AN APPLICATION OF Al TECHNIQUES TO STRUCTURING
OBJECTS INTO AN OPTIMAL CONCEPTUAL HIERARCHY

Ryatard S. Michalski

and Robert E. Stepp

Department of Computer Science
University of Illinois at Urbana-Champalgn

ABSTRACT

A method of "learning from observation" Ila
presented which structures a collection of objecta
into hierarchies of subcategories, such that each
subcategory la characterised by a conjunctive
description involving relations on selected object
attributes. The conjunctive descriptions sprouting
from each node are mutually disjoint and optimal aa
a group according to a flexibly defined criterion.
Each level of the hierarchy Is determined by an
iterative procaaa which repetitively applies a
veralon of the A* search algorithm.

Experiments with the program  CLUSTER/PAF
implementing the method indicate that the obtained
hierarchies represent solutions which have a simple
conceptual Interpretation and which seem to agree
well with the way people atructure objecta.

| INTRODUCTION

The problem of intelligently structuring a
given collection of entitles haa practical
significance not only for applied sciences in
general, but alao for designing and implementing Al
systerns. For  example, knowledge about the
structure underlying given data can help in
reducing the aearch apace in problem solving, in
organising large data baaea (or rule baaea), In
dividing knowledge acquisition tssks into useful

subcaeea, or In concisely characterising a large
collection of objects for human understanding.

The problem of data atructurlng can be viewed
aa a problem of "learning from observation"”
("learning without a teacher"). A simple form of
data atructurlng la clustering, which determines a
hierarchy of aubcategorlea (""clusters") within a
given collection of objects. |In the traditional
methoda of clustering, developed in cluster
analyaia and numerical taxonomy [6], the basis for
forming subcategories is a "degree of similarity"
between objects: the subcategorlea are collections
of objecta whoae intra-cluster similarity ia high

and inter-cluster similarity Is low.
The traditional clustering techniques have one
major diaadvantage. Since the only basis for

forming cluatera is the degree of object similarity
(which is a measure dependent only on properties of
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compared objects), the resulting clusters do not
necessarily have any simple conceptual
Interpretation. The problem of determining the
"meaning" of the obtained clusters is simply left
to the researcher. This disadvantage is
significant becauae a reaearcher typically wants

not only to find clusters, but alao wants to find
an explanation of the clusters in human terms.

This paper la concerned with the problem of
determining s hierarchical structure underlying a
given collection of objects, in which each node
corresponds to a aubcategory of objects
characterised by a conjunctive concept (a logical
product of relations on selected object
attributes). Structuring objects into such
"conjunctive hlerarchiea" called conjunctive
conceptual clustering.

is

The idea of
general method
hlerarchiea was
discusses in
(Implemented
Illustrates it
muelcology.

clustering and a
for determining conjunctive
Introduced In [3]. This paper
more detail one specific algorithm
in the program CLUSTER/PAF) and
by a practical problem found in

conceptual

I THE SIMILARITY MEASURE VERSUS
CONCEPTUAL COHESIVENESS

The similarity between any two objects in the
population to be cluatered is characterised in the
conventional data analysis methods by a aingle
number—the value of the similarity function
applied to symbolic deacriptiona of objects ("data
points"). These descriptions are typically
vectora, whoae components represent scores on
selected qualitative or quantitative variables used
to describe objects. Frequently a reciprocal of a
distance measure Is used as a similarity function.

Since the similarity function is solely
dependent on the properties of individual objecta,
the traditional methods are fundamentally unable to
capture the "Gestalt properties" of objects that
characterise a collection of objects as one whole
and are not derivable by considering objects
individually. In order to detect auch properties,
the system must know not only the data points, but
alao certain "concepta". To illustrate this point,
let us consider a problem of clustering data points
In Figure 1.



Figure 1. An illustration of conceptual clustering

A person considering the problem In Figure |
typically describe It as "two circles".
the points A and B, although being very
are placed in separate clusters. Here,
solution involves partitioning the data
Into groups not on the basis of palrwlse
between points, but on the basis of
membership." This means that the points
are placed in the same cluster if together they
represent the same concept. In our example the
concept is a circle.

would
Thus,
close,
human
points
distance
"concept

conceptual
clustering. From the view of conceptual
clustering, the “"similarity" between two data
points A and B, which we will call the conceptual
coheslveness, depends not only on these points but
also on a set of concepts which are available for
describing A and B together. In this paper the
concepts into which objects are structured are
conjunctive descriptions involving relations on
selected object attributes.

