
M E T A L A N G U A G E A N D M E T A - R E A S O N I N G

Robert E. Filman
John Lamping

Fanya S. Montalvo

Computer Research Center
Hewlett-Packard Laboratories

Palo Alto, California 94304

Abstract

We describe three experiments using meta-language and meta-reasoning
to solve problems involving belief, heuristics, and points of view. These
experiments use the knowledge representation system SPHERE, built
at Hewlett-Packard Laboratories and based on the ideas of FOL [20]. A
key idea underlying our research is the segmentation of knowledge into
contexts and the meta-linguistic treatment of these contexts as objects.

I INTRODUCTION

Recent research in Artificial Intelligence has focused on meta-know­
ledge [2,0,8,14]. Meta-knowledge has attracted attention because of an
increasing awareness that much of reasoning IS about language and the
structure of knowledge. Several representation systems have mecha­
nisms for embodying meta-linguistic constructs, among them KRL [3],
Prolog [4], LCF [5], MRS [9] and Omega [11]. Most of these systems use
a quoting mechanism to distinguish language from meta-language. One
system, FOL [20], separates language and meta-language into different
contexts and makes language structures true objects to meta-contexts.
This results in a more expressive and uniform system.

In this paper we summarize three examples of meta-theoretic rep-
resention and reasoning. We implemented these examples in the rep-
resentation system SPHERE, an intellectual descendant of FOL. We
describe SPHERE in the next section; for the moment it is sufficient to
understand that SPHERE encapsulates knowledge in contexts. These
contexts can manipulate other contexts; a context that manipulates
another is a meta-context. The first example uses a "tree" of meta-
contexts to represent beliefs about beliefs. We reason about the beliefs
of a participant in a competitive bidding situation. The second example
illustrates describing heuristics declaratively in met a-contexts. In this
example, we describe the game of Mastermind to a context and describe
heuristics for playing the game to its meta-context. The last example
shows how contexts can present and manipulate multiple views of a sin­
gle underlying object. The problem domain is that of using graphics
effectively to gain an understanding of Rubik's Cube.

II SPHERE

Key features of SPHERE are: 1) All statements are relative to
some context. 2) A context is a triple, composed of its own language
(individuals, functions and relations), a set of facta (WFF's), and a
partial model, the simulation structure (semantic attachments). Con­
ceptually, a context is a self-contained theory of some domain. 3) The
basic inference mechanism is simplification: the reduction of an ex­
pression (term or WFF) to a simpler form. These systems have two
important simplification mechanisms: syntactic simplification and se­
mantic simplification. Syntactic simpiication uses the facts (axioms) of
a context as re-writing rules. Semantic simplification uses the values of
computationally effective procedures and data structures to transform
expressions.* The power of these systems arises from using the data

* More specifically, the attachment to a constant, relation or func-

structures that encode expressions and contexts as the semantic attach­
ments to constants in meta-contexts. Thus, a constant in the language
of one context (the meta-context) can be semantically attached to the
data structure that encodes another context (the subordinate context).
The meta-context can manipulate that constant as it does any other
constant. We present examples of this meta/subordinate manipulation
later in this paper.

Contexts have parallels in systems such as FRL [10], Viewpoints
[18], CONNIVER [17], and QA4 [18]. Manipulating the syntax of
language independently from the mechanisms that effect its semantics
parallels work on 3-LISP [19]. SPHERE, like its ancestor FOL, cleanly
defines and uniformly integrates these mechanisms in a mathematically
rigorous system. We have also used SPHERE as the semantic base for
a natural language understanding system [7] and for a system that
unifies the relational and algebraic database calculi.

I l l BID

Our first example shows how to represent some aspects of the con­
cept of belief with multiple contexts. Our strategy is to embody an
agent's beliefs in a context: entering that context to reason with the
agent's beliefs and treating that context as an object to reason about
the agent's beliefs.

We view the world subjectively from the perspective of (the context
of) P, the president of a paint company. He bids on contracts to supply
paint. In deciding what to bid, he needs to consider the bids and
bidding practices of his competitors, Q and R. We represent P's belief's
about Q and R's beliefs as the constants Q and R in P's context. We
attach contexts to these constants. These contexts resemble P's context
in many respects, including representing competitors as constants with
attached contexts.

