example, the
resolut ion of anaphoric expression depends more on
domain specific knowledge than on l ingu is t i ca l l y
general knowledge.

A system cal led h m U (hardware manua l
Understander) is in the course of development, wh ich
w i l l analyze g iven na tu ra l language specif ication o f L S I
chips (such as microprocessor and the l i ke) , and wh ich

w i l l construct a knowledge structure specifying the
behavior of the chip. The acquired model w i l l be ut i l ized
by in te l l i gen t symbolic s imulator to give human
designer explanat ions about the chip. The in te l l i gen t
symbolic s imulator is also under development [N ish ida
1983].

hmU's ma in components are na tu ra l language
analyzer and model bui lder. N a t u r a l language
analyzer ut i l izes domain specific knowledge to resolve
ambigu i t ies , anaphoras, etc. Accordingly, the model
bu i lder and the na tu ra l language analyzer
communicates to each other. The detai ls are described
in [N ish ida 1982]. The model bu i lder receives in te rna l
representat ion obtained f rom na tu ra l language
analysis and bui lds an automaton-based hardare model
st ructure us ing common sense knowledge about
hardware, t ime, act ion, events, etc. In wha t fol lows, we
w i l l describe the model representat ion and model
bu i l d i ng procedure to more deta i l .

2 . A M o d e l f o r R e p r e s e n t i n g M u l t i p l e A g e n t
C o - O p e r a t i n g S i t u a t i o n

Th is section describes the hardware model
wh ich we used. The we l l defined hardware domain can
be modeled as a wor ld where mu l t i p l e agents are
cooperating each other to a t ta in a common goal.
Act ions are done in para l le l and are synchronized
th rough events. Use of h ierarchica l representat ion
gives h u m a n designer good unders tand ing of
hardware. For example, a phrase l i ke " * M R E Q is
asserted" can be given a good exp lanat ion, if a
statement l i ke " i t indicates tha t address to the memory
becomes v a l i d " is accompanied.

Our hardware specif ication model is h ierarch ica l .
H ierarch ies are l i nked together by indicates re lat ions.
Each h ierarchy consists of an event model and a set of
action models. To each hardware module, an act ion
model is def ined to specify the behavior of the module.
The not ion of h ierarchy is impor tan t in d ig i ta l c i rcu i t
design [McDermot t 1978, M i t c h e l l 1981, Stef ik 1982,
Sakai 1982, Sussman 1980]. In the event model , cause-

T.-A. Nishida et al. 483

effect representation is used to corelate actions of each
agent along with the time axis. The notion of cause-
effect relationship has been advocated to be useful in
understanding cooperating actions and events [Rieger
1978]. The action model of an agent represents the
actions taken by the agent when a specified input event
takes place. This representation is independent of the
internal structure of the agent, and makes it possible to
give the abstract level description of any complex
hardware.

3. Model Inference Procedure

The model builder is given some information
from the natural language analyzer and other
information from the diagram analyzer (currently
pictures like time chart are manually encoded into
symbolic expressions), and it attempts to construct a
consistent model from inputs. Since the information
from the natural language analyzer may be vague or not
specified to ful l details, the model builder has to make
inference in the hardware domain. Sometimes model
revision may be needed to correct arbitrary choices that
are made due to the lack of information. Accordingly,
the task has much in common with truth maintenance
system [Doyle 1979]. The model builder mainly makes
forward inferences using common sense knowledge. In
this paper, we concentrate on the descriptions on
hardware behavior and assume other parts of the
hardware manual such as pin descriptions, have
already been analyzed and converted into the
knowledge structure. The below illustrates a part of the
knowledge:

The model inference procedure involves the
fo l lowing types of reasoning:

(a) Seeking an action wh ich causes a given event: th is
task w i l l be done us ing action-event def in i t ions.

(b) Seeking values of case slots wh ich were not f i l l ed by
the na tu ra l language analyzer: th is task w i l l be done
us ing def in i t ions for ind iv idua ls .

