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ABSTRACT
A technique for incorporating automatic
transformations into processes such as the
application of inference rules, subsumptlon, and
demodulation provides a mechanism for improving
search strategies for theorem proving problems
arising from the field of program verification.
The incorporation of automatic transformations into
the inference process can alter the aearch space

for a given problem and is particularly useful for
problems having "broad" rather than "deep" proofs.
The technique <can also be wused to permit the
generation of inferences that might otherwise be
blocked and to build some commutatlvity or
associativity into the unification process”*
Appropriate choice of transformations and new
literal clashing and unification algorithms for
applying them showed significant improvement on
several real problems according to several distinct
criteria.

INTRODUCTION

In this paper we provide a technique for
improving the proof search strategy for a
particular class of problems, namely, those in
which the concept of transformation of a literal or
term plays a large role. The technique involves
incorporating automatic transformations Into the
inference process by modifying the existing
unification and clashing algorithms.

In addition to significantly reordering the
proof search space for these problems, the
incorporation of automatic transformations allows
many desirable inferences that might otherwise be
blocked (e.g., by demodulation or by ordering the
arguments of equality literals in a canonical way).

The automatic transformation concept presented

in this paper is applicable to any area that has
"rewrite" .relations (e.g., commutatlvity,
associativity, or ordering relations). The new
literal clashing and expanded unification

algorithms are particularly effective in areas that
tend to have "broad" rather than "deep" proofs.
Program verification is one such area.

Various methods for building a theory into an
automated theorem proving system have been
considered in the literature. Most fall into one

or more of three loosely defined approaches:
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1. Unification in the presence of an
equational theory ([1], [4], [5], [10],
and [13])

Simplification with complete getg oOf
reductions ([2], [3] and [4])

3. Special rules of inference ([6], [7], [8],
[11] and [15])

The technique presented in this paper allows
some theory to be built into the inference process
but differs significantly from the above three
approaches. Unlike the first approach, our
technique does not attempt to find the full set of
unifiers when used In the context of a unification
algorithm. Unlike the second approach, the

transformation concept can apply to predicates and
literals as well as to terms and is not oriented
towards complete sets of reductions (which, in
fact, do not always exist). And unlike the third
approach, the process is guided by the user's
choice of eligible transformations.

reiterate our
of view. Complete methods
and complete sets of

We feel that
perspective and point
(e.g., uniform strategies
reductions) have many Interesting theoretical
properties. Unfortunately, 15 years of experience
has shown that such methods do not yield useful
theorem provers by themselves. In order to
actually prove theorems, it is necessary to include
many heuristics that not only make the program
Incomplete, but often make it too complex even to
analyze. We feel that the technique presented in
this paper Is important and useful in spite of the
lack of completeness. Although we do prove some
results about the operational characteristics of
our proposals, we are not overly concerned about
properties such as confluence, completeness, or
minimality of the various expanded versions of our
algorithms.

it is important to

This paier is divided into five sections.
Section Il discusses the motivation for Including
automatic transformations in the Inference process.

Section |1l presents the new literal clashing and
unification algorithms. Section IV evaluates test
results from the new algorithms. Finally, Section

V summarises our ideas and suggests areas requiring
further investigation.

It is assumed that the reader has some basic
knowledge of logic, automated theorem proving and
program verification. In particular, familiarity

with the concepts of subsumptlon and demodulation
and with the inference rules resolution and
paramodulatlon is assumed.



I'l. MOTIVATION
In this section we motivate our technique.
Subsection A discusses the nature of program
verification proofs, and Subsection B discusses

built-in Incompleteness.

A. Nature of Program Verification Proofs

Program verification proofs often have a
potentially useful property with respect to the
graph that represents the search space. A proof
often exists that is "broad" rather than "deep."
That is, the last step is a hyper-resolvent of
clauses CIl through Cn, where each Ci is derivable
from the Input clauses with a relatively low level
deduction. Further, many of the CI differ from
their parents only in the form or sign of a literal

or term. For example, a literal LT(A,B) in an
input clause may have to be ftransformed into
~LT(B,A) before it will clash with the denial of
the theorem. This transformation is currently
accomplished by resolving with one of the many
clauses that give the properties of LT, EQUAL GT,
etc. Unfortunately, these axioms produce huge

numbers of other resolvents at the same levels as
the Ci. These clauses and their descendants often
significantly delay progress to a proof.