Belief contexts all share a common language of paint manufactur­
ing. Making paint requires possession of a process. Processes vary be­
tween companies. Each process uses several ingredients, for any given
process, p, and ingredient, i, quanty(p,i) is the amount of i used in
p. Calcium-carbonate, alkyd-resin, and titanium-dioxide are typical in­
gredients.

tion (syntactic objects) in a context is a pair: the name of a context and
the name of a constant in that context. Frequently, this named context
is the LISP context. Procedurally, semantic simplification translates
(through attachments) the terms of an expression into an expression in
another context, runs the simplification mechanism in that context, and
translates the result back to the original context. (This translation pro­
cess may involve passing through several intermediate contexts.) Not
all contexts have the same simplifies In particular, the simplification
mechanism in the LISP context is the Lisp evaluator. Thus, in semantic
simplification, the data structures that encode contexts and expressions
often become the arguments for Lisp functions that manipulate con­
texts and expressions.

366 R. Filman et al.

Figure 1. The context structure of BID. The top
number in each context is context's cost (computed by
the meta-context function OWNCOSTF), and the bottom
number is the context's bid (computed by the meta-context
function OWNBIDF). Contexts with normal pricing prac­
tices are circles; those with predatory pricing practices are
blobs.

the use of axioms and inference rules, this initially infinite set down to
a solution set with the desired properties. Our context approach al­
lows us to directly incorporate the knowledge of an agent in the same
(axiomatic) format in which it was originally expressed and to construc­
tively refine a single object (the context) as further inferences are made.
Our approach implements some of the' ideas expressed by Konolige and
Nilsson on multiple agent planning systems [15].

IV MASTERMIND

Our second example implements a program that plays Mastermind
[13]. Meta-theory plays two key roles in this system. First, meta-
Btatements express facts about the hidden sequence. Second, meta-
meta-statements describe the control structure and heuristics that the
player uses in deducing more information and in planning its next guess.
We built a system with a subordinate context whose language describes
guesses and solutions, a series of meta-contexts embodying successive
knowledge refinements, and a meta-meta-context that describes control

Every paint company president believes he can
get each ingredient for a given cost cost(i), though
costs may vary between companies. For each pro­
cess, the proceucott(p) is the cost of making paint
with that process: the scalar product of the quan­
ti ty and cost of each ingredient.

Each company also has its own competitors
and a pricing-practice. A Pricing-practice is a
function of a company's costs and the lowest bid of
its competitors. Each pricing-practice determines
the company's bid. Each belief context has this
general knowledge about paint processes, arith­
metic and bidding.

A context P represents the state of P's beliefs.
This context has an axiom representing P's pricing
practice and axioms representing P's beliefs about
his costs for commodities. In context P, constant
Q (R) represents P's belief's about "the state of
Q's (R's) beliefs". Each of these constants is at­
tached to a context (contexts Q and R). Each of
these contexts has the language of paint bidding.
Q has an axiom for pricing-practice, represent­
ing what "P believes is Q's pricing-practice". It
has axioms representing what "P believes Q be­
lieves are Q's commodity costs". And it has two
constants, P and R. This second constant, R, is
attached to a context (Qr) that represents P's be­
liefs about Q's beliefs about R.

Clearly, we can continue hypothesising con­
texts indefinitely, representing "P's beliefs about
Q's beliefs about P's beliefs about Q's..." In prac­
tice, we stop at the fourth level. Figure 1 shows
the resulting context structure. We have fifteen
contexts representing beliefs, arranged in a tree.

P's bid is the result of applying his pricing-
practice to his minimum process cost and the low­
est expected bid of his competitors. We use an­
other meta-context to compute bids. The meta-
context finds P's minimum cost, determines his
competitors and computes the expected bid of each competitor in the
competitor's context. The meta-context then determines the bid by
simplifying the pricing-practice of the results. The computation is a
recursion, similar to the familiar recursion of mini-maxing game trees.
The recursion halts at the leaves of the context tree, where contexts do
not have attachments to competitors. At that point, only a company's
costs are used in computing its bid.

We used these structures to describe some "actual beliefs" to the
system. Figure 1 summarizes the results of this test run. For the
example, we asserted that P believes that 1) there is a standard process
known to all manufacturers; 2) there is a proprietary process unique
to P, but known to his competitors; 3) P has a new process, unknown
to P's competitors; 4) Q has a sec ret-process, but that Q believes that
P doesn't know about it; 5) everyone believes that Q can get cheaper
alkyd-resin, 6) R can get cheaper titanium-dioxide; 7) Q doesn't know
(0); 8) everyone knows that R is a predatory pricer while Q is not; and
9) each of Q and R view P's pricing practices to be like their own.