(c) L i n k i n g descriptions of each h ierarchy us ing
indicates l i ks .

(d) Reasoning about cause-effect re lat ions between
events: th is reasoning ut i l izes act ion-event def in i t ions.

(e) M a k i n g vague expressions more accurate: th is task
is done us ing axioms for event and act ion. Example of
such axioms can be found in [McDermot t 1982].

(f) Revis ing a model if needed: each posit ion where
a rb i t ra ry acoice was made is marked . Those positions
are candidates for reconstruct ion when any
contradict ion takes place.

(g) V e r i f y i n g const ra in t condi t ion.

F i g . l i l lus t ra tes how the descript ion: " * M R E Q l ines
goes low at T l " is incorporated in to the model. As is
seen f rom the f igure , act ion and event models of each
h ierarchy are revised so as to be able to give explanat ion

484 T.-A. Nishida et al.

to the input . Symbols attached to the f igure indicates
which inference rule is made.

4. Conc lus i on

Current ly , a simpl i f ied version of h m U is in the
course of development, where the focus is main ly
attentioned to rather basic issues, i.e., na tura l language
analysis, discourse analysis, canonical t ransformat ion,
and reasoning about action, t ime, and event. However,
the i n i t i a l experiments by hand reveal fundamental
va l id i ty of our approach. Some of them are i l lustrated
in the appendix.

References

[Doyle 1979] Doyle, J . , A T ru th Maintenance System,
A l 12(1979), 231-272.

[McDermott 1978] McDermott ,D., Ci rcu i t Design as
Problem Solving, in Lamtombefed.), A r t i f i c i a l
Intelligence and Pattern Recognition in Computer A ided
Design, Nor th-Hol land, 1978, 227-252.

[McDermott 1982] McDermott ,D., A Temporal Logic for
Reasoning About Processes and Plans, Cognitive
Science 6, 1982, 101-155.

[Mi tchel l 1981] Mi tchel l ,T .M. et a l . , Representations
for Reasoning About D ig i ta l Circui ts, in Proc. 1JCA1-81,
1981,343-344.

[Nishida 1982] Nishida,T., Kosaka,A., and Doshita?S.,
On Automatic Extract ion of Informat ion from
Hardware Manuals, Technical Report AL-82-68, IECE
of Japan, 1982, (in Japanese).

[Nishida 1983] Nishida,T., Kosaka,A., and Doshita,S.,
On Act ion Description Model and its Inference for
Hardware Manual Understanding, in A n n u a l
Convention Records of IPS Japan, 7C-1, 1983, (in
Japanese).

[Rieger 1978] Rieger,C. and Grinsberg,M., A System of
Cause-Effect Representation and Simulat ion for
Computer-Aided Design, in Lamtombe (ed.), A r t i f i c i a l
Intell igence and Pattern Recognition in Computer A ided
Design, Nor th -Ho l land, 1978, 299-333.

[S a k a i l 9 8 2] Sakai,T., e t a l . , An Interact ive Simulat ion
System for Structured Logic Design, in Proc. A C M I E E E
19th Design Automat ion Conference, 1982, 747-754.

[Stef ik 1981] S te f ik ,M. and Bobrow,D.G., L inked
Module Abstract ion: A Methodology for Designing the
Archi tectures of D ig i t a l Systems, KB-VLSI-81-9,

XEROX PARC, 1981.

[Sussman 1978] Sussman,G.J., SLICES: At the
Boundary between Analysis and Synthesis, in
Lamtombe (ed.), A r t i f i c i a l Intelligence and Pattern
Recognition in Computer A ided Design, Nor th-Hol land,
1978, 261-298.

T.-A. Nishida et al. 485

A p p e n d i x : O v e r v i e w o f the S imp l i f i ed Ve rs i on o f
h m U

This appendix i l lustrates an overview of the
s impl i f ied version of h m U . Usual ly , input text can be
divided into diagrams and natura l language text
port ion. The acquisition task consists of diagram
analysis and natura l language analysis. After each step
is completed, the results are matched together and
consistent model w i l l be instant iated.