We propose to Incorporate certain relations
(such as LT(X,Y) <—> ~LT(Y,X) and commutativity of

a function) into the literal clashing and
unification processes. The relations will behave
like literal and term transformations in this
context.

The new algorithms have two distinct effects:

1. More general clauses are generated sooner by
allowing the resolution of more literals. The
earlier generation of more general clauses can

have a significant effect on a proof search by
preventing the generation of many less general
clauses and their corresponding descendants.

2. Certain clauses that previously were at a high
level in the graph that represents the search
space may now have a relatively low level.
Because many of the clauses that are required
in the proof may be generated at a lower level
than before, strategies that are oriented
towards breadth first search may be more
effective than they were without the automatic
transformation process.

Note that the algorithm will not prevent the
generation of what would have been the intermediate
clauses to inferences made with the new algorithm;
it only reorders the search space, effectively
delaying the generation of these clauses. The
delay of these clauses until after a proof has been
found is more likely when the proof is broad rather
than deep. For this reason, the algorithm is
particularly well suited for application to program
verification problems.

B. Built-in Incompleteness

Building automatic transformations into a
theorem proving system can help undo some of the
Incompleteness caused by other very useful
strategies such as demodulation (when the
demodulator set is not a complete reduction set)
and ordering of terms in equality literals.
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shows that
demodulation is virtually necessary for theorem
provers, it Is rarely practical to attempt to find
a complete reduction system for every new problem.
Therefore, demodulating clauses can block necessary
deductions. For example, If EQUAL(G(A),G(B)) were
a demodulator and P(F(A,G(A))) were generated, it

Although our experience

would be changed to P(F(A,G(B))) and would not
clash with the clause ~P(F(X,G(X))).

It has been found extremely useful in practice
to keep every equality literal, EQUAL(T1,T}), in a
single canonical form, either EQUAL(T1,T2) or
EQUAL(T2,T1) but not both. (Literals of the form
~EQUAL(T1,T2) are handled the same way). This
practice can significantly reduce the size of the
clause space but can, |In general, lead to

incompleteness in a way similar to that caused by

demodulation.

in this paper

The new algorithms presented
at least to some

overcome both of these problems,
extent.

I11. AUTOMATIC TRANSFORMATIONS

A transformation is an operation performed on
a literal or term. We study two types of
transformations: literal transformations, which
correspond to resolutions with clauses containing
exactly two literals, and term transformations,
which correspond to demodulation with equality
units. The difference between the transformation
process and the usual applications of the inference
rules is that transformations are applied
automatically during the clashing and unification

processes when the blocking properties of other
operations such as demodulation and equality
ordering are not in effect. Because each automatic
transformation corresponds to a valid logical
operation, the new clashing and unification
operations are also valid inferences.

We will present the new literal clashing and

unification algorithms and comment on controlling
their use. We assume that the reader is familiar
with the standard terminology, Including ground
term, composite term, major function symbol, set,
bag, and WFF (literal or term).

Definition 1. A ground subterm of a term, T, s
maximal in T If it is not the subterm of any ground
term other than itself.

Definition 2. COMWEFF) < number of maximal ground
subterms in WFF plus the number of composite
subterms (including the term itself) that are not
ground. Note that In this measure of the

complexity of a WHF each maximal ground term counts
as one item, namely, the single domain element that
the term names.

Examples:

Note that the last example Is the least complex in
the above sense because it names a single constant
element of the relevant domain.

Definition 3. Two literals, LI and L2, pre-claah
if they have the same major function symbol and are



opposite in sign. Note that two literals clash
(resolve) if they pre-clash and their atoms unify*
Definition 4. A list of clauses is fully clashed
if every resolvent, C3; of clauses Cl and c2 on tne
list is either already on the list or is subsumed
by a clause on the list.

