Synthesizing Least Fixed Point Queries into Non-recursive Iterative Programs

Shamim A. Naqvi

Bell Laboratories
Murray Hill, NJ 07974
Lawrence J. Henschen

Northwestern University
Evanston, IL 60201

Abstract

An algorithm is presented which takes a least fixed
point query expressed by a basis and inductive step and
transforms it into a non-recursive iterative program. By
augmenting a relational system with this algorithm,
least fixed point queries can be handled automatically,
and there is no need to proceduralizc relational algebra
for such queries.

1. Motivation

We present an algorithm for synthesizing a non-
recursive, iterative program from a Least Fixed Point
query (defined later). There are three reasons why such
a synthesis will be of interest to researchers in Al in
general, and to researchers in program synthesis in
particular:

1. It (efficiently) solves a real world problem of
practical utility for database workers.

2. The method was derived using techniques from
logic programming systems. In particular the
backward-chaining depth-first problem solving
metaphor leads to an intuitive understanding of
the algorithm. Thus a link between logic
programming and program synthesis is
illustrated.

3. Finally, it illustrates the idea that if programs
can be classified into domains (e.g. sort
programs, list processing programs etc.) then may
be we can derive algorithms for synthesizing
programs within a domain.

2. Background
Consider a relational expression of the form

R - f(R) —(

(Throughout this paper we shall assume that the
degree of the left and right hand sides of all such
equations is the same). A LFP of (1) is a relation R*
such that R* - f(R*) and R* C S for any S satisfying
(1). Examples of such LFP operations are calculating
the number of flights between two cities during a given
time period, finding the lowest-level manager common

to a group of employees, and determining whether
there is an active circuit connecting two points. None
of the above can be couched in relational algebra
[AHOI.

In studying the question of how powerful a data query
language should be, Aho and Ullman [AHOI
postulated two general principles and noted that Least
Fixed Point (LFP) queries satisfy those principles but
cannot be supported by the traditional relational
calculus [CODD]. Since in general a LFP of (1) may
not exist [TARS], a relation R can be constructed
inductively by specifying the basis and inductive rules:

Rg &R ---(2)
f(R) &R

To support LFP queries, [AHO] recommends the
addition of iteration and assignment operators 1C
relational algebra. Thus (2} can be written as

R —R,

do
R ~=R -==(3)
R—R U f(R)

while (R # R)

In [AHOI it is further shown that if in (2) there is
only one occurrence of R in f(R) then certain
optimizations can be performed in the calculation of
the LFP through (3). In this paper we present a
method of automatically synthesizing a non-recursive
while-loop program, i.e. a program like (3) except that
it will be non-recursive, from a LFP query of the form
of (2). Such a transformation would have the following
points of interest for database researchers:

1. The non-procedural nature of relational algebra is
preserved although it would take a fairly
sophisticated user to write a LFP query.

2. No theorem-proving is required to support LFP
queries as in [WRIG] though our method is
grounded in the resolution principle of Robinson
[ROB].

26 S. Naqvi and L. Henschen

3. The program derived for (2) is non-recursive.

4. With a slight abuse of notation of (2), link
queries (defined later) of QBE [ZLOO] can also
be supported in the same framework.

3. Intuitive Explanation of the Algorithm

It is simpler to develop and explain the algorithm by
assuming that the LFP query will be written in
relational calculus. Thus, equation (2) becomes

R — Ry -Basis step
R — f(R) -Inductive step

As an example, consider a database containing the
relations father(x,y) and parent(u,v) for particular
values of x, y, u and v. Then a query asking for
(certain kinds of) ancestors of a person V can be
stated as follows:

ancestor(w,a) +— father({w,a) ---(4)
ancestor(x,a) = ancestor(x,y} A parent(y,a)