D i a g r a m E n c o d i n g

Diagrams are assumed to be somehow encoded
into symbolic expressions. The encoding rule is as
follows:

(step 1) label ing clock: generating new symbols to
name each clock pulse.

at T2 i : sampled(*MREQ)

In t ime chart arrows are often used to indicate
causal-effect relationships. Such informat ion should be
effectively ut i l ized dur ing the process of diagram
encoding. For example,

state-1: A T : —>state-2;

state-2: $ i : asserts(B);

A n a l y s i s o f D i a g r a m

From encoded diagrams, simple model inference
rules can be used to extract model structure. Here,
automaton description is based on D D L [Duley 1968].

(rule 1) supplementing agents: s ignal specification is
used. For example,

f rom: Aaf terT l I : asserted(*MREQ),

infer: Aaf terT l I : asserted(*MREQ) by CPU.

(rule 2) inference of automaton t ransi t ion arc:

for example,

f rom: Aaf terT l I : asserted(*MREQ),

infer: T l a : $ i : asserts(*MREQ).

486 T.-A. Nishida et al.

Natural Language Analysis

Natural language portion of input text is
analyzed sentence by sentence. The result of the phrase
structure analysis is translated into intermediate
representation. The intermediate representation is
desingned using the formalism of lexical functional
[Kaplan 1982]. Then it is further transformed into
canonical representation. During the process, discourse
analysis is carried out to solve simple cases of definite
noun phrase reference and ellipsis. Intermediate
structure is used as a discourse structure.

The below illustrates an intermediate
representation and canonical form for a simple
sentence:

Comparing Outputs from Natural Language
Analyzer and Diagram Analyzer

Roughly speaking, information from diagrams
like time charts, tells a lot about the described
hardware. So our strategy is first to construct a model
based on the information from diagram and then to
check it against natural language information. Figure
A- l illustrate this process for a version of sentence (1):

This same edge is used by the CPU to turn off the
*RD and *MREQ signal. ... (1)

References of Appendix

[Kaplan 1982] Kaplan,R.M. and Bresnan.J., Lexical-
Functional Grammar: A Formal System for
Grammatical Representation, in Bresnan(ed.), The
Mental Representation of Grammatical Relations, The
MIT Press, 1982, 173-281.

[Duley 1968] Duley,J.R. and Dietmeyer,D.L., A Digital
System Design Language (DDL), IEEE Trans.
Computers, Vol. C-17, No.9, 1968.

P R O L O G I N l O F I G U R E S

Ala in Colmerauer

Centre Mondial d' In-formatique
22 avenue Matignon, 75008 Paris

and
Faculte des Sciences de Luminy
case 901, 13288 Marsei l le Cedex 9

Abstract; Prolog is presented in a r igourous way,
through 10 eas i l y understandable f i gu res . I t s
theore t i ca l model is completly rewrought. Af ter
int roducing i n f i n i t e t rees and i n e q u a l i t i e s , t h i s
paper puts f o r t h the minimal set of concepts
necessary to give Prolog an autonomous existence,
independent of lengthy considerat ions about f i r s t
order log ic and inference ru les . Mystery is
sac r i f i ced in favor of c l a r i t y .

486 A. Colmerauer

Ar t i f i c i a l Intelligence interacts with many f ields
including psychology, l inguist ics, history,
geology, biology, medical science . . . These
sciences are complex, and special tools are needed
to represent and process the knowledge they deal
with. Furthermore, these tools should not
introduce new problems, inherent to computer
science. Traditionally, the science of knowledge
has been mathematical logic. Therefore it was
reasonable to turn to logic for help in developing
a tool for A r t i f i c i a l Intelligence: that was how
Prolog was born.