Using this data, our system calculates what P should bid. The
example expresses (to a first approximation) some complicated rela­
tionships about the beliefs of others. This expression has the virtue of
being both computationally effective and uniform.

Our use of multiple contexts to embody belief is in contrast to Ap-
pelt's use of possible world semantics for belief [1]. Possible worlds in­
volve reasoning about the possible states of an agent, reducing, through

R. Filman et al. 367

These are bo th examples of a more general k i n d of s ta tement —
count ing statements. Coun t i ng statements indicate the number of
objects in a set t h a t satisfy some predicate. In the present case, the
predicate identi f ies objects a t tached to t rue statements in the subord i ­
nate context .

The meta-context has four axioms. Three al low a conclusion (f rom
appropr ia te count i n fo rmat ion) of whether par t i cu la r objects sat isfy
the predicate. The f ou r th relates the count of a set, A, and of i ts
subset, B, to the count o f the set difference A - B . These theorems (and
a few others t h a t relate count ing to Mas te rm ind) f o rm the basis for al l
the necessary inferences.

A separate context , meta to the meta-context descr ibed above, con­
ta ins the axioms t h a t describe how to play the game. Figure 2 shows
the context s t ruc tu re of the Mas te rm ind player. The p lay ing s t ra tegy
is to discover a pa t te rn consistent w i t h w h a t is known so far. The
con t ro l s t ra tegy finds a consistent guess by mak ing a hypothesis and
in fe r r ing as much as i t can. I t repeats the "hypothesize and in fer" cycle
un t i l i t has res t r ic ted the possibi l i t ies to a single pa t te rn . The system
represents each hypothesis w i t h a new context , bu i l t by ex tend ing a
copy of the previous hypothesis-context w i t h the new hypothesis. Hy­
potheses may t u r n ou t to be false, fo rc ing the system to back t rack .
The heurist ic used to pick a hypothesis is to f ind a count ing s ta tement
on the smallest set of sentences and hypothesize one of those sentences.
W h e n the hypotheses have rest r ic ted the possibi l i t ies to a single con­
sistent p a t t e r n , the system guesses t h a t pa t t e rn . The system repeats
th is guessing st rategy un t i l i t discovers the secret p a t t e r n .

T h e inference pa r t of the contro l cycle uses f o rwa rd cha in ing . The
inference mechanism is modi f ied w i t h a p run ing heur ist ic and an order­
i ng heur is t ic . The p r u n i n g heurist ic discards less specific i n f o rma t i on
imp l i ed by more specific i n f o r m a t i o n . For example, i f I know the fact
t h a t t w o of the three colors red , b lue, and green are present, and t h e n
discover t h a t red is def in i te ly present, I can conclude t h a t e i ther blue or

green is present and then forget the or ig ina l fact . The order ing heuris­
t ic suggests m a k i n g inferences f r o m more specific i n fo rma t ion before
inferences f r o m less specific i n fo rma t i on . The two heurist ics change
f o rwa rd inferencing f r o m a b l ind search to a procedure for imp rov ing
the qual i ty of i n fo rma t i on . We found these heurist ics to be suff icient
to focus the system on appropr ia te inferences.

The cont ro l meta-meta-context has axioms speci fy ing the above
strategies and heurist ics. Heurist ics embedded in programs are d i f f icu l t
to unders tand and to change. We d id not embed our heurist ics in a p ro -
g ram. Using meta- theory al lowed us to describe heurist ics dec lara t ive ly
bu t use t h e m procedura l ly . Th is separat ion i l lustrates a un i f i ca t ion of
the procedura l /dec lara t ive d icho tomy. Th is idea of dec lara t ive ly de­
scr ib ing heurist ics at the meta-level paral lels Davis ' wo rk on Teiresias

The con t ro l meta-meta- theory , r unn ing under the S P H E R E s imp l i ­
f ies actual ly plays the game. The system is in tended to incorpora te the
heurist ics of one of the authors. In fact , being less prone to mistakes,
i t plays s l ight ly bet ter t h a n he.

v VIEWS

One use of contexts is for abs t rac t ion : s t r u c t u r i n g several views of
the same s i tua t ion . Several contexts can share the same pa r t i a l model ,
bu t t a l k about i t in di f ferent ways. A ma jo r d i f f i cu l ty in implement ­
ing mu l t i p le views is ma in ta in i ng consistency between views and the
doma in , and among v iews. Our approach encapsulates the detai ls nec­
essary to display each v iew in a context . These contexts have axioms
about the appearance of doma in objects. We use meta-level axioms
about the re la t ion between views and doma in objects to ma in ta in con­
sistency dec larat ive ly .