A few comments on the notation are in order. First, all
variables are assumed to be universally quantified.
Second, the syntax, on purpose, is like that of
PROLOG [PERE]. Third, any base predicate (i.e., a
relation occurring in the database) with at least one
argument instantiated to a constant represents a
retrieval request. Thus, the expression parent(w,a) can
be read as S2-a parent", select from the parent relation
those tuples whose second components have the value
V. Fourth, we have purposefully chosen a somewhat
obscure and incomplete definition of ancestors. This is
to highlight a distinction later. Finally, our method of
handling LFP queries (as described below) has two
advantages over a PROLOG system. It not only works
for left-recursive assertions but is also independent of
the order of the assertions. In fact, putting the above
query to a PROLOG system will cause an infinite
computation.

In order to proceed with an intuitive description of our
method, we need to specify how a backward-chaining
problem-solving system works. Given an assertion of
the form

Ce—pglAg2agl...

and a problem, C, such a problem-solving system
matches the problem to the head, i.e. left-hand side of
the assertion. If the match succeeds then the original
problem, C, is replaced by the subproblems g1, g2,.....
i.e. the body of the assertion, with the matching
substitution applied to the subproblems. If the head of
more than one assertion matches a problem then the
system has to make a choice.

Now, assume we have a backward-chaining problem-
solving system and, further, that a problem p(x,y,....) is
solvable only if at least one of the variables x,y,... is
instantiated to a constant. Finally, it is evident that a
LFP query can be replaced by a view. Thus, (4) can be
replaced by the query

ancestor(w.a) --(5)
on the view
ancestor{u,v) — father(u,v) ---{6a)

ancestor(x,2) — ancestor(x,y) A parent{y,z) ---{(6b)

We now describe how a backward-chaining problem-
solving system would solve (5) using (6a) and (6b).
From this description, our method will become obvious.

To solve (5), we match it with the head of (6a) and
(6b). Since (5) matches both the assertions, let us
choose (6a) first. The matching substitution is (u— w,v
—a}, and, thus, the original problem is replaced by the
body of (6a), namely, father(w,a). This subproblem is
solvable and, in fact, yields a first set of answers which
we can collect in a relation, say ancestor. From (5) and
(6b), the original problem is replaced by the body of
(6b) with the matching substitution applied. This yields
ancestor(w,y), parent(y,a). Proceeding in a depth-first
manner, the subproblem ancestor(w,y) is not solvable,
but parent(y,a) is and yields a set of values for y.
These values for y are substituted back into the failed
subproblem ancestor(w,y) and this subproblem is asked

again. Once again we have a choice between (6a) and
(6b) and the above process repeats.

The above iterative pattern can be captured in the
following steps:

1. Retrieve father(w,a) and insert these tuples into
the answer relation, ancestor.

2. Stack the value V.
3. Pop a value from the stack and assign it to V.

4. Retrieve parent(y,z) and use these new values of
y to retrieve father(w,y). Also stack these values
of y. Collect tuples retrieved for father(w,y) in
ancestor.

5. Go to step 3.
The corresponding program form is:

/* all variables accept a sel of values */

ancestor U eval(father(w,a))
insert-in-queuc(Q,a)
while (Q # empty} do
z = remove-from-queue(Q) ----(A)
eval{parent(y,z))
ancestor U eval(father(w,y))
insert-in-queue(Q,y)

Insert-in-queue(Q,a) inserts the value V into queue Q
if 'a' has not been inserted into Q before in the current
computation. Finally, removc-from-queue(Q) removes
the top element of Q.

