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ABSTRACT

The author's state-space
system has effectively optimized the
coefficients of linear evaluation
functions. The incremental approach uses
statistical performance measures from
completed solutions to bootstrap the
heuristic, which estimates probability of
task usefulness. These statistics are
clustered in feature space, forming a
mediating knowledge structure (region set)
between the direct performance measures
and the generalized evaluation function.
The regions are data-determined,
insensitive to noise, and allow management

learning

of interacting features through natural
piecewise linearity. Early experiment
with nonlinearity indicates stability,

flexibility and improved task performance.

1. INTRODUCTION

The evaluation function has frequent-
ly been used as a heuristic in what is
called best-first search [1,2,4,93. A
standard technique is to combine several
more elementary functions or features. As
argued in [3], forming a heuristic func-

tion from a set of features is theoreti-
cally as powerful as any other design.
The problem though is to merge features

usefully. Often the linear combination H
= b.f is imposed, where b is the coef-

ficient vector for the feature vector f,
though this is generally insufficient
[1,9]. Even with this restrictive

formulation, b is difficult to optimize.

The optimization should be governed
by some performance measure (such as num-
ber of states generated to reach the goal)
but often no solution whatever can be
found within resource constraints. Despite
this impediment, some approaches have been
very effective, e.g. [9]. In [8] the
present author described a successful new
basis for learning. The system implemen-
ted was able not only to solve the fifteen

puzzle, but also to optimize feature
coefficients for linear evaluation func-
tions, a unique result. Since the scheme

has good conceptual and experimental

Canada

support, work is underway to improve it.
One extension is to increase accuracy [7];
another is to accommodate feature inter-
actions, to allow more general evaluation.
The latter uses a natural piecewise linear
method outlined in [6], and developed,
implemented and tested here.

2. KNOWLEDGE STRUCTURE

Like other recent approaches [10], a
penetrance learning system (PLS) uses
completed searches of training problems.
Unlike them, it computes statistics mea-
suring solution density in feature space
(Fig. 1). Although it is data driven, PLS
is insensitive to noise since it is sto-
chastic. The raw statistics, which depend
on the problem instance set P attempted
and heuristic H guiding the search, are
called elementary penetrances p(r, H, P),
where r is a (rectangular) feature space
volume. From these data, a normalized
true penetrance estimate p(r) is computed.
This value is the estimated probability of
a state A being in a breadth first solu-
tion of a random problem instance, given
that A maps into r. Derived from repeated
observations and incremental computations,
the evolving evaluation function H s
designed to predict true penetrance.

To house the true penetrance estimate
p of a feature space volume r, a region R

is defined to be the quintuple
(r, ¢, P, e, b). The second element c is
the centroid, a representative of r. The

final two elements relate to p: e is the
error, an inverse measure of the
reliability of p, and b is a coefficient
vector, explained later. A set of these
regions, the cumulative region set C, is
both the control structure wused by the
problem solver and the knowledge structure
improved by the learning element (Fig. 2).
This set accumulatates information over
several iterations, as its regions are
incrementally resolved into smaller units

just adequate to express known relation-
ships. The result is an effective
economy, a refinement of Samuel's [9]
signature tables which did not alter data

categories automatically.
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3. LEARNING ELEMENT MECHANISMS

Wwhile [B] gives considerable detail
of the original implementation PLS1, the
main rnotions are sSummarized here to
motivate further development. The
incremental three step operation is
pictured in Fig. 2. First, given some
training problems and evaluation function,
the solver extracts penetrance statistics
from the resulting search trees.
Secondly, the clusterer modifies the
cumulative region™ setL based on  these
penetrance measures. Finally, the new
cumulative region set becomes data for the
regresger, a curve fitting algorithm which
generates an improved heuristic for the
next iteration. Together the clusterer
and regresser form the learning element.

The clusterer is complex. New regions
are formed when penetrance data are found
to diverge within any existing region BR.
This region refinement is realized by an
efficient algerithm that repeatedly =plitas
rectangles, until further differentiation
is not warranted by the recent data. In
any lteration after the first, these
elementary penetrances are heavily blased
by the heuristic¢ used to obtain them, so a
fine normalization procedure unbiases
values within R. Thus, penetrances for
newly =plit rectangles become commensurate
with the true penetrance estimates of the
cunulative reglons. Reglon refinement is
repeated in every 1iteration, s8¢0 that
knowledge 1s increasingly resolved.