Prolog, developed in 1972 by A.Colmerauer and
P.Roussel, was at f i r s t a theorem prover, based on
A.Robinson's resolution principle (1965) with
strong restr ict ions to narrow the search space.
Credit is given to R.Kowalski and M.van Emden for
having pointed out these restrict ions as
equivalent to the use of clauses having at least
one positive l i te ra l (Horn clauses), and for
having proposed the f i r s t theoretical model of
what is computed by Prolog: a minimal Herbrand
interpretation.

However, Prolog's close links with Logic proved
sometimes to be inhibi t ing vis-a-vis i t s
implementation. It was necessary to reformulate
the theory to take into account implementation
constraints: this new theory is unencumbered by
distinctions necessary only in logic, and is
enriched by concepts indispensable for programming
purposes (such as inequalit ies). We can say that,
after a careful implementation, a new theoretical
model of Prolog emerged and it is this new model
that we present here in 10 commented figures.

The reader interested in further readings on this
subject is referred to the following:

On automatic theorem proving and logic:

ROBINSON J.A. (1979). "Logic: Form and Function",
Edinburgh University Press and Elsevier North
Holland.

On the links between logic and Prolog:

KOWALSKI R.A. (1979). "Logic For Problem Solving",
A r t i f i c i a l Intelligence series, (Ed- Nilsson,
N.J.), North Holland.

On the genesis of Prolog:

COLMERAUER A., KANOUI H., PASERO R. et ROUSSEL Ph.
(1973), "Un systeme de communication homme-machine
en frangais", Research Report, Groupe Intelligence
A r t i f i c i e l l e , Faculte des Sciences de Luminy,
Marseille.

ROUSSEL Ph. (1975). "Prolog, Manuel de Reference
et d'Utilisation, Groupe Intelligence
A r t i f i c i e l l e , Faculte des Sciences de Luminy,
Marseille.

A Prolog system, based on the ideas developed
here, and implemented on several computers (Apple
I I , Vax/Vms, e tc .) , is described in three Internal
Reports of the Groupe I n t e l l i g e n c e A r t i f i c i e l l e ,
Facul te des Sciences de Luminy, Marsei l les

COLMERAUER A. (1982). "Prolog I I , Reference Manual
and Theoretical Model".

VAN CANEGHEM M. (1982). "Prolog I I , User's
Manual".

KANOUI H. (1982). "Prolog I I , Manual of Examples.

1. TREES

From an abstract point of view, one may say that
the knowledge of an intel l igent being on a given
subject, is the set of facts that he or she can
generate on the subject. Therefore, knowledge can
be viewed as a set of facts, specified by a set of
rules. Each of these facts can be represented by a
declarative sentence. In our case we represent a
fact by a tree, drawn upside down, as the one
shown in Fig la. Each leaf and each node is
labeled with an "atom" of information: this atom
can be a word, a group of words, a number, or a
special character. Only the structure of the tree
is relevant. Therefore, Figs la and la ' are
equivalent. Trees in Figs la, lb and lc are
examples of facts in three different f ie lds:
arithmetic, (s ty l is t ic) permutations, and meal
planning. Facts are always trees, but not a l l
trees are facts: obviously the trees in Figs Id
and le are not facts in arithmetic, even if tree
in Fig Id is a sub-tree of the fact in Fig la.

Trees were purposely chosen as data structures:
they are capable of expressing complex information
and, at the same time, simple enough to be handled
algebraically, and by a computer.

2. TERMS

Formulas are used to represent tree patterns.
These formulas called "terms", consist of atoms of
information, variables, parentheses and commas.
Recall that an atom of information is either a
group of words, a number, or a special character.
In the le f t column of Fig 2a the syntactic
structure of a term is defined; this is a
recursive def ini t ion where complex terms are
defined from simpler terms; the simplest terms are
variables or atoms of information. Examples of
terms can be found in the le f t part of Figs 2b and
2c.

Je remercie Jacques Cohen de m'avoir aide a
rediger cet ar t ic le en anglais.