Let us now consider a right-recursive definition of the
above LFP query.

ancestor(w,a) -7
ancestor(u,v} — father{u,v) ---(R)
ancestor(x,z) — parent(x,y} A ancestor(y,z) --.(9)

Once again, a similar problem solver would solve the
above query as follows: (7) and (8) yield the primitive
subproblem father(w,a). From (7) and (9), to solve
ancestor(w,a) solve parent(w,y) and ancestor(y,a).
Clearly parent(w,y) cannot be effectively solved
because we do not know either 'w' or 'y To solve
ancestor(y,a) reuse (8). This yields a value for 'y'
which makes parent(w,y) solvable. In this case the
program form is as follow:

ancestor U eval(father(w.a})

insert-in-queue{(Q,a)

while (Q & empty) do
z ~— remove-from-queue(Q)
eval(father(y,z)) ---(B)
ancestor U eval(parent(w,y)}
insert-on-queue{Q.y)

od

Program forms (A) and (B} are similar. In order to
illustrate the difference we make the following
definitions. Consider a LFP query written as

flaAf2Aa.. —R --(10a)
al Au2 A ARA . ADBDADbR-IA _ADBI—R

Let us call the expression --(10b)
al Aa2A ..Abn Abn-1A A bl

the inductive residue {IR), and the expression
flafz ..

as the basis residue (BR). Thus from (5), (6a) and
(6b) the basis residue is father(u,v) and the inductive
residue is parent(y,z). Now notice that the program
forms (A) and (B) differ in the order in which the
basis and inductive residue expressions are used. If we
call the constants specified in the basis step Ry—>R as
driver constants, we are lead to the general program
form (C) shown in Fig. 1.

The only thing left to explain is the order in which BR
and IR expressions are to be used. This order can be
elucidated as follows. Consider an LFP query stated as
(10a) and (10b). Hypothesize solving R in (10a) by
using (10b). This generates the subproblems

alAa2A ARA.AbI

Now, by examination, if the subproblem R in the above
expression is solvable (i.e. at least one of its variables is
known) then the order is "eval(IR); R U eval(BR)",
otherwise it is "eval(BR); R U eval(IR)".

S. Nagvi and L. Henschen 27

R U eval(BR)
insert-in-queue(Q,driver constants)
while (Q # cmpty} do
z — remeve-from-queue(Q})
eval (BR or IR) --{C)
R U eval(IR or BR)
insert-in-quene(Q.new driver constants)

Figure 1: General Program Form

4. Alporithm

Inpur: A LFP query written in the form ol a basis siep
R—MAf2A..

and an inductive step

R—alaazAa..ARADBRA .. ADI

Output: A program of the form of (C) above.

Method:
1. Find the Basis Residue (BR) and the Inductive
Residue (IR).

2. Decide on the order of the BR and IR
expressions as follows: Match the head of the BR
expression (11) to the head of the IR expression
(12). Apply the matching substitution to the body
of (12) and if the subproblem, R, in the body of
(12) is solvable then the order is {eval(IR); R U
eval(BR)) else the order is (eval(BR); R U
eval(IR)).

3. Substitute the BR and IR expressions (in the
right order) into the program skeleton (C).

A proof that the program form above produces correct
answers is given in [HEN]. Briefly, correct answers are
those values logically implied by the definitions. Our
process is essentially supported resolution which is
sound and complete, so that all and only answers are
generated. Clearly, if the relation R is not cyclic, the
stack must become empty at some point. Certain kinds
of cyclicity (e.g. reflexivity) can be easily recognized
by slight additions to the algorithm. In any case, a
more elaborate termination test for the while-loop,
based on remembering the derivation of each value
added to R, yields termination in all cases. See [HEN]
for details.

28 S. Naqgvl and L Henschen

The transformation algorithm itself has complexity
based on identifying cycles in a (clause connectivity)
graph and on unification, both of which admit efficient
algorithms. The general case allows for programs
representing non-tail recursive definitions as well. In
these cases, the eval(IR) part of the loop includes an
expanding formula corresponding to the non-tail
recursive part of the definition.

Although, we give preference to select operations over
joins, this is not required. However, most of the time it
is obviously more efficient. For example, in the
expression

parent(x1,x2) & parent(x2,x3) & parent(x3,x4)
& father(x4,a)

it makes no sense to form the join of parent(xl,x2) and
parent(x2,x3) to start with. A feature of the method is
that the form of the database requests is known
beforehand so that optimizing these requests on the
basis of the physical organization of the database as
well as on the basis of redundancy in the set of
requests could be carried out when the program is
synthesized.

