AUTOMATIC PROGRAMMING FROM DATA TYPES DECOMPOSITION PATTERNS

Christian

Gresse

LRI Bat. 490 Universite PARIS-SUD F 91405 ORSAY CEDEX FRANCE

ABSTRACT

A running system is presented which provides

powerful support to the user while designing pro-
grams .
This system automatically constructs program sche-

mas by decomposition of the datas involved in the
specification. Datas are specified within a know-
ledge-base as data types having associated decom-
position patterns.

The user may combine different data-decomposition
strategies with any of its decomposition patterns.
So it is possible to build several program schemas
for the same problem.

Once a program schema is built
stantiate or adapt it by hand. He can also apply
the system repetitively until he obtains primitive
problems which can be solved directly.

the user can in-

Key-words Running system. Data types. De-
composition patterns. Powerful support. Progam
schema. Strategies of decomposition.

| INTRODUCTION

In the attempt to automatically construct a
program from its specification two main approaches
have been proposed.

- The first method acts in a formal framework
and uses a deductive mecanism to solve the problem.
The desired program can be obtained by proving a
theorem in a constructive way [M.W 80], or by apply-
ing the Knuth-Bendix completion procedure to a re-
write system [DER 82] .

- The second method is based on a large, amount
of knowledge that one can have about some aspects
of programming. This knowledge base contains a lot
of rules and facts which allow gradual refinement
and transformation of a specification into an effi-

cient program [BAR 79] [B.O.R 81].
However as previously noticed [BAR 83] , none
of these approaches is really satisfying. The first

one can't avoid the combinatorial explosion inherent
to this kind of mecanism. The second one, lacking
of relevant rules for algorithm creation can only
synthesize programs from algorithmic specifications.
A third method can be tried in partially automating
the software development and providing a powerful

aid to the programmer. Such an example is the Pro-
grammer's Apprentice [WAT 82] designed to be midway
between an improved programming methodology and an
automatic synthesis system.

The system presented in this paper, called the
Program Builder (PB), belongs to this third method.
It relies heavily on a top-down and modular approach
and constructs automatically a program schema by
decomposing the initial problem with respect to the
data structures involved in its specification. This
program schema introduces new sub-problems and even-
tually some guards which must be verified to vali-

date these sub-problems.
Decomposition is done by processing structured data
objects independantly of the semantics of the pro-

blem : so in some cases the program schema may be
irrelevant. In the more favourable cases the user
of the PB can instantiate or adapt the schema by
hand. He can also run the PB to apply the same de-
composition process to the sub-problems. The process
ends once primitive problems which can be solved
directly, appear.

11 GENERAL STRUCTURE OF THE PB.

2.1 The data type knowledge-base.

The PB deals with problems which can be spe-
cified in the following way
given a collection x,y,z,... of objects belonging
to types A,Y,Z,... find one object t of type T such
that t = fix,y,z,...}
All types are stored in a data type knowledpe-base.
Each type is specified as an algebraic data type
with an operation part and an axiom part.
e.p type string [integerl

Onerations

PEMPTY? stringl integer] + bool

FMPTY ~ : + string| integer]

HEAD stringl integer] -+ integer

TAIL string| integer] -+ stiing| integer]

CONS integer string] integer] -+ string integer]

With the above presentation and with the axioms of
the type we can see that a string of integers can
be empty or can be split inte an integer (HEAD) and
a string of integers (TATL)
So we can write

CASE EMPTY?{T) ; T=EMPTY

FCASE ELSE s T=CONS (HEAD{T},TAIL{T})
Such a schema is called a decomposition pattern of
the type string| integer]
Suppose we add to the type stringl integer] new ope-
rations