Definition5. A list of clauses is fully
paramodulated if every paramodulant, C3, of clauses

C1 and C2 on the list is either already on the list
or Is subsumed by a clause on the list.

Definition 6. A literal (or term), T, is
transformable by a list of transformations if there
exists at least one transformation, Tr, on the list
such that Tr(T) = T.
A. Literal Clashing Algorithm

The basic step of resolution is the clashing
of literals. The usual notion is that two literals
clash (resolve) if they are opposite in sign and

have a common instance. The new notion is that two
if there are transformed versions of
in the usual sense.

literals claah
the literals that clash

The spirit of the new concept is to automate
the "obvious** transformations by incorporating them
into the literal clashing process. The "obvious*™
transformations would include relatione that are in
some sense rewrite rules such as LT(X)Y) —>
~LT(Y,X), where LT represents the "less than"
relation. The allowable transformations have a
very restricted form which we describe below.
These restrictions are heuristic in nature and
result in a more efficient and effective theorem
prover than would otherwise be possible. We
distinguish these restricted transformations from
transformations that have more deductive power,
such as LT(X,Y) —> LT(X, S(Y)) where S(X) stands
for the successor of X. he distinction is
informal and clearly subject to interpretation.

A literal transforming clause (transformation)
is a clause with exactly two literals, LI and L2.
The mechanism for applying these transformations is

resolution. Note that each such clause in fact
represents two transformations, -LI —> L2 and H-2
—> LI.

To be of any value, a transformation clause

from the clause space

clearly must be deduclble
We assume

representing the problem to be solved.

that this property is satisfied in all further
discussions of transformations.
For ease and efficiency we wuse two distinct

lists of tranaformations:

LCLASHI - those that change sign and/or major
function symbol
LCLASH2 - those that permute arguments
Restricting the set of transformations that can

first be applied to those that change sign and/or
predicate symbol of a literal provides an efficient
sieve for literals that are not clashable. That
Is, no attempt will ever be made to unify the atoms
of two literals unless they have transformed
versions that pre-clash. Although having a single
fully clashed list of transformations would lend
Itself to a very simple algorithm for applying the
transformations, we feel that the trade-off between
the computational efficiency of having two Hats
and the simple organisation of the algorithm

justifies having the two lists.
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We also impose several restrictions as
follows:

1. In applylng transformation LI L2 to a
literal no substitutions may be made
to L Itself

2. LI and L2 contain exactly the same set of
variables.

3. The major function symbols of LI and L2
have exactly the same number of
arguments.

4. COM(LI) - COM(L2)

5. LCLASH2 is fully clashed. Also, the
union of LCLASHI and LCLASH2 is fully

clashed subject to the qualifications:

a. Tautologies generated by resolving
clauses in LCLASHI need not be added.
b. After the union of lists LCLASHI and
LCLASH2 is fully clashed, consider the
set of all transformations, LI L2, on

LCLASHI such that exactly one of the
literals, LI or L2, Is transformable
by  LCLASH2. If there are two
transformations in this subset that

differ only by a single application of
a transformation in LCLASH2 (that s,
the clauses are permutation variants
of each other where the permutation is
an eligible transformation), then only
one of the transformations need be
kept on LCLASHI. Keeping all such
permutation variants will not affect
the results of the algorithm but might
cause some unnecessary duplication of
work.

Although omitting the qualification to
restriction 5 would result |In lists with nice
theoretical properties (see Lemma 1 below), removal
of redundant and Ineffective transformations is
consistent with the goal of keeping the set of
applicable transformations small.
restriction 5 is not
prohibitive if the number of clauses Involved is
small. In particular, note that the resulting set
will be finite because of the restrictions placed
on the complexity of the transformations (for
example, -P(X) P(F(X)) is not allowed).

Note, too, that

A transformation (set of transformations) s
not eligible If it indirectly violates the above
restrictions, even if the transformation clause
Itself Is eligible. For example, the pair of
transformation clauses --Q(A) R(A) and -*(A) Q(B)
would not be eligible because the fully clashed
property would require the transformation clause
Q(A) Q(B) to be present. This transformation
clause Is not eligible because It does not
correspond to a transformation that changes sign
and/or predicate symbol (for LCLASHI) or to a
transformation that permutes arguments of a literal
(for LCLASH2).