A. Colmerauer 489

490 A. Colmerauer

Variables occurr ing in terms represent unknown
t rees . Therefore, the t ree expressed by a term
w i l l depend upon the t rees assigned to the
va r iab les . Such an assignment "X", ca l l ed a
" t ree-assignment", is j us t a set of pa i rs
" x i : = a i " , ' 'ai" being the t ree assigned to the
var iab le "x1". The r i g h t column of Fig 2a gives
the t ree "a" represented by the term " t " a f te r the
app l i ca t ion of tree-assignment "X". I t is assumed
that i f " t " contains no va r i ab le , an empty
tree-assignment can be app l ied .

3. CONSTRAINTS

Prolog is a language which "computes" on t rees
" a j " represented by var iab les ' ' x i " . This
computation is done by accumulating cons t ra in ts
tha t f i n a l t rees must s a t i s f y . These cons t ra in ts
l i m i t the values var iab les can take, tha t is the.
tree-assignment o f var iab les " x i " by t rees " a i " .
As shown in Fig 3a, a cons t ra in t MC" consis ts of a
set of elementary cons t r a i n t s , each of them to be
s a t i s f i e d . An elementary cons t ra in t is e i t he r a

Figs 2b and 2c depict two examples of
tree-assignments. Example 2b shows that it is
possib le to f i n d in the assignment "X", var iab les
which do not occur in the term, but the contrary
is not poss ib le . In example 2c, the term contains
no va r i ab le ; t h i s means tha t the corresponding
t ree does not depend on the assignment. The las t
example shows a systematic way of coding a f i n i t e
t ree by a term without var iab les .

pa i r o f terms " < S J , S J ' > " which w i l l represent
equal t r e e s , or a pa i r of terms " < tk , t |< ') " which
w i l l represent unequal t r ees . Fig 3a i l l u s t r a t e s
the general cond i t ion under which a
tree-assignment "X" s a t i s f i e s a cons t ra in t "C".
"X" is a lso said to be a so lu t i on of "C". Fig 3b
shows an example of a cons t ra in t "C I " s a t i s f i a b l e
by the tree-assignment " X I " . In Fig 3c there are
three cons t ra in ts which cannot be s a t i s f i e d by any
t ree-ass i gnment.

A. Colmerauer 491

492 A. Colmerauer

4. INFINITE TREES

As surpr is ing as it may be, i t is also poss ib le to
handle i n - f i n i t e t rees . Such a t ree is shown in Fig
4a: it represents an endless path along the
c ross - l i ke -figure shown in Fig 4b. I t is poss ib le
to present t h i s t ree by the diagram wi th a loop in
4c, obtained by merging a l l the nodes from which
isomorphic subtrees a r i s e , tha t i s , -from which
equal subtrees a r i se . If we omit to merge a -few
nodes, we obtain the d i f f e r e n t diagrams in 4c? and
4 c ' ' which s t i l l represent the same t r e e . That Fig
4c is a f i n i t e diagram means tha t the i n i t i a l t ree
in 4a contains a f i n i t e set of con f igu ra t ions o r ,
more p rec i se l y , that the set of i t s subtrees is
f i n i t e : t h i s i s the d e f i n i t i o n o f a " r a t i o n a l "
t r e e . Of course, a l l f i n i t e t rees are r a t i o n a l .
Although f i n i t e t rees can be defined by simple
terms wi thout var iab les , i n f i n i t e r a t i ona l t rees
can only be def ined by the cons t ra in ts they must
s a t i s f y . Taking i n t o account successively a l l
s ides " 1 , 2 , . . . , 1 2 " o f the c r o s s - l i k e f i g u r e in 4b,
we const ruc t the cons t ra in t 4d which is s a t i s f i e d
only in case of the assignment of "x" by the t ree
in F ig 4a. From the diagram shown in Fig 4c, we
can const ruc t a simpler cons t ra in t 4 d ' , having the
same p roper ty .