5. Conclusion

We have presented a method which, without using
theorem-proving, transforms a LFP query expressed as
a recursive definition into a non-recursive program. The
use of this method permits one to process LFP queries
posed in a conventional relational calculus.

6. Acknowledgements

Dan Fishman pointed out some errors and omissions in
an earlier draft of this paper. Earlier drafts were also
read and commented upon by Kevin Wilkinson, John
Linderman and an annonymous referee at Bell
Laboratories. We thank all of them.

[AHO]

[CODD]

[HEN]

[PERE]

[ROB]

[TARS]

[WR1G]

[ZLOO]

[ZL002]

REFERENCES

Aho, A. and Ullman, J.: Universality of
Data Retrieval Languages, Conf. on
POPL, 1978, pp. 110-120.

Codd, E.: Relational Completeness of
Database Sublanguages, in Data Base
Systems (ed. R. Rustin), Prentice Hall,
Englewood Cliffs, NJ.

Henschen, L. and Naqvi, S..: On
Compiling Queries in Recursive First-
Order Databases, to appear in the
Journal of the ACM.

Pereira, L., Pereira, F. and Warren, D.:
Users Guide to DEC 10 PROLOG, Dept.
of Al, Univ. of Edinburgh, 1978.

Robinson, J.: A Machine-Oriented Logic
Based on the Resolution Principle,
Journal of the ACM, 12 1, 1965

Tarski, A.: A Lattice-Theoretical
Fixpoint Theorem and its Applications,
Pacific Journal of Mathematics 5:2, 1955.

Wright, D.: PROLOG as a Relationally
Complete Database Query Language
which can handle Least Fixed Point
Operators, Univ. of Kentucky Tech.
Report no. 73-80.

Zloof, M.: Query-By-Example: A
Database Management Language, IBM
Systems Journal 16, no. 4, 1977.

Zloof, M.: Query-By-Example:
Operations on the Transitive Closure,
IBM Technical Report no. 5526.

DIAGNOSTIC REASONING IN SOFTWARE FAULT LOCALIZATION

Robert L.

SedImeyer*

William B. Thompson

Paul E.

Johnson

University of Minnesota

ABSTRACT

We present a diagnostic model of software
fault localization. A diagnoatic. —approach to
fault localization has proven effective In the
domains of medicine and digital hardware. Apply-
ing this approach to the software domain requires
two extensions: a heuristic abstraction mechanism
which infers program function from structure using
recognition and transformation tactics; and a
search mechanism which integrates both prototypic
and causal reasoning about faults.

INTRODUCTION

In this paper we present a model of fault
localization for program debugging based on a
trouble-shooting paradigm [J], Within a diagnostic
framework we define the. software fault localization
task as follows: A fault exists In a program when-
ever its output differs from that expected by the
user. These descrepancies are called fault mani-
festations. The task is to identify the cause of
each manifestation which is specific enough to
effect program repair.

Application of the trouble-shooting strategy
has proven effective in constructing intelligent
systems for hardware [2,3,4] and medical [5,6,7]
diagnosis. In contrast to verification-based
approaches (cf. [8,9,10,11] this strategy concen-
trates computational resources on suspect compo-
nents. Applying the diagnostic approach to the
software domain requires two extensions: a
heuristic abstraction mechanism that infers func-
tion from structure using recognition and transfor-
mation tactics; and a search mechanism that inte-
grates both prototypic and causal reasoning to
localize faults.

Several program debugging systems evidence
trouble-shooting tactics [12,13,14], but none are
based on a comprehensive diagnostic theory.