Most of the restrictions above put Ilimits on
the set of transformations and the way they can
apply. A few however, like the fully clashed
properties, make the operation of the algorithm
simple and efficient in that at most two
transformation steps will be required on any
literal, one from LCLASHI and one from LCLASH2.
Although these restrictions may seem to make the



set of transformations on lists LCLASH1 and LCLASH2
of restrictions are

very complicated, most the
necessary only to cover special cases that will not
commonly arise in practice. On one set of real
problems that was tested (see Section 1V), the
entire set of transformations consisted of the
following:

~LT(X,Y) ~LT(Y,X)

-LT(X,Y) -EQUAL(X.Y)

~LT(X,NUM1) -IB(CC.X)

HLT(CN.X) ~IB(CC,X)

HEQUAL(X,Y) EQUAL(Y,X)

HBQUALARR(X)Y) EQUALARR(Y,X)
These clauses  were formulated under an
interpretation in which IB(X,Y) represents the fact
that index Y is in bounds for array X; CC is an
array; NUMM1 and CN are Integer constants; and
EQUALARR represents equality between arrays.

The following lemmas and theorems help

motivate an algorithm that effectively makes use of

the lists of transformation clauses defined above.
The two theorems illustrate the trade-off between
techniques that can be shown to have nice
theoretical properties and those that are useful in
practice. Theorem 1 characterizes the literal
clashing properties of the |lists iXLASHI and

LCLASH2 when transformations can be applied without
a substitution restriction (e.g., restriction 1
above). Theorem 2 characterizes the transformation
properties of the lists when the substitution
restriction is In effect.

Note that the
(represented by tautologies)
explicitly) in every set
(clauses). That is, while the reference to the
existence of a transformation with certain
properties includes the possibility of the identity
transformation, the reference to literals that are
transformable by a certain set does not.

identity transformation
is implicitly (but not
of transformations

Notation:

|I— c if clause ¢ is deducible from clause
space C with ordinary resolution
(without substitution
restriction).

C

a

a |—> b with respect to a set of clauses C if

unit clause b is deducible from
unit clause a with a single
ordinary resolution step.
lemma 1. Let a and b be literals treated as unit
clauses. Let C be a set of transformation clauses
(exactly two literals) that is fully clashed. If

the conjunction of b and C is satlsflable, but the
conjunction of a, b, and C is unsatlsfiable, then a
I—> ~b' with respect to C, where b and ~b' clash.
Proof. Because a must clearly participate in the
derivation of the empty clause, the fully clashed
property implies that if a and C | b', where b

and -b' clash, then a I— M>'. The lemma then
follows from Corollary 3 on page 539 of [9].

Let C above be partitioned into two sets, CI
and C2, such that CI consists of those clauses
which (when thought of as transformations) change
sign and/or predicate symbol, and C2 those clauses
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with CI' which 'is
constructed from Cl as follows: For each clause in
Cl, add the clause to CI' wunless it is the
resolvent of a clause In C2 and a clause already in
Ccl'  and exactly one of its literals is
transformable by C2. In other words, the omitted
clauses are clauses that can be derived by applying
a transformation from C2 to one of the literals of
a transformation clause In Cl'.

that remain. Now replace ClI

Note that CI' may not be wuniquely determined
by CI. The order that the clauses are inspected
may determine which clauses in Cl are omitted from
cl'. This has no bearing on the Ilemmas and
theorems that follow.

lemma 2. Let al, a2,
TTial ST* |—> a2 |—> ...
Cl' and C2. At least one
hold:

(1)

an be unit clauses such
|— > an with respect to
of the following must

There exists a unit clause, b, such that al
I—> b with respect to CI' and b |—> an
with respect to C2.

There exists a unit clause, b, such that al
I—> b with respect to C2 and b |I—> an
with respect to CI'.

