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ABSTRACT The key is to adopt a much more knowledge-

This paper discusses explanator schema based approach. The learning algorithm to be

Lo ) : - described requires access to a large amount of
acquisition, a learning technique with several ) . S
] : . . domain knowledge. It is through reconciling a new
interesting properties. It does not require a . . .
. . input to the domain knowledge that Ilearning and
teacher or concept matching predicate to be pro- . .
. ) generalization occurs.
vided. It does not rely on searching a concept
space to produce generalizations. It can acquire a This is NOT to say that the proposed learning
new concept based on only one input example, technique is domain specific. Techniques specific
although later inputs might result in refinement to a particular domain would be ad hoc and of very
of learned concepts. These features are made pos- limited theoretical interest. Rather, explanatory
sible by taking a very knowledge-based approach. schema acquisition is domain independent. Indeed,
I INTRODUCTION it has alrelady been applied to three very dif-
ferent domains. The approach does, however,
This paper gives an overview of a learning require access to a rich domain model. It is
technique being developed at the University of interaction with this rich domain information that
Illinois. The technique, called explanatory determines whether or not concept acquisition is
schemes acquisition has some interesting proper- possible or desirable for a new input. The
ties. For example, it does not require a teacher interaction also guides the generalization pro-
or other oracle to seleot important examples; it cess.

is capable of one trial learning; and contrary to

Mitohell's recent taxonomy of learning systems I EXPLANATORY  SCHEMA ACQUISITION

[13] it does little or no searching in the ©pro- The process involves three logically distinct
cess of acquiring a new concept. (but possibly concurrent) processes:
. Before desc.rlbmg the tech.mque we W|II"pause 1) The new input is understood.
briefly to consider what we might call the "stan- . . .
. " ) 2) The input is evaluated to see if schema
dard theory of concept formation. This approach ) .
. ; . formation is warranted.
underlies much of the concept learning work in 3) The input is generalized to a new schema
psychology and Al. In the standard theory, a sys- P 9 ’
tem is given a number of inputs. Each input has . . .
. For illustrative purposes we will assume that
some structure. Part of the structure is essen- ) . ) )
. ) the input is the following brief natural language
tial for the concept, part can be varied. An . f
story. The assumption of natural language input

input with the proper structure is an instance of
the concept; otherwise it is not an instance. A
teacher, usually a human, supplies sample inputs
to the system together with the information of
which concept (if any) the input is a concept of.
The system's task is to discover the structure
that defines each concept. This approach has been
fruitfully applied to many diverse domains (for
example, [11], [12], [18]) and is a cornerstone of
the field of inductive inference.

is not necessary and, indeed, one of the current
applications involves robot arm planning which, of
course, is non-linguistic.

John, a bank teller, discovered that his
boss, Fred, had embezzled $100,000. John
sent Fred an inter-office memo saying that
he would inform the police unless he was
given $15,000. Fred paid John the money.

Now we can ask how we might construct an A. Understanding the Input
untutored lconcept learning system. At flr.St this The requirements on the understanding prooess
seems a bit of a non sequltur. Removing the . " o
- . are not controversial. By "understanding" we mean
teacher appears to result in no learning at all. ) .
) . . nothing more than oonstruoting a causally complete
Also the notion of forming a concept from a single ) . . .
representation of the input. This requires that

input seems suspicious. . . . L
any crucial information missing from the story

must be Inferred and that the causal relations
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We require that our representation have one
component that is not generally inoluded by under-
standing systems. We require that the under-
stander maintain data dependency links ([3], [5])
justifying each element in the representation.
The links connect each representation event with
all of the inference rules from the domain model
that were wused to Justify the event during the
understanding process. This includes all causal
information, goal enablements, planning informa-
tion, etc. This makes explicit in the final story
representation the reasons the system had for con-
necting events in a particular way. For example,
in the blackmail story John's demanding that Fred
give him $15,000 is explicitly mentioned. The
system must infer that John has the goal of pos-
sessing the $15,000. This is a necessary infer-
ence. A system cannot be said to have "under-
stood" the input (in any sense of the word) if it
does not make this inference.

By and large, current understanding systems
do not include these backpointers to inference
rules in the final representation. We will insist
that they be explicitly stated in the understood
representation. We call the amalgam of all of
these data dependency links the Inference Justifi-
cation Network.

B. To Generalize or Not to Generalize

There are five aspects to be considered when
deciding whether or not to generalize an input
into a new schema. By hypothesis we will assume
that the input did not match an existing schema
(if it had then the system already possesses the
desired schema and indeed that schema would have
been used to process the story). |If any of these
five conditions does not hold, constructing a new
schema from this input is inappropriate.

The criteria are:

) Is the main goal of a character achieved?

) Is the goal a general one?

) Are the resources required by the goal
achiever generally available?

4) Is this new method of achieving the goal
at least as effective as the other known
volitional sohemata to achieve this goal?