Sussman [1] was primarily interested in developing
a theory of skill acquisition and examined the role
of debugging in that context. While Miller and
Goldstein [13] addressed the debugging task direct-
ly, the faults which MYCROFT analyzed were tightly
constrained by the simplicity of the programs
Involved. Shapiro [14] addresses more realistic
debugging environments, but formulates a theory of

*Current address: Department of Computer Tech.,
Purdue University at Fort Wayne, Indiana 46805

faults rather than of fault localization.

Our model partitions diagnostic knowledge for
the software fault localization task into knowledge
uspd to locate known and novel faults. For diag-
nosing known faults the knowledge base contains a
hierarchy of faults which are known to occur in
programs from a particular applications domain, and
a set of empirical associations which relate fault
manifestations to possible causes. For diagnosing
novel faults the knowledge base contains models of
implementation alternatives and execution behavior
of functions indigenous to the domain. Both know-
ledge sources are utilized by a set of localization
tactics to generate, select and test fault hypo-
theses.

. KNOWLEDGE OF PROGRAM STRUCTURE AND FUNCTION

Knowledge of program structure and function
is necessary for diagnosis of both known and novel
faults. In the former case it is used to confirm
expectations associated with a given fault hypo-
thesis; in the latter case it is used to trace
violations of expected behavior to their source.
In our model this knowledge is captured in
functional phototypes.

A functional. phototype, consists of four com-
ponents: a set of recognition triggers, a list of
pre- and post-conditions describing the execution
behavior, a description of prototype components
and their topology, and a List of constraints among
components that must hold for recognition. Proto-
types are defined at three levels of abstraction:
the language, programming, and applications levels;
and are hierarchically organized. A portion of the
functional prototype hierarchy describing the com-
ponent topology of the "master file priming read"
(MFPR) function is given in Figure 1.

master_file_priming read
file priming_ read
file input_stmt

|

T L]
read file record

Figure 1. Topological Hierarchy for
Magter File Priming Read

Functional FPrototype

30 R. Sedimeyer et al.

The figure shows that the MFPR consists of a single
component, the file priming read. A file_priming
read is only recognized as a MFPR if two con-
straints are met: the input record is used as a
master record and the input file is used as a
master file. Recognition triggers include the

file priming_read and file input stmt prototypes
as well as the language keyword "read".

M. KNOWLEDGE OF FAULTS

While functional prototypes describe expected
program structure and function; fault modals des-
cribe expected defects in program structure and
function. A fault model embodies knowledge of a
particular implementation error or class of errors.
This knowledge consists of conditions under which
the model is applicable, a set of fault hypotheses,
and a set of related fault models. A fault hypo-
thesis is an expected defect in a functional pro-
totype. Defects are defined as missing prototype
components or violated constraints. Like function-
al prototypes fault models are hierarchically
organized. Figure 2 details a fault model for a
master file input error.

(master file priming read error
(trigpgered by
1. inwalid first master record
2. inwvalid first new master record
3. invalid master record count)
(expected defects
1. missing MFPR)
{related faults
1. insert_error)

Figure 2. Sample Fault Model

IV. LOCALIZATION TACTICS

Localization is performed using three tactics:
fault-driven, function-driven and computation-
dntvan. Vault-driven.n localization directs search
at finding a particular kind of fault, such as an
unexpected end_of file. Function-driven locali-
zatA.on analyzes a particular functional prototype
for an error. Computation-driven localization
concentrates search on the computation of a set of
program variables. Each makes use of an abstrac-
tion mechanism (Section 5) to generate and test
fault hypotheses.

Multiple localization tactics are desirable
for three reasons. First, they enhance the pro-
bability of finding faults since different tactics

analyze the source code from different perspectives.

Secondly, tactics which best fit the available in-
formation can be chosen. Thirdly, each tactic is
optimal, in the sense of minimizing computational
resources, for a particular localization task.