A separate coarse normalization

algorithm operating over the whole feature
space obtains fresh true penetrance esati-
mates for established regions. This algo-
rithm assumes a pattern in the biased

Fig. 1.

Localized
Devaloped nodes from awarch tres T are mappad
into feature space F., The whole space penstrance
of T is 3/6, whereas Jlocalization in F gives

penetrance diseriminates,

(e.g.) thres elsmsntary penetrance valuas:
plry T = 179, plry,T) = 1/2, and pir, , T} = 1/3,

data. It smecoths the true penetrance esti-
mates of all established reglons against
the new elementary values within matching
feature space rectangles to find a conver-
sion factor to apply to all elementary
penetrances, After normalization, Gthese
new values are averaged with the old to
improve estimates. In this enetrance
revision, weights for the averaggng depend
of the accuracy of each datum. The end
result 135 decreased error in the combina-
tien, 8o that cumulative true penetrances
gradually become more inert (although
region refinement counters this trend}.

All this manipulation by the cluster-
er is designed to provide proper data to
fit true penetrance as a function of
features for the solver's heuristie. Each
region R = {r, ¢, f, e, b) in the cumula-
tive set ¢ has an undefIned feature coef-
ficient vector b after clustering, but the
regresser (Fig. 2) determines b from C.
(The contribution of each R is “inversely
related to its error e.) The regresser
rejects any useless or less general
features by zeroing their coefficients,
and decides the relative importance of the
discriminating features by setting their
coefficients to values best suiting C.
The next section will deseribe how b now
becomes a property of R, to accommodate
feature interactions.
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Fig. 2. Penstrancs lasrning &system PLSI. The
sassnce of PL3 knowledge 43 a aet of faature
space penstrance raglons, used as the asolver's
heuristis and to sccusulata axperience.



4. PIECEWISE LINEARITY

This method takes advantage of the
natural partitioning of the feature space
into regions (c.f. [1, p.430], [5, p.317])
and allows increasing departure from
linearity as the refinement improves in
later iterations (as the number of regions
increases). In this extension of PLS1,
the clusterer remains unchanged while the
regresser is altered.

Instead of a single penetrance-fea-
ture surface fitted over the whole space,
there are now as many of these hyperplanes
as regions in the cumulative set C. Each

region R = (r, ¢, p, e, by) of C is
viewed as the principal one for its own
regression; the coefficient vector b, is
computed using an R-centered weighting of
every contributing region Q e C. As
mentioned in the previous section, the
regression is already weighted according

to penetrance error e. In this new,
piecewise linear design PLS1a, the former
weight is multiplied by an additional
factor related to the distance between R
and Q, so that Q plays a greater role if
it is near R. In the determination of
this distance, the feature space s
deformed to capture the relative
importance of the various features.
(Details of this and related aspects are
provided in the appendix.)

Since each regression is still
linear, the process is quite stable. (In
contrast, permitting feature interaction
by using higher order models requires many
more coefficients and this 'uses up' the
data.) At the same time the piecewise
linear scheme PLS1a is flexible, allowing
a continuously variable amount of
nonlinearity in order to suit the current
power of the entire learning system. This
variability is mechanized by introducting
a system parameter called the localization

power L > 0 as an exponent for the
distance measure (again, refer to the
appendix).

To test the utility of this more
sophisticated learning element, the solver
was altered so that two new modes of
evaluation <can be selected. The first,
discrete piecewise linear procedure simply

predicts the true penetrance of a state A
according to the local heuristic function
of the region into which A maps. The more
complex evaluation mode, smooth piecewise

linear, uses all regions in the cumulative
set In every -evaluation, employing a
distance weighting like the one above.