(2)

Proof. Because C is fully clashed, al I—> an with
respect to C. Let ¢ be the clause in C that
resolves with al to produce an. If ¢ is in either
C2 or CI', then there is nothing to show because
the identity transformation Is implicitly in CI' (b
- al) and C (b - an). If c is not in C2 or CI'
then it must be the resolvent of a clause in CI'
with a clause in C2, and the lemma follows.

Lemma 3. Let al, a2, an be as in Lemma 2. If

"ail Is transformable by C2, then outcome (1) of
Lemma 2 holds.

Proof. Because C is fully clashed and ClI and C2
partition C, it follows that al |—> an with
respect to either Cl or C2. If al and an have the
same sign and predicate symbol, then al I—> an

with respect to C2. In this case both (1) and (2)
of Lemma 2 hold because the relevant transformation

from CI' is the identity transformation.

If al and an differ in sign and/or predicate
symbol, then al |—> an with respect to Cl. |If
both al and an can clash against clauses in C2,
then al |—> an with respect to Cl' because CI'
contains all clauses from Cl In which both literals
are transformable by C2. In this case, both (1)
and (2) hold as the relevant clause from C2 is the
identity transformation. If al cannot clash
against any clauses in C2, then (2) cannot hold

unless the relevant clause from C2 is the identity
transformation. The fact that outcome (1) must
hold then follows from Lemma 2.

First, assume that the transformation process
uses ordinary resolution. That is, substitution is
not restricted to the transformation clauses.

Theorem 1. Consider the conjunction of the clauses
Tn——LCLASH1, the «clauses in LCLASH2, and two
literals, LITERALA and LITERALB as wunit clauses.
If the resulting clause space |s unsatlsflable but
is satlsflable without either of the two literals,
then there exists a transformation, Trl, from
LCLASH1 and a transformation, Tr2, from LCLASH2
such that either Tr2(Trl(LITERALA)) clashes with
LITERALB or Tr2(Trl(LITERALB)) clashes with
LITERALA. In particular, the following hold true:



by LCLASH2,
such that

(1) If LITERAL* is transformable
then there exist Trl and Tr2

Tr2(Trl(LITERALS)) clashes with LITERALA.

(2) If LITERALB transformable
then there exist Trl and Tr2
Tr2(Trl(LITERALA)) clashes with LITERALB.

neither LITERALA nor LITERALB is
by LCLASH2, then there exist Trl and
Tr2(Trl(LITERALB)) clashes with

LCLASHZ2,
such that

is by

(3) If
transformable
Tr2 such that
LITERALA.

LCLASHI consists only of

change sign and/or predicate
LCLASH2 consists only of
transformations that permute arguments of a
literal. Recall also that LCLASH2 is fully
clashed, and that the conjunction of the two lists
is fully clashed up to deletion of tautologies and
clauses that can be derived by the resolution of a
clause on LCLASHI with a clause on LCLASH2.

Proof. Recall that
transformations that
symbol and that

space is unsatlsflable,
sequence of unit (single
literal) clauses a0, al, an such that LITERALB
-a0 |—>al |—>a2 |— > ... |— > an - M-ITERALA*
where -LITERALA' and LITERALA clash (see [9]).
Similarly, there must exist a sequence of unit
clauses bO, bl bm such that LITERALA - bO |-->
bl > b2 |— > ... |—> bm - -LITERALB' where
-LITERALB' and LITERALB clash.

Because the clause
there must exist a

The first two parts of the theorem follow
immediately from Lemma 2 and Lemma 3. The third
part follows from Lemma 2 and the observation that
outcome (1) of Lemma 2 must hold when al of Lemma 2

is not transformable by C2.

transformation
That is, substitution
the transformation

Now, consider the
defined originally.
allowed only into
themselves.

process as
is now
clauses

Notation:
Let a and b be literals.

if there exists a transformation Tr on
either LCLASHI or LCLASH2 such that
Tr(a) - b.