5) Does the input match one of the known

generalizable patterns?

WN

These criteria are tested for all goals in
the story. The first criterion "Was the goal
achieved?" is self explanatory and easily judged.
The second "lIs it a general goal?" and the third
"Are the resources generally available?" require
some discussion.

Novelty alone in an approaoh to aohieving a
goal is not sufficient to warrant constructing a
new sohema. Consider, for example, a plot from
the "Mission Impossible" television series. These
plots are very novel but too specific to be useful
again.

How can the utility of a particular goal be
Judged? The answer to this is olosely tied to
where goals come from. Aohieving a goal which
arises from general conditions important to an
Individual's well-being and using readily avail-
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able resources is likely to result in an interest-

ing new schema, one which will arise again and
again. For the solution, we use an aspect of
Schank and Abelson's theory of planning [15]. In

their view themes give rise to the highest level
goals (goals which are not simply subgoals in the
achievement of other goals). Interpersonal and
Life themes are what we are Interested in. An
example of the former is a husband offering (and
therefore, at some level, wanting) to type a term
paper for his over-worked student wife. People
often work to satisfy the goals of their loved
ones. The system should realize that this
requires no further explanation on the part of the
husband. Examples of the latter are attempting to
satisfy one's hunger, to gain money, or to relieve
boredom. Life themes give rise to goals that

require no further justification. Our example,
which demonstrates a new way to gain money,
relates directly to a life theme and therefore

satisfies this criterion.

Criterion 4 is self-explanatory. The idea is
that the system should not bother constructing
schemata that are much less efficient than similar
already-known schemata.

The fifth criterion has been discussed else-
where [1]. As this is a short paper describing
on-going research it is not appropriate to repeat
it here. Suffice it to say that there is a taxon-
omy of explanatory acquisition techniques. The
teohnique that is matched has implications for
exactly how the generalization is performed.

c. The Generalisation Process

Assuming the input is completely understood
(with data dependency links to inference rules
justifying the understanding) and the five tests
for learning have all been met, we must now per-
form the actual generalization. The generaliza-
tion process oonsists of replacing the objects and
actions in the understood representation with
abstract counterparts. These counterparts are the
most abstract possible while still preserving the
validity of the inference justification network.

Consider again the example of John blackmail-
ing Fred. One proposition that is a part of the
understood representation is that Fred decided to
pay John $15,000. This action is justified to the
system by a number of other propositions. Among
these supporting propositions are some supplied by
the schema DECIDE (which we assume the system
already possesses). These inferences from DECIDE
are: 1) the decider must be at least a higher ani-
mate, 2) the decider must be oapable of a number
of alternative possible actions, 3) the decider
must know what the alternatives are, and 4) the
chosen alternative will be among the most
beneficial/least detrimental to the decider.

Thus, these (and other) justifications are
tied to the representation of Fred's decision
through data dependenoy links. Fred's deoision is
believable to the system beoause Fred, in fact, is
a higher animate, he knows at least two alterna-
tives - paying John or losing the $100,000 and
being arrested, and 3) he probably sees losing
$15,000 as less detrimental than losing $100,000
and going to Jail. These justifications are sup-
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plied in the form of pointers to the above infer-
enoe rules during the understanding procedure.

The generalization prooess substitutes gen-
eral entities for the specific objects and events
that occurred in the story. The entities are the
most general possible that still preserve the
validity of the data dependency inference.

Through these and other generalizations the
system can construct a first version of a BLACK-
NAIL schema. The schema might not be perfect.
There may be later stories that do not quite fit
and require further modification of the schema.
However, it is a reasonably general schema that is

likely to help a good deal in processing future
similar stories.
[I1.CONCLUSION
There are several concluding points
1) Unlike many learning systems (e.g., [6], [11],
[18]) explanatory schema acquisition does not

depend on correlational evidence. It is capable of
one trial learning, but the learning is not based
on analogical reasoning like [17] and [19]. It is
somewhat similar to Soloway's view of learning
[16]. There is also some resemblance to the
MACROPS notion in the STRIPS system [4].

2) The approach is heavily knowledge-based. A
great deal of background knowledge must be present
for learning to take place. In this respect

explanatory schema acquisition follows the current
trend in Al learning and discovery systems perhaps
traoeable to Lenat [10].

3) The learning mechanism is not “"failure-driven"
as is the MOPs approaoh ([14], [7], [9]). In that
view learning takes place in response to incorrect
predictions by the system. In explanatory
acquisition learning is usually stimulated by
positive inputs which encounter no particular
problems or prediction failures.

4) The absolute representation power of the system
is not enhanced by learning new schemata. This
statement is only superficially surprising.
Indeed, Fodor [6] shows that this must be true of
all self-consistent learning systems. Explanatory
schema acquisition does, however, increase pro-
cessing efficiency. Since all real-world systems
are resource limited, this learning technique
does, in fact, increase the system's processing
power.
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