For the cur ious reader we provide in Fig 4e an
example of a non- ra t iona l i n f i n i t e t r e e . A f te r

merging a l l poss ib le nodes t h i s t ree y ie lds the
i n f i n i t e diagram in Fig 4 e ' . Note that i t would be
necessary to have a c o n s t r a i n t , made from an
i n f i n i t y of elementary cons t r a i n t s , to completely
describe t h i s type of t r e e .

A. Colmerauer 493

494 A. Colmerauer

6. FORMAL MEANING OF PR0L06 PROGRAMS

F i g 5 i n f o r m a l l y d e s c r i b e d a P r o l o g p r o g r a m . We
now f o r m a l i z e i t s mean ing. For most l a n g u a g e s , t h e
meaning o f a program i s g i v e n by t h e s u c c e s s i o n o f
e l e m e n t a r y o p e r a t i o n s wh i ch t h e computer i s
supposed t o p e r f o r m . T h i s i s n o t t r u e o f P r o l o g
w h i c h , a s p r e s e n t e d , i s a f o r m a l i s m c a p a b l e o f
r e p r e s e n t i n g knowledge and t o e x p r e s s q u e s t i o n s
abou t i t , i n d e p e n d e n t l y o f any compu te r . The
c o m p u t e r ' s s i m p l y computes t h e answers t o t h e s e
q u e s t i o n s .

I n F i g 6 w e d e r i v e i n two s t e p s t h e s e t o f f a c t s
(a c i r c l e) s p e c i f i e d b y a P r o l o g p rogram f r o m t h e
o r i g i n a l p rog ram (a b l o c k) . T h i s s e t r e p r e s e n t s
t h e p o t e n t i a l knowledge c o n t a i n e d i n t h e p r o g r a m .
Each o f t h e f a c t s i s a t r e e , t a k e n f r o m a l l

p o s s i b l e t r e e s . The f i r s t s t e p i s r e q u i r e d s i n c e
t h e r u l e s o f a P r o l o g p rogram a r e , a c t u a l l y ,
p a t t e r n o f r u l e s , and s i n c e i t i s f i r s t n e c e s s a r y
t o g e n e r a t e p r e c i s e r u l e s d e a l i n g w i t h t r e e s . The
second s t e p can be p e r f o r m e d i n two ways: e i t h e r
b y c o n s i d e r i n g t h e r u l e s a s r e w r i t i n g r u l e s
(d e f i n i t i o n I) , o r b y c o n s i d e r i n g them a s l o g i c a l
i m p l i c a t i o n s (d e f i n i t i o n I I) .

F i g 6 a l s o c a r a c t e r i z e s t h e s e t o f f a c t s wh i ch
y i e l d t h e answer t o a P r o l o g q u e s t i o n . A q u e s t i o n
i s a s i n g l e t e r m " t " wh i ch s t a t i n g :

what a r e t h e f a c t s o f t h e f o r m " t " ?
The s e t o f v a l i d answers i s t h e i n t e r s e c t i o n o f
t h e s e t o f s p e c i f i e d f a c t s w i t h t h e s u b - s e t o f
t r e e s , o b t a i n e d b y a s s i g n i n g a l l c o n c e i v a b l e t r e e s
t o t h e v a r i a b l e s o f t e r m " t M .

A. Colmerauer 495

7. THE SEARCH SPACE

Fig 6 i l l u s t r a t e d the double d e f i n i t i o n of the
meaning of a Prolog program. Althougt both
d e f i n i t i o n s are conceptual ly s a t i s f y i n g , they
cannot be d i r e c t l y used to compute the answer to a
given quest ion.

However, t h i s computation can be performed on the
l i g h t of d e f i n i t i o n I by r e w r i t i n g t rees pat terns
instead of t r ees , wi th the use of a f i n i t e set of
ru les pat te rns instead of an i n f i n i t e set of
r u l e s . A t r ee pat tern is a " te rm-const ra in t " p a i r ,
the cons t ra in t l i m i t i n g the represented t rees ; a
r u l e pa t te rn i s , in f a c t , j us t a Prolog r u l e .

