A CONSTRAINED MECHANISM FOR PROCEDURAL LEARNING

Stellan

Ohlsson

Uppsala Programming Methodology and Artificial Intelligence Laboratory
Computing Science Department, Uopsala University
Box 2059, S-750 02 Uppsala

Sweden
ABSTRACT A. Implementation Language
The problem studied is that of learning UPL is written in PSS, a neo-classical
problem solving heuristics by doing. The purpose production system language (Ohlsson, 1979). It

is to explore the learning behavior of a highly
constrained mechanism. The constraints are
choosen on the basis of Dsychological
considerations. Computer runs show that the
constraints do not prevent successful learning.
The learning style of the program turns out to be
a function of the structure of the problem space.

| HEURISTICS LEARNING

The task studied in this paper is that of

discovering problem solving heuristics by doing.
We presuppose a task-independent, weak problem
solver which can take a problem space and a

problem as inout, and search for the solution to
the latter. We add a set of learning mechanisms
which specify how the information generated during
search should be encoded for future use. The task
of the system is to construct a strategy for
searching a problem space on the basis of repeated
problem solving trials in that space. Systems of
this kind have been described by Anzai & Simon
(1979), by Langlev (198?), by Ohlsson (1982;
1983), as well as by others. They will here be
called heuristics learners.

The purpose of the work reported here is not
to construct the most intelligent learning system
which the state of the art allows, but to study
how a particular set of constraints on an
information processing system affects its learning
behavior. The constraints chosen for study are
based on psychological considerations, although no
detailed comparison between the Drogram and human
behavior will be made in this paper.

Il THE UNIVERSAL PUZZLE LEARNER

An earlier version of the Universal Puzzle
Learner (UPL) program has been described in
Ohlsson (1982; 1983). The third and current
version consists of three layers: the

implementation language, the problem solver, and

the learning mechanisms.

allows the user to organize production memory into
nodes, each node containing one or more
productions. When PSS is "in" a node, it will try
to fire a production from that node before it
consides productions from other nodes. Control
can be transferred from one node to another by the
firing of a production.

The PSS condition matcher recognizes a
construct called sequence variables, which fulfill
the same function as the "three dots" of informal
mathematics; the expression "(A <SEQ> B)" in
which <SEO0> is a sequence variable is interpreted
as "any list containing A, followed by any number

of expressions, followed by B". Sequence
variables match against the empty sequence, so
that "(A B)" is an Instance of "(A <SEQ> B)". As

an example of the use of sequence variables, the
expression "(<SEO0> X1)" will bind the variable X1
to the last expression in any list which has at
least one element. As a second example, the
expression "(ALTERNATIVES: X1 <SEQ>)" will
recognize a list with one or more alternatives.
The sequence variables are bound to the sequences
they match against. The PSS sequence variables
can be seen as a development of the "remaining

segment" feature ("!") of the OPS language family
(Forgy & McDermott, 1977).
B. The Problem Solver

The next layer of UPL is a task-independent,
weak problem solver ~consisting of 13 nodes with
various tasks, such as setting goals, maintaining

the goal-stack, generating actions, censoring
actions, doing conflict resolution, executing
actions, evaluating results of actions, backing

The program takes a problem
space and a problem as input. A problem space is
given to the program in two parts, a BNF grammar
defining a knowledge-state, and a list of operator
definitions. A problem is presented as an ordered
pair of states, the initial state and the goal
state. The problem solver is task-independent in
the sense that it does not make any assumptions
about the expressions which are wused as the
knowledge-elements of the problem space.

up, and restarting.

The problem solver works as follows. The
current goal is analyzed by subgoaling rules.
Actions to be taken are generated either by
forward-searching proposers, by a rudimentary form
of means-ends analysis, or bv random generation.
When one or more actions have been generated, they
are subject to scrutiny by censors which may or
may not reject some of them. (Notice that the
censors apply before the action is taken.) If more
than one action survive the censor, conflict
resolution is applied. Execution of the selected
action is done by an interpretative procedure
which takes an operator definition as input. An
operator definition is a schema-like structure
with slots for the name of the operator, central
parameters, auxiliary parameters, background,
inputs, outputs, and side-effects. The outcome is
evaluated, and the program then either restarts
from the initial state, backs up to the
immediately preceeding state, or returns to the
goal-handling node.