38 C. Gresse

SINGLE which tests if the string contains a single
" integer
UNIT which builds 2 string from a single elencnt
FIRST and SECOND which split the string into
" two halves
CONC which concatenates two strings
we obtain another decomposttion patrern
CASE EMPTY?(T) ; T=EMPTY
SINGLE(T) ; T=UNIT(HEAD(T))
FCASE FLSE 3 T=CONC(FIRST(T),SECOND(T))
More formally the presentation of a type includes
predicates P, constructors ¢ and selectors $. Then
a decompesition pattern can be written :
CASE PO{T) 3 T=CO
PI{T) : T=CL(S1{T),52(T),...)
FCASE ELSE : T=Ca(5a{T),SB(T),...)
CO is a constant and the following relations hold
vPi=true PiaPj=false if 1#j
Each type of the data type base may have any number
of decomposition patterns

2.2 The strategies of decomposition
Two strategies are implemented by the PH,

a. Decomposition of an input data
If x has the following decomposition pattern
CASE PO(x) x=CD
FCASE ELSE i x=C1(S1{x),52{x))
(t:Ty<—f(x:X,v:¥,...) can be rewritten into :

t=f(if PO(x)} then CO else CI(SI(x),S2(x).¥,-..)) (1)
t=if PO{x} then f(CO,y,-.delse M{CI{S1{x),52(x),
¥,..}) (ii}) and finally

t=if PO{x) then g(C0O) else h(S1(x),$2(x),y..) (ii1)
where g and h are new problems

Now suppuse that the selector 52 has the signature
52 : X+ X

if asked the PR introduces 4 recursive call by ap-
plying £ to 82(x) and constructs the final program:
t=if PO(x) then g{C0) else k(51 (x),[(52(x)),¥y..)

g and k are the new sub-problems to be solved.

Note : As S2 1s a selector : 82(x} < x according to
a well-founded ordering on X, the program will thus
terminate.

The PB writes programs expressed in an algol-like

lanpuage. This language allows assignments, recur-

sion and conditiennals (if then elsc)

A program is composed of two parts

- a specification part includes the header of the
program and the declaration of all the variables
used

- a body part

Exemple :

Suppose we want to construct the S0RT program :

"Sort a string of integers"

C:stringl integer] <-SORT(S:string[integer])
Applying the first decomposition pattern of the
type string[integer] to the input data 5 the PB
produces the program
Header :

(C:stringl integer] }<~SORT{S:stringl integerl])
Variables :

gN! : integer

851 : string| integer]

Body : if ?7EMPTY?(S) then Ci=gProbleml (EMPTY)
els=e gN1:=HEAD(S);
51 :=TAIL(S);
C:=8Problem2(¥N|,SORT($51)}
fi
$N1 and $5! are new variables created by the PB.
The prohblems prefixed by § are the new problems fo
he solved.
The program schema produced is an inscrtion sort
schema : %Problem]l can be solved directly (identity
problem), §Problem2 is the INSERT problem.

Suppose now we apply the sccond decomposition pa-—
ttern, we obtain :
Header

(C:stringl integer|¥-SORT{S:string] integer])
Variables

EN1 @ integer

251,882 : seringl integerl
Rody
if PEMPTY?(S) then C=%Probleml (EMPTY}
else if STNGLE{S) then 8N!:=HEAD{S);

C=8Froblem? {81}

olsoe
51 :=FIRST(S);
#52:=SECOND(S)
C:=%Problaem’ (SORT
(451),80RT(452))
fi

fi
FIRST and SECOND have the same outpult type as SORT
s the PB introduces two recursive calls and pro-
duces a merge sort algorithm.

Note : This kind of decompasition is very similar
to those obtained by the transfer paradigm | RAREY
or the divide and conquer paradigm also called the
decompose, solve and compose paradigm [SMI 82|,

The decomposition operators are the selectors of
the input data type and rompositien ik done by the
new problems introduced.

b. Decompesition of an ocutput variable
In this case the composition operators are the cons-
tructors of the putput data type. Guards arc in-
troduced by the PB to determine which constructor
is tp be used. The decomposition operators are the
new sub-problems to he solved.

