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1. Introduction

The more successful resolution programs today owe
their power in part to efficient retrieval
mechanisms for returning literals that are
potentially wunifiahle with or subsumed by a given
literal. For example, the efficient subsumption
algorithms and the hack demodulation of [2] are
based on one such scheme, the FPA Ilists. We

propose a new technique that can be used to locate

"compatible" literals for resolution, subsumption,
etc. This new scheme has some advantages (and
disadvantages) relative to FPA lists.

We make no distinction between atoms and non-
variable terms. We call predicate, function and
constant symbols rigid and variables flexible. We
are therefore interested in fast retrieval and
comparison of formulas that start with a rigid
symbol.

2. Formula Outlines

Let T1 and T2 be two wffs. A necessary but not

sufficient condition for T1 and T2 to unify is
that T1 and T2 agree at every rigid-rigid position
(i.e., corresponding positions in which both T1
and T2 contain rigid symbols). A necessary but
not sufficient condition for T1 to subsume T2 is
that in addition to the above, T2 contains a rigid
symbol in every position where T1 contains a rigid
position.

use of the above facts by grouping
together wffs that have the same rigid symbols in
the same positions. Further, we associate with
each such group an expression called the outline.
These outlines can be easily compared to test for

We make

the above conditions. Finally, such a comparison
need be made only once for each pair of outlines.
Compatible outlines can be linked, giving
immediate access to all groups of wffs that
potentially unify (subsume, are subsumed by) a
given wff or outline group.

An outline consists of two byte strings, the
symbol string and the indicator string, whose

length depends on the depth of the atom. The first
byte of each string contains information for the
starting symbol of the wff, the next n bytes
represent information for the starting symbols of
the top level arguments of the wff, the next n**2
bytes represent information for the level 2
arguments in the wff, and so on. Unfortunately, in
order that corresponding positions for nested
subarguments line up in separate outlines, we must
allow for n arguments for every symbol (even
variables) where n is the maximum number of
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arguments for any symbol in the problem. (Sge

below for & discussion of storage requirements.)
The symbol string contains sywmbols for the rigid
positions and zeros for the flexible or non-
existent positions in the atom. The indicator
string contains & byte of I3 in each rigid
position and zercs in each flexible position. In
the following examples, n=3} and we write each
symbol byte with 2 letter or a zero, and esch
indicator byte with & vingle 1 or O.

Example 1. P(g{x),a,f(a,b,y))
symbol string: PpatOODOO00CabO
indicator string: tr114v0000001110
In this exemple, the 0 in the [ifth position
represents the wvariable x which is the first
argument of the first argument of the atom. The
next fives 0°s are present because there are no
corresponding arguments. This guarantees that the
positions of the arguments of f in the third
argumant position of P will line up with the
corresponding positions in another outline even
though g and & do not have a full three arguments.

The last zero is for the variasbie y.

Example 2. ?(K.Yn z(Y! b.2))

symbol string: FOOEOQOO00O000O0DO
indicator string: 1001000000010
Example 3. P(x,x,f(x,b,x))
Strings are the same o8 in Example 2.
Example &, P{a,b,c)
symbol string: Pabec
indicator string: i1 11
1. Comparison of Qutlines
Let T! and T2 have the outlines (51,I1) and
($2,I2) respectively, Using standard string

operations and padding shorter strings with zeros,
let

1 = NOT(I] XOR I2)
Rl = §1 AND I
R2 = §2 AND 1

He note the following:
1. 1 contains a 1 byte

positions that have
flexible-flexible pairs.

those
or

in exactly
rigid-rigid

RV (R2) = 51 (82) in rigid-rigid positions.
T! and T2 unifiable implies that R1 = R2



Tl subsumes T2 implies the above condition
and the siring ((NOT{12) AND 1I1) is
identically 0, i.e., no rigid position in Tt
is flexible in T2,

If T1 and T2 are the wifs of exampies 1
then

and 2,

1=100100000001 0
RiI=R2 =POO0fO00000CO0bLO
indicating potential wunifiability, However, T!

cannot subsume T2 because of the variables x and ¥y
vi. g and a.

Any new wif whose outline airesady exiats is simply
added to that group. Otherwise, the new outline is
added and the compariaons made and stored.

4. Notes

The first major difference between FPA  and
outlines is that with outlines one can get the
appropriate list of wffs directly by retrieving
the compatible outline groups. Briefly the FPA
list n1.n2. nk.s contains all those formulas
in which there occurs another formula starting
with s in position nt.... nk. If s is -1 then the
term s a variable. For example, the atom in
Example 1 would be on the P list, the 11-1 list,
etc. Given a particular atom T, to find the atoms
that may unify with (subsume, be subsumed by) T,
it Jis necessary to take unions and intersections
of appropriate FPA lists. Of course, in order to

form new resolvents, one must find the clauses
containing the literals in both schemes.

Several systems employ structure sharing. In the
structure sharing scheme of Boyer-Moore [1], one
would only need to store the outline string and

that outline group a
occurred in which

then include for each wff in
means to tell which variables
zero positions. In the case of sharing as in the
Overbeek et. al. program [3], one could use the
outline group as an alternative to hashing terms.
This would be less efficient in time, but would
not be as wasteful of permanent memory.

We note that the expression | (-NOT(I1 XOR 12))
can also be wused to determine those positions
within the two terms that actually need to be
tested for unification. Programs that can access
subterms by position vectors can avoid the
redundant checking of rigid-rigid pairs.

There is considerable wasted space in an outline
string for argument positions that are non-
existent. If the maximum number of arguments s
big or the formulas are deep, the outlines can get
very long. However, there is only one copy of
each outline. In view of the possible
computational advantages, it may not be out of
line to use 30 to 40k bytes for these strings and
the lists of compatible outlines. Indeed, because
a given atom or term can occur on many FPA lists,
it is not clear that outlines would require
disproportionately more storage. In fact, the two
schemes could be used together by cutting off the
outlines at some level and using the FPA lists for
terms deeper than the limit. The outlines would
require very little storage and would provide a
very good first filter; the deep FPA lists could
be used as a secondary filter.
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