The problem solver is constrained in three
ways.

1. Context independence—The rules by which
the system sets subgoals, generates actions, and
censors actions are restricted to perform tests on
the current knowledge-state only. This constraint
implies that the choice of action in the current
knowledge-state cannot depend on the history of
the problem solving attempt. Looking forward in

time, it implies that the problem solver cannot
plan in the sense of deciding upon a sequence of
actions. In short, action selection is localized

to the current knowledge state.

2. Fragmentary path memory—The program has
four different knowledge-states available: the
initial state, the state in which the current goal
was set, pushed, or popped, the current state, and
the immediately proceeding state. Immediately
after action execution, five states are available,
because what was formerly the "immediately
preceeding state" is not deleted wuntil after
evaluation of the new state. Thus, the evaluation
node has a slightly wider view of the solution
path than the other nodes.

3. Incomplete search control—Since deleted
states are lost the program cannot backup to any
arbitrary state. Search is organized as follows:
Immediately upon entering a new state, that state
is evaluated statically. If the outcome is
negative, a backup is made to the immediately
preceeding state. |If the outcome is positive, an
effort is made to push ahead: if dynamic
evaluation reveals that the state is, after all,
bad, then one of the bad actions is taken anyway.
If dynamic evaluation shows that there are no
"legal" actions in the current state, the program
restarts from the initial state.

These constraints are studied because they
exemplify the kind of constraints which can be
caused by psychologically relevant memory
limitations, eg limited capacity working memory.

S. Ohlsson 427

C. Learning Mechanisms

The learning strategy of the program is to
notice situations in which some production rule
should have fired, but did not. For example, an
action with a good outcome should have been
suggested by some proposer rule, because it is the
task of those rules to know about good actions.
If it were, in fact, generated by task-independent
methods, then some change in the set of proposers
is called for. The program then assembles a
production instantiation which corresponds to that
instantiation which would have fired, had there
been any proposer capable of firing. Next, it
tries to generalize existing proposers in such a
way that one of them acquires the ability to
generate that instantiation. If no existing
proposer can be generalized to cover the
instantiation, a situation-specific production s
created and added to production memory (to
constitute raw material for future generalization
attempts). Similarly for the creation of the
other types of rules.

Revision of existing productions is done
through a generalization algorithm. The algorithm
is written as a Lisp program, and constitutes
about half the code of the entire UPL program. It
takes any two Lisp S-expressions as input and
generalizes the first of them in such a wav that
it would match against the second, if the two of
them were given as inputs to the PSS pattern
matcher. The complexity of the algorithm depends
to a large extent on its ability to handle PSS
sequence variables (see above). For example,
given the three expressions

(EP (P = Q) P =Q),

(EP (A r> B) A * B), and

(EP (C1 C? == B) C1 C2 - B),
where all atoms are interpreted as constants, the
algorithm responds with the expression

(EP (X1 <SEQ>) X1 <SEQ> * X2),
where X1 and X2 are ordinary variables and <SEQ>
is a sequence variable.

The algorithm delivers some output for any
pair of inputs; if the two S-expressions given to
it have nothing in common, it will report a single
variable. The algorithm computes an interpretable
measure of how much its first argument had to be
changed in order to "cover" its seoond argument.
This measure is used to direct search through the

space of possible generalizations. If the
algorithm finds a generalization, the
corresponding production is revised. There is
only one generalization algorithm; thus,
proposers, censors, and subgoaling rules are

revised in a uniform way.