(a -2-> b) if there exists a
transformation Tr on LCLASHI
(LCLASH2) such that Tr(a) - b.

a—>b

a -l-> b

a -(k)-> b if there exists al, a2, ak such
that a —> al —> «2 —> ... —> ak
- b. (If k-0 then a - b.)

a -(*)-> b if a -(k)-> b for some k >_ 0.

Lemma 4. a -l1-> b if and only if -b wml->

(similarly for LCLASH2).

only if there exists a
LI L2, and a substitution,
and L2(S) - b (because
allowed only into the

Proof, a -1-> b if and
transformation clause,
S, such that L1(S) - -a
substitutions are

transformation clauses).

Theorem 2. a -(*)-> b implies that there exists a'
"sucE ETiaT either a -I-> a' -2-> b or -b -I-> a'
-2-> -a.

Proof. This proof follows from Lemma 2 and Lemma 4

where al and an in Lemma 2 are thought of as ground
literals (so no substitutions are possible).

476

Theorem 1 and Theorem 2 imply that although it

is sufficient to transform only one literal when
attempting to clash two literals with
transformations, it may be necessary to choose the
appropriate literal to transform. Theorem 1, in
effect, says that without the substitution
restriction the choice is based on a simple
inspection of the transformations on LCLASH2.

Theorem 2, which refers only to the transformation

process Itself and not to the underlying goal of
clashing literals, gives no information about
making the choice.

This difficulty can be overcome in a program
by attempting transformations in both directions.
Alternatively, a program might attempt to analyse
the two literals and the set of transformations.
In our program, however, we have found it adequate
to choose, by simple inspection as above, one
literal to transform.
algorithm

The algorithm wused in our program is as
follows: Let LITERAL1 and LITERAL2 be the literals
to clash.

STEP 1: Choose which literal to transform.

If LITERAL2 is transformable by
LCLASH2, then transform LITERAL1, else
transform LITERAL2.

Let LITERALB be the literal chosen to
be transformed, and let LITERALA be the
literal that remains unchanged.

STEP 2: Find a transformation from LCLASHI to
apply to LITERALB to make it pre-clash
with LITERALA.

STEP 3: For each pre-clashable pair, find a
transformation on LCLASH2 that makes
the literals unifiable.

In our program, we halt when the first clash
is found rather than finding all possible clashes.

It follows that the completeness property is
sacrificed unless transformations are available for
normal inference. Because the automatic
transformation concept was designed for performance
in an applied environment, however, completeness is
not of large concern. Also, because many clauses
that participate in program verification proofs are
ground (and so can clash in at most one way) [12],
the first clash is very often the only clash.

It is important to note that the new literal
clashing algorithm is not a "pre*theorem prover."
That is, it is not the <case that the algorithm
corresponds to using the theorem prover (or theorem

prover search strategies) to find a proof that two
literals are inconsistent. The process is a direct
and finite search through the two lists, LCLASHI
and LCLASH2.

Let m be the number of transformations on
LCLASHI that can apply to LITERALB, and let n be

the number of transformations on LCLASH2 that can
apply to the major function symbol of LITERALA. It
follows that at most mn transformations can be
applied in the algorithm to test the clash of
LITERAL1 and LITERAL2. In general, m and n will be
small. This fact is important because each
application of a transformation requires a
unification test, which can significantly add to
the cost of the algorithm.



choose an effective
transformation set. Some transformations can cause
unnecessary redundancies and inefficiencies. For
example, it might be better to have the unit
clauses Q(A,B) and Q(B,A) both in the clause space
than to have the single unit clause Q(A,B) and the

It is important to

transformation clause -Q(X,Y) Q(Y,X), which might
apply at many unnecessary places.
B Expanded Unification Algorithm

A similar transformation process has been

developed for unification of terms using equality
literals EQUAL(T1,T2) in place of transformation
clauses and paramodulation in place of resolution

(again with a substitution restriction). Although
ve consider the concept of literal transformations
to be the most useful and important proposal In
this paper, we ©present the following for two
reasons. First, there are some similarities but
also some Important differences between the
transformation of literals and terms. And second,
the heuristics cited below may help offset some of
the impractical aspects of various complete
unification systems that build in siroplifiers.