In Fig 7b the question on program 7a, s ta tes :
under which cons t ra in ts does "meal(radishes,m,d)"
represent on ly fac ts? To compute these cons t ra in ts
the computer inspects the tree-shaped search space

496 A. Colmerauer

decreases by one u n i t . I t is possib le to reverse
the time progression by crossing one of the two
one-way br idges which l ink one c i r c l e to the
other .

The execution of a Prolog program cons is ts of
answering a question represented by a term. A l l
answers to be computed are cons t ra in ts by which
the term represents spec i f i ed f a c t s . We s t a r t w i th
the pa i r " C 0 , T 0) " , "C0'' being empty and the
sequence of terms "T 0 " being reduced to the term
that cons t i t u tes the quest ion. Each tu rn around
the outward c i r c l e increases the current
cons t ra in t "Ci" and transforms the sequence " T 1 ' .
Note tha t i f the r u l e already contains a
cons t ra in t "B " , t h i s cons t ra in t is added to the
current set of elementary cons t ra i n t s . The process
stops as soon as a n o n - s a t i s f i a b l e cons t ra in t is
generated, or the sequence " T i " becomes empty: in
these cases, we backtrack to the "pas t " , to t r y
other r u l e s . On the f l y , i f " C i " i s s a t i s f i a b l e ,
an answer is p r i n t e d .

In f a c t , the above process corresponds to sweeping
the tree-shaped search space of Fig 7, from top to
bottom and from l e f t t o r i g h t , the t ime " i " being
the leve l of the v i s i t e d node.

The two programs in sect ions 9 and 10 provide
add i t i ona l examples of more i n t r i c a t e Prolog
programs.

A. Colmerauer 497

9. STYLISTIC PERMUTATIONS

In Mo l ie re 's p lay, "Le Bourgeois Gentilhomme", a
bourgeois who wants to act as a lo rd (gentilhomme)
compliments a noble woman (marquise):

"Beaut i fu l marquise, your beau t i fu l
eyes make me d ie of l ove . "

Let us construct a l l of the compliment's possible
v a r i a t i o n s , as the bourgeois t r i e s to do in the
p lay . The sentence is f i r s t decomposed i n t o f i v e
pa r t s , which are given in Fig 9a, each part made
up from one, or a few unseparable words. S ta r t ing
from an i n i t i a l sequence wi th these f i v e
components we produce a l l var ian ts by generating
a l l the permutations of the sequence.

We f i r s t have to choose a way of coding a sequence
by a t ree- Since it is necessary to have a
nota t ion fo r the empty sequence, the sequence
"3 ,7 /2 " is represented by the t ree in Fig 9b.

Also, since each node is labeled wi th a s ing le
character, a dot , readab l i t y is improved by using
i n f i x no ta t i on : " u . v " , instead o f p re f i x no ta t i on :
' ' (u , v) " . To fu r the r s i m p l i f y , we omit parentheses
whenever l e f t - r i g h t associat ion is imp l ied .

To assert tha t sequence "y" is a permutation of
sequence "x" we w r i t e "permuta t ion(x ,y) " . The
f i r s t r u l e of Fig 9c s ta tes tha t the sequence of
length zero, tha t is the empty sequence, has only
one permutat ion, i t s e l f . The second ru le spec i f ies
t ha t , in order to permute a non-empty sequence,
that is a sequence of length "n+1" , we remove i t s
f i r s t element "e" and obta in a sequence "x" of
length " n " ; we then compute any permutation "y" of
t h i s sequence "x" and i nse r t the element "e" in
any pos i t i on of t h i s sequence and produce the
desired sequence " z " . To inse r t an element "e" in
a sequence "x" and obtain a sequence "y", we
introduce the term " i n s e r t i o n (e , x , y) " . We e i ther

498 A. Colmerauer

i n s e r t " e " be-fore " x " (t h i r d r u l e o f F i g 9 c) , o r
we i n s e r t " e " i n t h e sequence which has i t s - f i r s t
e lement removed (- four th r u l e o f F i g 9 c) . These
f ou r r u l e s o f F i g 9 c c o n s t i t u t e t h e e n t i r e
p e r m u t a t i o n p rogram.

