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1. I n t r oduc t i on 

The more successful reso lu t i on programs today owe 
t h e i r power in part to e f f i c i e n t r e t r i e v a l 
mechanisms fo r re tu rn ing l i t e r a l s that are 
p o t e n t i a l l y u n i f i a h l e w i th or subsumed by a given 
l i t e r a l . For example, the e f f i c i e n t subsumption 
algor i thms and the hack demodulation of [2 ] are 
based on one such scheme, the FPA l i s t s . We 
propose a new technique that can be used to locate 
"compat ib le" l i t e r a l s fo r r e s o l u t i o n , subsumption, 
e tc . This new scheme has some advantages (and 
disadvantages) r e l a t i v e to FPA l i s t s . 

We make no d i s t i n c t i o n between atoms and non-
va r i ab l e terms. We c a l l p red ica te , func t ion and 
constant symbols r i g i d and var iab les f l e x i b l e . We 
are there fore in te res ted in f as t r e t r i e v a l and 
comparison of formulas tha t s t a r t w i t h a r i g i d 
symbol. 

2. Formula Out l ines 

Let T1 and T2 be two w f f s . A necessary but not 
s u f f i c i e n t cond i t ion fo r T1 and T2 to un i f y is 
tha t T1 and T2 agree at every r i g i d - r i g i d pos i t i on 
( i . e . , corresponding pos i t i ons in which both T1 
and T2 conta in r i g i d symbols). A necessary but 
not s u f f i c i e n t cond i t ion fo r T1 to subsume T2 is 
tha t in add i t i on to the above, T2 contains a r i g i d 
symbol in every pos i t i on where T1 contains a r i g i d 
p o s i t i o n . 

We make use of the above fac ts by grouping 
together wf fs that have the same r i g i d symbols in 
the same p o s i t i o n s . Fur ther , we associate w i th 
each such group an expression ca l l ed the o u t l i n e . 
These ou t l i nes can be e a s i l y compared to t es t fo r 
the above cond i t ions . F i n a l l y , such a comparison 
need be made only once fo r each pa i r of o u t l i n e s . 
Compatible ou t l i nes can be l i n k e d , g i v ing 
immediate access to a l l groups of wffs that 
p o t e n t i a l l y un i f y (subsume, are subsumed by) a 
given wff or o u t l i n e group. 

An o u t l i n e consists of two byte s t r i n g s , the 
symbol s t r i n g and the i nd i ca to r s t r i n g , whose 
length depends on the depth of the atom. The f i r s t 
byte of each s t r i n g contains in format ion fo r the 
s t a r t i n g symbol of the w f f , the next n bytes 
represent in format ion fo r the s t a r t i n g symbols of 
the top l eve l arguments of the w f f , the next n**2 
bytes represent in format ion f o r the l eve l 2 
arguments in the w f f , and so on. Unfor tunate ly , in 
order tha t corresponding pos i t i ons f o r nested 
subarguments l i n e up in separate o u t l i n e s , we must 
a l low f o r n arguments fo r every symbol (even 
va r i ab les ) where n is the maximum number of 
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4. Notes 

The f i r s t major d i f fe rence between FPA and 
ou t l i nes is tha t w i th ou t l i nes one can get the 
appropr iate l i s t o f wffs d i r e c t l y by r e t r i e v i n g 
the compatible o u t l i n e groups. B r i e f l y the FPA 
l i s t n1.n2. . . . nk.s contains a l l those formulas 
in which there occurs another formula s t a r t i n g 
w i t h s in pos i t i on n1 nk. If s is -1 then the 
term is a v a r i a b l e . For example, the atom in 
Example 1 would be on the P l i s t , the 11-1 l i s t , 
e t c . Given a p a r t i c u l a r atom T, to f i n d the atoms 
tha t may un i f y w i th (subsume, be subsumed by) T, 
it is necessary to take unions and in te rsec t ions 
of appropr iate FPA l i s t s . Of course, in order to 
form new reso lvents , one must f i n d the clauses 
conta in ing the l i t e r a l s in both schemes. 

Several systems employ s t ruc tu re shar ing. In the 
s t ruc tu re sharing scheme of Boyer-Moore [ 1 ] , one 
would only need to store the o u t l i n e s t r i n g and 
then include fo r each wff in that o u t l i n e group a 
means to t e l l which var iab les occurred in which 
zero p o s i t i o n s . In the case of sharing as in the 
Overbeek e t . a l . program [ 3 ] , one could use the 
o u t l i n e group as an a l t e r n a t i v e to hashing terms. 
This would be less e f f i c i e n t in t ime, but would 
not be as wastefu l of permanent memory. 

We note that the expression I (-NOT(I1 XOR 12)) 
can also be used to determine those pos i t ions 
w i t h i n the two terms that a c t u a l l y need to be 
tested for u n i f i c a t i o n . Programs tha t can access 
subterms by p o s i t i o n vectors can avoid the 
redundant checking of r i g i d - r i g i d p a i r s . 

There is considerable wasted space in an o u t l i n e 
s t r i n g fo r argument pos i t ions tha t are non-
ex i s t en t . If the maximum number of arguments is 
big or the formulas are deep, the ou t l i nes can get 
very long. However, there is on ly one copy of 
each o u t l i n e . In view of the possib le 
computational advantages, it may not be out of 
l i ne to use 30 to 40k bytes fo r these s t r i ngs and 
the l i s t s of compatible o u t l i n e s . Indeed, because 
a given atom or term can occur on many FPA l i s t s , 
i t i s not c lear that ou t l i nes would requi re 
d i sp ropo r t i ona te l y more storage. In f a c t , the two 
schemes could be used together by c u t t i n g o f f the 
ou t l i nes at some leve l and using the FPA l i s t s fo r 
terms deeper than the l i m i t . The ou t l i nes would 
requi re very l i t t l e storage and would provide a 
very good f i r s t f i l t e r ; the deep FPA l i s t s could 
be used as a secondary f i l t e r . 
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