Fault-driven localization uses the fault model
hierarchy to generate fault hypotheses. Output
discrepancies serve as triggers for selecting a
particular fault model. The more salient the
trigger set the more specific the fault model and
the associated fault hypotheses. Given a fault
model, localization continues by first choosing
one of these fault hypotheses and then invoking

the abstraction mechanism to test it. If the
hypothesis fails then a related hypothesis can be
proposed, a different fault model can be applied,
or the tactic can be abandoned.

Function-driven localization uses output dis-
crepancies to suggest that a particular functional
prototype is improperly implemented. The abstrac-
tion mechanism is then invoked to identify the
code which implements the prototype. Tf the pro-
totype cannot be found then the source code pro-
ducing the most feasible match is considered as
the intended implementation. The fault is identi-
fied by the statement causing failure in the match-
ing process. This tactic can also be directed to
examine a particular abstraction level for a fault.
All prototypes defined at the chosen level are con-
sidered suspect. This application of the function-
driven tactic is less directed and usually less
desirable. Only when the output discrepancies
offer no basis for prototype selection does this
alternative become attractive.

Computation-driven localization traces the
computation of a particular set of program vari-
ables. The computation is analyzed by extracting
from the program those statements that directly
affect the values of variables in the set. This
extraction process is known as slicing [15]. The
computation can be followed in either a forward
or reverse order of execution flow. Faults are
found by using the abstraction mechanism to inter-
pret statements in the slice as members of more
abstract functional prototypes and comparing the
expected computational results to those derived.

V. PROGRAM ABSTRACTION

Program abstraction is performed by matching
functional prototypes to the source code. Ab-
straction may either be expectation-driven or
data-driven depending upon the localization tactic
selected. Expectation-driven abstraction matches
prototypes to code in a top-down manner, recursive-
ly matching components until a direct match can be
made against the source code or previously recog-
nized prototypes. Data-driven abstraction employs
language-level triggers to select prototypes for
matching. Prototypes matched at lower levels of
abstraction serve as triggers for matching at
higher levels. Once a functional prototype is
identified the corresponding code is bound to it.

Recognition-based abstraction is an efficient
technique, but it has limitations. Recognition of
a functional prototype may fail for one of three
reasons: a defect exists in the source code
implementing the prototype, the wrong prototype is
selected, or the source code represents an un-
familiar but correct implementation. The effec-
tiveness of the recognition mechanism depends on
the exactness of the triggering process and the
richness of the alternative implementation set.
Purely structural matching is augmented by func-
tional matching. The behavior of a program segment
which is inferred from language semantics, can
also be compared to the functional descriptions
in the prototype hierarchy.

VI. AN EXAMPLE

initial version of the
(FAult Localization

We have implemented an
in a program named FALOSY
FALOSY addresses faults in master file
update programs [16]. In this section we illus-
trate FALOSY's reasoning for the master file
priming read error.

model
SYstem).

FALOSY is presented with a discrepancy list
and a list representation of the program's source
code. The discrepancy list formally describes

differences between expected and observed output.
An abridged trace of FALOSY's reasoning is given
in the Appendix. Numbers in parentheses refer to

line numbers in the Appendix.

A production system, whose antecedents are
sets of discrepancies, is used to select the
initial localization tactic. In this case LlLhe-
fault-driven tactic is chosen and the master file
priming read fault model is triggered (1). FALOSY
hypothesizes that the priming, read for the master
file is missing (2). The abstraction mechanism is
invoked to identify the corresponding prototype
(4). A check is first made to determine if it
been previously identified. Since it has not,
recognition mechanism is invoked recursively to
find the components oi the master file priming
read prototype.

has
the

Eventually search is carried out at the source
level, and three read statements (6, 26) are
selected for further matching. Constraints are
now checked starting with those at the lowest level
in the abstraction hierarchy. The first candidate
is rejected since the file identifier is not used
as the master file (20). The second and third

candidates are rejectee’ because they do not pre-
cede the update loop (24,28). No candidate satis-
fies all constraints and recognition fails. The
original hypothesis is thus verified.