Prelimarary program runs have been
made to discover characteristics of the
scheme: its utility, cost, and stability.
The cumulative region set used was a four
dimensional one for the fifteen puzzle
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[8]. Since these four features were
originally used in the strictly linear
system, they had been deliberately

selected for low interaction. Hence this
is a mild test of PLS1a. In the solver,
the cost increase of discrete piecewise
linear evaluation over the strictly linear
PLS1 mode is negligible, but edge effects
(discontinuities) vitiate the scheme;
performance is very poor. On the other
hand, smooth piecewise Ilinearity seems
promising; its cost is also low. Results
are shown in Fig. 3, where the extent of
nonlinearity is varied by choice of the
localization power L. In this curve the
optimum is attributed to two conflicting
factors: As L is increased some advantage
occurs because the relationships are
inherently nonlinear, and nearby regions
now play a justifiably bigger part in the

determination of each local heuristic.
However, distant regions, which  formerly
had a stabilizing role, now have a
diminished influence, so there is a
general loss of support. The inaccuracy
and graininess of individual regions
gradually overpower the benefit of

localization.

An important property of PLS1a is its
stability. When PLS1 was used with higher
order models instead of piecewise
linearity, performance was degraded. Also
in contrast, PLS1a allows easy observation
of the relative importance of features in
any area of the space, since simple
feature weighting is used. Furthermore,
relationships exemplified by Fig. 3 are
useful. The magnitude of the optimal
localization power is a measure of region
accuracy, and indirectly, of the utility
of the entire learning system.
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Fig. 3* Variation of performance with degree of
nonlinearity. Shown is average number of nodes
developed D before solution In a random sample of
1000 puzzles, vs. localization power L. 95%
oonfldenoe intervals are indicated.
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5. CONCLUSIONS

The piecewise linear scheme PLS1a is
natural, flexible and stable. Its low cost
and performance improvement warrant fur-
ther investigation. The next step is to
attempt stronger feature interaction, with
support from a scheme designed to improve
the accuracy of true penetrance estimates
[7]. The freedom to vary the localization
power L will facilitate experimentation in
determining the general utility of PLS1a
as a heuristic learning system.
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APPENDIX - LOCALIZATION AND DISTANCE

While section 4 gave a general
picture of the piecewise linear method,
this appendix details the localization.
Let the principal region from a cumulative
set C be R = (r, c, p, e, by). Recall
from section 3 that the true penetrance
estimate p and the feature space centroid
¢ are used along with others from C in a
regression to determine b, for the true

penetrance predictor H, = exp b,.f. Here
H, is regionalized; the weight for each
region QcC contributing to the

R-centered regression is to depend on the
distance of Q from R. Before constructing
this distance measure, we need to consider
that features are not uniformly important;
in fact a feature can be completely
irrelevant. Hence the distance, itself,
is weighted by b,. This of course s

circular since it is b, which is to be
determined. However, the procedure is
iterative: First the global coefficient
vector b is calculated, weighting each
region equally, then this estimate of b,
is wused, repeating until the value
converges. Even this doubly multiple

regression costs little compared with the
time required by the solver.

The exact weighting is as follows:
The distance factor 1is 1 / dist(R, Q).
Expressing the 1ith estimate of b, as

br(“ , the

function dist(®, Q) =

b4 L (epmed ¥, L R#Q; and 3y,

if R = Q. In this, ¢r and ¢qg are the
centroids of R and Q, and d, 1is the
average value of Ibr(“ . (Cr-LHL, over

all points x within r. The exponent
L 2 0, the localization power, decides the
degree of non-llnearity.

The solver uses gne of two evaluation
methods. The firat, discrete plecewise
linear procedure simply predicts the true

penetrance of a state A to be H(A) =
exp [byr.f{A)] where f 1s the feature

vector and f(A) € r.” The more complex
evaluation mode, smooth piecewise 1linear,

uses all regions § In the cumulative 3¢t
C , each one weighted according to its
distance from f(a). If d =
dist (f(A), Q4) for each of the J regions

Qg of c (1 < 3 < J3, with the
lécalization power L here filxed at 2, and
if the coefficient vector of Q4 i3 gj, the

predicted true penetrance of A is H{(A) =

(% r(A)/d]/g [174d,])
exp{ I . .
=1 3" 3 =1 3