Revision of productions is attempted under
the following conditions. If an action has a good
outcome, try to revise the proposers so that they
can produce that action in the future. The
criterion for a good outcome is that the current
knowledge-state has a higher overlap with the

428 S. Ohlsson

active goal than the preceeding state, ie that it
has more knowledge-elements in common. (The
program can use a task-specific evaluation
function, if the user cares to specify one.) The
ease for censor rules is analoguous: If an action
has a negative outcome, try to revise the censor

rules. If a state is interesting, without being
either good or bad, try to revise the subgoaling
rules so that they will set wup that state as
subgoal. In short, the learning behavior of the
program is governed by its —conception of good,
bad, and interesting knowledge-states. Fine

tuning of the learning mechanisms proceeds mainly
by adjusting the criteria for those three
categories.

Il RESULTS AND DISCISSION

The UPL3 program learns successfully in
several puzzle domains, including the Missionaries

and Cannibals problem, the Tower of Hanoi puzzle,
and the Tiles and Squares task. It solves the
first-mentioned problem without search or

unnecessary steps on its fifth pass over the
problem. The simpler Tiles and Squares problem is
solved through the miminal solution path already
on the first trial.

Interestingly, the "learning style" of the
program varies with the task to which it is
applied. In the Tiles and Squares Puzzle, the
program learns mainly through the acquisition of
proposers. It creates rules of the form "If it is
part of the goal to place object X in position Y,
and position Y is empty, then move X to Y". The
censors and the subgoaling rules <created are
unimportant for subsequent problem solving.
Indeed, the two acquired subgoaling rules are
never applied. In contrast, in the Tower of Hanoi
task, UPL 3 improves mainly by learning to
decompose the top goal into the appropriate
sequence of subgoals, ie it discovers that getting
discs 1, 2, and 3 onto some peg X implies getting
2 and 3 onto X, which in turn implies getting 3
onto X. The difference between the two tasks
which is responsible for the difference in
learning behavior is that more work is necessary
before part of the top goal becomes satisfied in
the Tower of Hanoi problem than in the simpler
problem.

On the Missionairies and Cannibals problem,
on the other hand, UPL3 learns mainly by the
acquisition of censors. The only general proposer
it can find for this task is "When there are two
cannibals and a boat on one side, and a single
cannibal on the other, then let the two cannibals
row across", which, as it happens, correctly
generates two of the steps on the solution path.
The difference between the problems which causes
this difference in learning behavior is simply
that there are fewer regularities to be detected
in the problem space for this problem than in the
very regular spaces associated with the other two
tasks.

There are two basic phenomena of human
learning which UPL3 seems incapable of mimicking.

1. Exponentially decreasing learning
curves—It is a basic feature of human learning
that change is most rapid during the initial
encounter with a new task. An earlier version of
UPL had relatively flat learning curves, and so
does UPL3. We conjecture that "empirical" or
"inductive" learning systems in general will have
difficulties in mimicking this property of human
learning. There is a ~certain tension between
rapid initial change and learning through
generalization over a sequence of successively
encountered items, or instances.

2. Automatization—By automatization is
meant that the amount of computational effort (eg
number of production system cycles) to reach
solution on a problem decreases in the abscence of

improvements in the solution. The same sequence
of "moves", steps, inferences, etc., is generated,
but with less work. This is a central feature of
human learning. However, it does not appear in

the behavior of UPL3, because the number of
production system cycles needed to make a move
does not decrease as new heuristics are acquired.
Automatization requires a move-chunking or
composition mechanism.

REFERENCES

Anzai, Y. & Simon, H. A. The theory of learning

by doing. Psychological Review, 124-140, 86,
1979.

Forgy, C. & McDermott, J. The OPS2 Reference
Manual. Department of Computer Science,

Carnegie-Mellon University, 1977.

Strategy acquisition governed by
Proceedings of the European
Intelligence, Paris,

Langley, P.
experimentation.
Conference on Artificial
1982.

Ohlsson, S. PSS3 Reference Manual. Working
Papers from the Cognitive Seminar. Department of

Psychology, University of Stockholm. No. 4,
1979.
Ohlsson, S. On the automated learning of problem

solving rules. In R. Trapp (Ed.) Cybernetics and

systems research. Vol 8. Amsterdam:
North-Holland, 1983.

Ohlsson, S. Transfer of training in procedural
learning: A matter of conjectures and
refutations. UPMAIL Technical Report, No. 13,

1982.