F i g 9d p r e s e n t s t h e c o m p u t e r ' s answers to two
q u e s t i o n s :

what are a l l p e r m u t a t i o n s " x " o-f t h e
sequence " 1 , 2 , 3 " ?

and
what are t h e va l ues of t h e v a r i a b l e s
" a " , " b " , " c " and " d " s o t h a t " 2 , 4 , c , d "
i s a p e r m u t a t i o n o f " 3 , a , l , b " ?

F i n a l l y in F i g 9e, we ask t h e q u e s t i o n p r o d u c i n g
t h e 120 s t y l i s t i c v a r i a n t s t h a t t h e " b o u r g e o i s
gent i lhomme" might have s a i d '

10. SEND MORE MONEY

The purpose o f t h i s example i s to s o l v e a
c l a s s i c a l c r y p t a r i t h m e t i c p u z z l e : a s s i g n 8
d i f f e r e n t d i g i t s t o t h e 8 l e t t e r s
" S , E , N , D , M , 0 , R , Y " , such t h a t t h e sum
"SEND+M0RE=M0NEY" becomes v a l i d . To do so , we
i n t r o d u c e i n F i g 10a? t h e f o u r c a r r y - o v e r s " r l " ,
" r 2 " , " r 3 " and " r 4 " which can be n u l l and which

have to be added to each column of t h e sum.

The program c o n s i s t s o f t h e t h r e e p a r t s shown in
F i g s 10b, 10c and lOd. In F i g lOd, t h e t a b l e of
sums up to 20 is programmed: any e lemen ta ry schoo l
s t u d e n t knows t h i s t a b l e by h e a r t but t h e machine
has t o compute i t over and over aga in s i n c e i t
o n l y knows how to add " 1 " to a number. We use
" p l u s (x , y , z) " to mean " x + y = z " . Each number, i s
r e p r e s e n t e d by two d i g i t s , w i t h a do t between them
(we use i n f i x n o t a t i o n as in F i g 9) . F i g 10c
p r e s e n t s t h e d e f i n i t i o n o f a sequence w i t h o u t
r e p e t i t i o n (no te t h a t t h e l a s t r u l e o f F i g 10c
c o n t a i n s a non-empty c o n s t r a i n t) . I n F i g 10b, i t
i s s t a t e d t h a t t o compute a s o l u t i o n i t i s
necessary t o a s s i g n d i s t i n c t v a l ues t o t h e l e t t e r s
" S , E , N , D , M , 0 , R , Y " , and t h a t , in each column o f t h e
sum, a p r o p e r t y c a l l e d " a d m i s s i b l e " , has to be
s a t i s f i e d between t h e c a r r y - o v e r , t h e t h r e e
l e t t e r s o f t h e column and t h e p r e c e d i n g
c a r r y - o v e r . O f c o u r s e , t h i s p r o p e r t y " a d m i s s i b l e "
i s d e f i n e d u s i n g t h e p r o p e r t y " p l u s " and t h e
p r o p e r t y " p l u s - o n e " . S ince t h e numbers "SEND",
"MORE", and "MONEY" shou ld no t beg in w i t h t h e
d i g i t 0 , a n i n e q u a l i t y c o n s t r a i n t i s added t o t h e
f i r s t r u l e o f F i g 10b. In F i g 10e , we c h a l l e n g e
t h e computer t o p r o v i d e u s w i t h t h e t h r e e mystery
numbers.

A. Colmerauer 499