Th is qua l i t y of expression is pa r t i cu la r l y useful for representing
complex objects w i t h compute r graphics. Graphics uses geometric ob-
jec ts as symbols for physical objects or concepts. Exp l i c i t l y repre­
sent ing th is symbol ic re la t ionsh ip permi ts s t ra igh t fo rward def in i t ion ,

and heuristics.

The subordinate context's language has two kinds of
objects, colors and positions, and a single "fundamental"
predicate: Positions P in the hidden sequence it color C.
This is sufficient to describe the hidden sequence. How­
ever, it is difficult to concisely express the information
provided by guesses in the subordinate-context's language.
Instead, we represent guesses as meta-context statements
of the form "Exactly N of the following statements are
true". Reasoning in Mastermind involves reasoning with
these meta-Btatements about the fundamental predicate.

There are two useful types of meta-statements about
the fundamental predicate. Imagine that the hidden se­
quence is <Red Blue Orange Green>. The guess <Red
Blue Orange red> elicits the response that two colors are
in the correct position and one is in an incorrect position.
This information can be expressed as:

368 R. Filman et al.

Figure 3. The context structure of the cube system.

VI CONCLUSION
In this paper we summarized three examples illustrating the power

and flexibility of representation using meta-theory. Each of these issues
(modality, heuristics, and views) is difficult to express in conventional
AI terms. Wi th the appropriate quality of meta-theoretic machinery,
we have uniformly expressed and manipulated them all with a single
representation system. Three ingredients contributed to the success of
these representations: encapsulation, the clean separation of language
and met a-language, and the ability to recurse on meta-languages. We
believe that these ingredients form part of a crucial foundation for
building intelligent systems.

Acknowledgments

We thank Jonathan King, Egon Loebner, Anne Paulson, Bert Raphael
and Richard Weyhrauch for their helpful comments on this paper. We
also thank Steve Gadol, Bob Kanefsky, Anne Paulson and Richard
Weyhrauch for their participation in building the SPHERE system.

easy modification, and effective use. We wish to build dis­
play systems with knowledge about the domain, the form
in which it appears, and the mapping between this form
and its content. Contexts facilitate keeping these various
functions separate and in an explicit form. This section
describes a system with several display forms and an ex­
plicit mapping between display forms and their content.

Rubik's Cube [12] is both physically and mathemat­
ically a complex object. We can independently represent
and display it from either of these views, treating it as
a problem of turning sides and matching colors or as a
problem in group theory. Different viewB require different
display notations. All are helpful in coming to understand
the Cube.

We built a seven-context system for manipulating the
Cube. We encapsulated each of three display views in
a separate context. Two of these show the physical ap­
pearance of the Cube. They are 3-D projections of all six
cube faces that differ in the orientation of the "hidden"
back faces. The third is a table of colored squares rep­
resenting the position of cube lets in time as the Cube is
turned: rows representing successive moves, and columns,
positions. This "wallpaper-like" display highlights the pe-
riodicity of sequences of moves. The cubelets that move
in the cycle contrast with those that stay still. Figure 3
shows the contexts of the Cube system.

Each display context has its own ontology. The 3-
D display contexts have terms for subfaces, colors, and
cubelets; functions that relate subfaces to colors; and func­
tions that relate sets of subfaces to cubelets. In the table
context, color corresponds to the identity of cubelets, not
the visible colors of the Cube. Shades of colors correspond
to twists and flips [12]. For example, the constant red is declared in
both the 3-D display contexts and the table context, but has a differ­
ent meaning in each. Context separation keeps the programmer from
confusing these different meanings.