This idea is the basis of

11 TERMINOLOGY
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A. Variables and Their Types

discrete variables
objects In the
each variable a

Let X1,X2,...,x, denote
which are selected to describe
population to be analysed. For
value set (or domain) Is defined, which contains
all possible values this variable can take for any
object in the population. We shall assume that the
value sets of variables xj, 1-1,2,..., n are finite.
In general, the value sets may differ not only with
respect to their size, but also with respect to the
structure relating their elements (reflecting the
scale of measurement). We distinguish between
nominal (qualitative), linear (quantitative), and
structured variables, whose domains are unordered,
linear, and tree ordered sets, respectively. The
structured variables represent generalization
hierarchies of related concepts.

B. Event Space and Syntactic Distance

An event e is defined as any sequence of
values of variables X1,X2,¢¢¢,x,. The set of all
possible events, E, Is called the event space. The
syntactic distance, 6(e”,e2)> between two events e”
and 02 Is the number of variables which have

different values in e* and e2«
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C. Selectors

A relatfonal stetement [xg # Ry}, where Ry,
called the referance, is a list of elements from
the domain of xg, asd # stande for ona of the
relational oparators = J} > <, is callied & Vi)
selector or, briefly, & wsslector.” A selector
[xg # ;] 1¢ said to be sstisfied by ao svent
.= (xl,:z,...,xn}, if the velue of variable x3 in
e, ia in relation # with any slemsnt of 0.

D. L-complaxes and s-cosplexes

A logical product of salactors, written -as &
concatenation of selectors, is cellad a V1), logical
complex (or brisfly, an f-complex). An event ¢ is
»sid to satisfy an f-complex if values of variables
in e satiafy all the selactors in tha Z-complex.
For example, savent ¢ = (2,7,0,1,5,4,6,3) satinfies
the ft-complex [x1=2,3] [x3€3] [x5=3. 8] [xg=long]
(vhere x; 1is s nominal varisble, x3 and x5 ars
linear variables and xg is a structursd variable)
if cha valus of %g in & (i.e., 3) is fo the clase
"long,” as defined by tha structure of ths value
set of xg. An f-complex can be viewed as a
synbolic description of the events wvhich satisfy
it. For example, the above f-complex ia the
symbolic description of all svents in which x; is 2
or 3, x3 1s wsmaller than or equal to 3, xg 19
batwean J and 8, and xg has a value beloaging to
the catagory "long” {the wvaluss of any other
variables ara irralevant).

Any set of events for which there exists an
A-complex satisfied by these events and only by
these events Is called a set-complex or, briefly an
s-complex. Henceforth, If a Is an I|-complex, then
by & we will denote the corresponding s-complex,

l.e., the set of events described by the I-complex.
For simplicity, whenever the distinction between an
I-complex and an s-complex Is not important, then
we will use just the term complex.

E . Sparseness

Let E be a set of events In E, which represent

objects to be clustered. The events in E are
called data events (or observed events) and events

In E\VE (l.e., events In E which are not data
events) are called empty events (or unobserved
events). Let & be an s-complex which covers
(Includes) some data events and some empty events.
The number of data events (points) In & Is denoted
by p(6). The number of empty events In 6 Is called
the sparseness and denoted by *(£)e The total

number of events In 6 Is thus t(fi) - p(6) + s(6).

The Jt-complex can be viewed as a generalised
description of the data events contained In the
corresponding s-complex. The sparseness, as
defined above, can be used as a simple measure of
the degree to which the Jl-complex generalises over
(or "fits") the data events. |If the sparseness Is
sero, then the description covers only data events
("zero degree  of generalisation"). As the
sparseness of the complex Increases, so does the
*VLi which
uses such selectors

Is the variable-valued logic system one,
[2J.



which it generalizes over the data

A related but more preclae measure of the
degree of generalisation Is the Information-
theoretic uncertainty of the location of data
events in the complex [3].

h Star

The
against

degree to

events.