Exemple

applying the first decomposition pattern of type
string [integer] tec the output variable ¢ of the
SORT problem the PB constructs :

Header :(C:stringlinteger])<-SORT(S:stringl integer])
Variables : §Nl:inteper

$Sl:string] integer]
Body : if $G1{5) then C:=EMPTY

else SNI1:=$Probleml(5);

g5t :=gProblem?(5,8N1);
C:=CONS(8N1,SORT(E51)}
£i

A guard €G] has to be computed and it is easy ta
see that the solution of ¥Problem] is eguivalent to
searching the smallest element of § (problem MIN}.
§Problem2 is the operation which deletes an integer
from a string

This program schema is a selection sort algorithm.
Construction of $Probleml whith the PB is straight-
forward when the same decomposition pattern is ap-
plied to the input variable S In this case the
new problem $Problem3 can be viewed as a primitive
problem (finding the smaller of two integers). We
have'nt room enough to describe the. whole program
but the computation of $N1 would be :
$N1:=#Problem3(HEAD(S),MIN(TAIL(S))

2.3 Implementation of the PB.

It is implemented in Maclisp on a Milltics sys-
tem. A programmer can use it interactivily via the
display-oriented editor Emacs.

During the same session, while constructing a pro-
gram he may combine different alternatives

-Apply the first or the second strategy

-Ask for a recursive or a non recursive program
-Choose any of the possible decomposition patterns
of a type

-Add a new decomposition pattern and select it
-Declare a new problem as an operation on an abs-
tract data type

So it is possible to build quickly several
rent program schemas for a same problem.
Once a program schema has been built the user can
instantiate it by renaming the entitles prefixed
by $. He may also adapt it by modifying the code
produced or by solving directly a problem.

The PB is a building block of a more general soft-
ware development environment. Such an environment
is being designed and built at Orsay University in
the ASSPRO project [GRE82], and PB is part of that
project.

diffe-

111 CONCLUSION

An overview has been presented of a system
for the construction of programs from decomposi-
tion of their data. In its current implementation
the PB is able to construct various programs pro-
cessing structured objects as strings, trees,
lists,... We are continuing to extend our work
by trying to automatically compute the guards and
generate the specifications of the new subproblems.

For this purpose we have to deal with the
formal specification of the initial problem (e.g
SORT can be specified as "Ordered(C) and Bag(C)=
Bag(S)") and to enrich the axiom part of the pre-
sentation of the abstract data types stored in
the knowledge-base.

ACKNOWLEDGMENTS :

| would like to thank Michel Bidoit and
Gerard Guiho for several helpful discussions con-
cerning this research.

REFERENCES

[1] [BAR 79]: Barstow D.
Construction" Elsevier North Holland

"Knowledge-based Program
1979.

[2] [BAR 83]: Barstow D. "The Roles of Knowledge
and Deduction in Algorithm Creation" in "Au-
tomatic Program Construction Techniques"

[3]

(4]

[5]

(6]

(71

(8]

[9]

C. Gresse 39

(A. Bierman, G. Guiho,_Y . Kodratoff editors)
Mac Milan 1983.

[BIB 80]: Bibel W."Syntax-Directed, Semantics-
Supported Program Synthesis" Art Intell 14,3
October, 1980, pp. 243-262.

[B.O.R 81]: Bartels U., W. Olthoff, P. Raulefs
"An Expert System for Implementing Abstract
Sorting Algorithms on Parameterized Abstract
Data Types" IJCA1-81. Vancouver, Canada.

[DER 82]: Dershowitz N,
Systems" Internal Report,
1982.

"Computing with Rewrite
Urbana Champaign,

[ORE 82]: Gresse C.
ternal Report, LRI Orsay, December

"The ASSPRO Project" In~_
1982.

[MW 80]:Manna Z., R. Waldinger, "A Deductive
Approach to Program Synthesis" ACM TOPLAS 2,1
1980, pp. 90-121.

| SMI 82]: Smith I). "Top-Down Synthesis of
Simple Divide and Conquer Algorithms" Intel—
nal Report. Naval Postgraduate School, Monterey
November, 1982.

[WAT 82]: Waters R. "The Programmer's Appren-
tice : Knowledge-Based Program Editing" IEEE
Trans on Soft Eng Vol SE-8 NI, January, 1982.