A fourth context stores the state of the Cube. Each of the three
display contexts is attached to the Cube context both directly, for dis­
play purposes, and indirectly, through its own meta-context. They
maintain the display relationship between graphic symbol and object.
These meta-contexts share a language for manipulating the Cube and
for displaying the results of manipulation. Constants of type opera­
tor in the meta-contexts are attached to subordinate-context functions
to move the Cube. Typical primitive operators are RIGHT (turn the
right face 90° clockwise) and FRONT-1 (front inverse; turn the front
face 00° counterclockwise). More complicated operators are built using
functions for concatenation, repetition and taking the inverse. Oper­
ators can be simplified syntactically. For example, fourfold repetition
of any primitive operator simplifies to the identity operator. We have
similar axioms for other simplifications. Thus, much can be simplified
symbolically without actually "manipulating" the Cube.

Operators are constants and by themselves do not change the Cube.
To actually change a cube, we apply the function MOVE to an operator
and the Cube. Axioms that simplify MOVE-terms both change the
C U B E context and invoke the current display context to show the
results. This structure maintains consistency between domain objects
and the corresponding display objects.

Wi th this system we can apply complex manipulations to the Cube
in a language that can be syntactically simplified. We can view the re­
sults of this manipulation in one format and then switch contexts to
view the Cube in another. This ability to associate linguistic manip­
ulation of operators with different graphic displays facilitates mastery
of the Cube.

Tarnlund (Eds.), Logic Programming, Academic Press, New York
(1982) pp. 153-172.

[5] Conn, A., "High level proof in LCF," Proceedings 4th Workshop
on Automated Deduction, Austin (1979), pp. 73-80.

[0] Davis, R., "Applications of meta level knowledge to the construc­
tion, maintenance and use of large knowledge bases," Memo-283,
Artificial Intelligence Laboratory, Stanford University, Stanford
(1976).

[7] Gawron, J. M., J. King, J. Lamping, E. Loebner, E. A. Paulson,
G. K. Pullum, I. A. Sag and T. Wasow, "The GPSG linguistics
system," Proceedings 20th Annua/ Meeting of the ACL, Toronto
(1982), pp 74-81.

[8] Genesereth, M., "Metaphors and models," Proceedings AAAI-80,
Stanford (1980), pp. 208-211.

[9] Genesereth, M., R. Greiner, and D. Smith, "MRS manual," Memo
HPP-80-24, Heuristic Programming Project, Stanford University,
Stanford (1980).

[10] Goldstein, I. P., and R. B. Roberts, "Using frames and schedul­
ing," in P. H. Winston, and R. H. Brown (Eds.), Artificial Intel-
ligence: An MIT Perspective, vol. 1, MIT Press, Cambridge MA
(1979), pp. 251-284.

[11] Hewitt, C , G. Attardi, and M. Simi, "Knowledge embedding in
the description language Omega," Proceedings AAAI-80., Stan­
ford (1980), pp. 157-164.

[12] Hofstadter, D. R., "Metamagical themas," Scientific American
244, 3 (1981), pp. 20-39.

[13] Knuth, D., "The computer as Mastermind," Journal of Recre­
ational Mathematics 9, 1 (1976), pp. 1-6.

[14] Konolige, K., "A metalanguage representation of relational
databases for deductive question-answering system," Proceedings
IJCAI-81, Vancouver (1981), pp. 496-503.

[15] Konolige, K., and N. J. Nilsson, "Multiple-agent planning sys­
tems," Proceedings AAAI-80, Stanford (1980), pp. 138-142.

[16] Kornfeld, W. A., and C. E. Hewitt, "The scientific community
metaphor," IEEE Transactions on Systems, Man, and Cybernetics
11, 1 (1981), 24-33.

[17] McDermott, D. V., and G. J. Sussman, "The Conniver refer­
ence manual," Memo 259, Artificial Intelligence Laboratory, MIT,
Cambridge, MA (1972).

[18] Rulifson, J. F., J. A. Derksen, and R. J. Waldinger, "QA4: a
procedural calculus for intuitive reasoning," AI-Technical Note
73, SRI, Menlo Park, CA (1972).

[19] Smith, B. C, "Reflection and semantics in a procedural lan­
guage." TR-272, Laboratory for Computer Science, MIT, Cam­
bridge, MA (1982).

[20] Weyhrauch, R. W., "Prolegomena to a theory of mechanised for­
mal reasoning," Artificiai Intelligence 13, 1 (1980), pp. 133-170.