APPLENDIX

1. Applicable fault models {m [pr)

2. Expected defects ({m f pr missing))

3. Fault hypothesis {m [_pr missing))

4. Trying to recognize: m [pr

5. Triggers are (read f 1 s« f p r

6. Matching m f pr to (56 read transfile transbuf)

7. m_f pr has role f p r

8, Matching f p T to (sb read transfile transbufl)

9. f p r has role f i s

10, Matching f 1 s to (56 read transfile transbuf)

11. f 1 s 1s primitive

12, Checking constraint {data-type file pascal fid}

13, Checking constraint (data-type record pascal rec;

14, Match for { 1 s succeeds

15, Checking constraint (before f 1 s update loop)

16, Trying to tecognize: update-loop

17. Recognition of update-loop succeeds

18, Match for f p r succeeds

19, Checking constraint (use file m_f)

20, Role file, which is bound to transfile, 13 used
as a t_f whereas m_f was expected

21. Match for m_f pr fails

22. Matching m_f pr to (324 read oldfile oldbuf}

23, Checking constraint (before f 1 s update-loop)

24. Hole f_i_s, which is bound to g 00014, does not
precede role update loop, which is bound to
g0005

25. Match for f p r fails

26. Matching m f pr to (s52 read transfile transbuf)

27. Checking constraint (before f_i_s update loop)

28. Role f i s, which is bound to gOOO18, does not
precede role update loop which is bound to
g()0005

29. Match for f_p_r fails

30. Recognition of m f pr fails

31. Fault hypothesis verified

32. Fault is: (m f pr missing)

BIBLIOGRAPHY

[11 J. DeKleer, "Local methods for localization of
faults in electonic circuits," M1T-Al Memo 394,
1976.

[2] M.Genesereth, "Diagnosis using hierarchic
design models," Proceeding* of the Second AAA]
Conference-, August, 1982.

[3] R. Davis, H. Shrobe, w. Hamscher, K. Wieckert,
M. Shirley, and S. Polit, "Diagnosis based on
description of structure and function,"
proceeding of the Second AAA! Coference,
August, 1982.

[4] R. Hartlev, "How expert should an expert system
be?", Proceeding* [JCAI-81, August 1981.

[5] R. Patil, P. Szolovits, W. Schwartz, "Causal
understanding of patient illness in medical
diagnosis," Proceedings of 1JCA1-81, August,
1981.

[6]1 E. Short |life, Computer Based Medical Consulta-
tions' MYCIN, American Elsevier, New York,
New York, 1976.

[71 B. Chandrasekaran and S. Mittal, "Deep versus
compiled knowledge approaches to diagnostic
problem-solving," Proceeding* of the Second
AAAl Conference, August, 1982.

[81 H. Wertz, "Understanding and improving LISP
programs,” 7 TCAI-77 Proceeding*.

[91 R. Ruth, "Intelligent program analysis,"
artifical Intelligence, Vol. 7, No. I, 1976

[101 C. Adam and M. "LAURA, a system to debug
student programs,"” Artificial Intelligence,
November, 1980.

[11] F. "Understanding and debugging computer
programs,"” International Journal of Man-Machine.
Studies, Vol. 12, 19S0, pp. 189-202.

[12] G Sussman, A Computational Model of Skill
Acquisition, American Elsevier, New York, 1975.

[13]Miller, "A structured planning and debugging
environment," International Journal of Man-
Machine Studies, Vol. 11. 1978.

[14]D. Shapiro, "Sniffer: a system that understands
bug," MIT-Al Memo 638, June, 1981

[151M. Weiser, "Program slices: formal, psychologi-

R. Sedimeyer et al. 31

cal, and practical investigations of an
automatic program abstraction method,"
University of Michigan Ph.D. Thesis, 1979.

[16]B. Dwyer, "One more time - How to update a
master file," Communications of the ACM,
Vol. 24, No. 1, January 1981.