We again partition the transformations into
two lists, UNIFY1 and UNIFY2, that change the major
function symbol of a term and permute arguments,

respectively. We have the same restrictions on the
complexity of terms and variable substitutions that
we had In the literal <clashing algorithm. In
addition, we have the following restrictions:

6. The bag8 of variables in TI and T2 are

identical.

7. TI (T2) is not a proper subterm of T2

(TI).

8. The set of transformations (ideally)

should be fully paramodulated.

Practical considerations limit the application
of last property. For example, the pair of clauses
EQUAL(F(X,Y),F(Y,X)) and
EQUAL(F(X,F(Y,Z)),F(F(X,Y),Z)) can generate an
infinite set of eligible transformations. Although
the elimination of any such transformations can
cause blocks in the expanded unification algorithm
given below, it is reasonable to restrict the list
to a small set of the most simple and roost general
transformations.

Note that the fully clashed property implies
that all instances of application of transitivity
of equality will be present. That is, if
EQUAL(T1,T2) and EQUAL(T2,T3) are eligible
transformations, then EQUAL(T1,T3) must be an
eligible transformation.

Note also that the requirement COM(TI) -
COM(T2) and restrictions 6 and 7 prevent infinite
sequences of expanding transformations such as A
—> F(F(A)) —>

The functional reflexivity axioms (instances
of EQUAL(X.X)), which act as identity
transformations, will be assumed to be implicitly
on all lists, but need not be explicitly present.

to the assumption about
of the literal

This assumption corresponds
tautologies in the discussion
clashing algorithm.

477

Notation:
Let r and s be terms*
r —> s if there exists a transformation Tr on

either UNIPYl or UNIFY2 such that
Tr(r) - s.

Theorem 3. r —> 8 if and only if s —> r.

Proof, r —> s if and only if there exists a

transformation clause, EQUAL(T1,T2), and a

substitution, S, such that T1(S) - r and T2(S) m s

(because substitutions are allowed only into the

transformation clauses).

The following theorem helps justify the
recursive orientation of the expanded unification
algorithm. In general, it is possible that the
transformation of a term, T, might be blocked
unless some transformation is first applied to a
proper subterm of T. The theorem shows that this
problem does not arise within the context of the
expanded unification algorithm.

Theorem 4. Let T be a term with proper subterm R,
"IH3 let Trl and Tr2 be two transformations

represented by transformation clauses, EQUAL(T1,T2)
and EQUAL(T3,T4), respectively. Assume that Trl
and Tr2 are on a list that is fully paramodulated.
If T* is the term that is generated by substituting
R with TrI(R) in T, and T's= - Tr2(T"), then there
exists a transformation, Tr3, such that Tr3(T)
subsumes T''.

to R
such
loss

has
to

fact that Trl is applicable

there exists a substitution, SI,
- R or T2(S1) - R. Without
of generality, assume that Ti(Si) - R. Then T'
subterm T2(S1). The fact that Tr2 is applicable
T* implies that there exists a substitution, S2,
such that either T3(S2) - T' or T4(S2) - T*.
Without loss of generality, assume that T3(S2) -
T'. Now, because T3(S2) has subterm, T2(S1), it
follows that EQUAL(T3*,T4) is a paramodulant of
some instances of EQUAL(T1,T2) and EQUAL(T3,T4),
where T3' is the result of replacing the subterm,
T2(S1), in T3(S2) with T1(S1). Because the list of
transformations is fully paramodulated (and the
functional reflexivity axioms are implicitly
present), Tr3 is the transformation that |Is
represented by either clause, EQUAL(T3*,T4), or by
a clause that subsumes EQUAL(T3*,T4).

Proof. The
implies that
that either T1(S1)

the property
transitivity of
unification

most one

Because fully paramodulated
accounts for applications of
equality, at any point in the expanded
algorithm, it suffices to apply
transformation to a term.

at

algorithm

The new unification algorithm can be described
as a simple recursive process. At the outer level
it is similar to the literal clashing algorithm in
that it first uses the transformations on UNIFY1 to
match major function symbols and then uses the the
transformations on UN1FY2 to get unlfiable
sequences of arguments. The recursion comes to
play, of course, when unification is to be applied
to each pair of (permuted) arguments.

Incorporated into
including
Our
have

Term transformations can be
process that uses unification
demodulation and subsumption.

is that these transformations will

any
clashing,
experience



applications, such as
literal transformations.

certain

less impact in
than

program verification,

XV. TESTING AVD EVALUATION

Two sets of problems were used to test the new

literal clashing algorithm with the expanded
unification algorithm included as the unification
step:

1. Eleven real problems currently being tested
by B. T. Smith on the environmental theorem
proving system [12]

2. Slight variations of the eleven
probles

The second set of problems was designed to
help characterise the conditions in which the new
literal clashing algorithm has the most favorable
effects on the proof search space.

The eleven real problems were tested with
various search strategies, including those most
commonly used by B. T. Smith [12J. The problems
run with transformations and those run without
transformations will be referred to as the "trans"
and "notrans"” versions, respectively. The
following observations have been made:

Finding proofs; In no case did the notrans

version find a proof when the trans version

did not. In one <case the trans version
found a proof when the notrans version did
not.

Total number of clauses |In search space (in
cases In which a proof was found): The
notrans version tended to have fewer
clauses than the trans version. This
result is reasonable because the
transformation process has the effect of

producing more clauses at earlier levels In
the graph that represents the search space.
Because all of the search strategies used
have some element of breadth first search
in them, the general effect of the
transformation process is a net increase in
the total number of clauses added to the
clause space. There were isolated cases in
which the trans version actually had up to
40 percent fewer clauses than the notrans
version, and a few cases in which the trans
version had as many as 40 percent more
clauses than the notrans version, but on
the average, the trans version produced
approximately 18 percent more clauses than
the notrans version.

Number of clauses that participate In proof:
The value for the trans version never
exceeded the value for the notrans version.

The differences ranged as high as six
clauses (10 percent).

Number of clauses selected by the search
strategy: The value for the trans version

exceeded the value for the notrans version
in only one case. The single Increased
value was from 13 to 14 clauses (less than
8 percent). The decreased values ranged up
to over 50 percent (9 to 4 clauses).

Number of selected clauses that participate in
the proof: The value for the trans version
never exceeded the value for the notrans
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version, Reductions ranged to 40

percent.

up

Depth of empty clause: The value for the trans
version was less than or equal to the value
for the notrans version in all but one of

the problems tested, with reductions of up
to 50 percent. In the one exception, the
trans version Increased the depth of the

notrans version from 2 to 3. This behavior

is possible because there can be more than
one proof to a problem, and because the
search strategies used are not exactly
breadth first searches. In the problem In
which the depth was higher in the trans
version than in the notrans version, a
longer path to the empty clause (deeper
proof) was found before the shorter path
(less deep proof) was discovered.

In a second set of experiments, noise
(extraneous literals and complications of terms)
was added to the real problems. The negative
effect of adding noise was consistently and
significantly worse in the problems run without
transformations than in the problems run with
transformations.

SUMMARY

The modified real problems tested above
indicate that the automatic transformation concept
does have the potential to become a powerful
extension to a resolution-based automated theorem

isolated cases
run with

Except for program
automatic
run

the

proving system.
verification problems
transformations did no worse than problems
without transformations, and sometimes,
performance was significantly better.

The results, however, were not as promising as
expected. This suggests that although the concept
may be quite useful, better search strategies
putting more emphasis on breadth first search might
be developed to capitalise on the power of the
transformation process. At present the user must
pick a subset of transformation clauses to become

automatic transformations. Work needs to be done
to provide general rules for making these choices.

Various modifications to the new literal
clashing and expanded unification algorithms might

also be investigated, including relaxation of some
of the rules for eligibility of transformations and
r<les for applying transformations. In particular,
relaxation of the rule about restricted
substitution into the terms and/or literals being
transformed could significantly affect the
resulting clause space. Finally, the incorporation
of the automatic transformation concept into other
areas such as demodulation or subsumptlon might be
investigated.
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