(theoretical) star G(e|lF) of event e
event set F Is formally defined [3] as the
set of all maximal under Inclusion s-complexes
covering the event e and not covering any event in
F. (An s-coaplex ft is maximal under Inclusion with
respect to property P, If there does not exist an
e-complex ft* with property P, such that ft c ft*.)
Such maximal complexes, however, have high
sparseness and thus are not directly useable in our

approach. Therefore, the algorithm produces a
reduced star. The reduced star is obtained from
the theoretical star by transforming each complex
into a new one that covers the same observed events
but has the minimum sparaeness (or, in general,
minimlsea a certain criterion)e
£. Cover

Let E1 and E2 be two disjoint event sets,
Bl 0F2 " e " cover COVXE1IE2) of E* against E2,
is any set of s-complexes, (ij}jej» iuch that for

each event e e B" there la an s-complex ftj, j e J,

covering It, and none of the complexes ftj cover any
event In £2* Thus we have:

5N B N,

(1)

palrwise
If set

i§

A cover in which all s-complexes are
disjoint sets is called a disjoint cover*
E2 it «mpty, then a cover COVTI[fTEAT - COV(EiU)
simply denoted as COV(Ei). A partition of data
events into k subsets, each contained in one set-
complex of a disjoint cover is called a conjunctive

k-partlition. The corresponding 1-complexes
constitute conjunctive descriptions of these
subsets. A simple measure of the "fit" of a k-

clusterlng to the data events is the sparseness of
the k-partitlon defined as the sum of the
sparsenesses of the complexes In the partition.

IV THE METHOD AND ITS IMPLEMENTATION

for
In
an
in

This section describes the algorithm
conjunctive- conceptual clustering Implemented
program CLUSTER/PAF. The algorithm consists of
inner layer and an outer layer, deacrlbed
sections IV-A and IV-C, respectively.

A" """ I*v«r (algorithm PAF)

PAF)
be

The inner layer of the algorithm (called
was Introduced In [3]. Its function can
described as:

Given? e a collection of events to be clustered,

e the number of clusters desired (k),

e the criterion of k-clusterlng optimallty,

a conjunctive k-partltion of the collection
of events that is optimal according to
the criterion of k-clusterlng optimallty.

Find:
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The flow diagram of the algoritha PAF 1is shown
fn Figure 2.

E -~ a set of data eventa
k - the desired no. of clusters
A = the evaluation Functional

1/
Choose k "seed" events from E
1 &
\2/
Determine the bounded reduced star
of each seed against remaining seeds.
Select from each star one complex, so
that the obtained collection, P, of k
complexes will be the “bast" disjoint
cover of E.

Glven:

I the termination
criterion applied
to P satisfied?

Is iteration

odd or even
]

\s/
Choose k new seed
events which are
extreme in the
complexes in P

- |

Choose k new seed
events which are
central in the
complexes in P

| ——

]

The flow diagram of the inner
layer of the PAF algoritha

Figure 2.

PAF worka iteratlvely, starting with a set of k
Initial, randomly chosen seed events ("seeds") from
the given collection of events®* The seeds are used

to determine a set of complexes, which constitute

the first conjunctive k-partitlon of the event set.

Subsequent iterations consist of two repeated

steps:

1 — given k complexes, determine the data events
(cluatera) covered by them,

2 — given clusters of data events, determine new
"seeds," and then a new set of k complexes (a

conjunctive k-partltion).

The process continues until a termination criterion

is satisfied (a local optimum Is achieved). The
general structure of the algorithm is based on the
so-called dynamic clustering method [1].
I.'" Generating a, k-partltion from "seeds"

The process of determining a k-partitlon from

seeds Involves determining a reduced star of each
seed against other seeds, and then selecting
complexes fro" the stars and modifying them in such
a way that they constitute a k-partltion. The

selection is done by a best-first search method.



At each iteration of algorithm PAF, k stars
are produced, each of a single seed event against
the remaining k-1 seed events. From each star one
complex is selected in such a way that the
resulting set will consist of k disjoint complexes
(be a conjunctive k-partition), and be optimal
according.to the assumed criterion. If un-bounded
stars were used, each could contain up to
complexes, and therefore up to N* sets of complexes

would have to be inspected in order to determine
the optimal k-partitlon. To combat this Immense
search problem the best-first search strategy is
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used. This search uses a form of algorithm A*
(Nllsson [5]).

Assume that k events ("seeds") ein«2neccee®y
have been selected from the collection E and k
stars G; - G(eilremaining seeds) have been
generated. For simplicity, we will assume that the
criterion of clustering optlmallty |Is simply to
minimize the total sparseness of complexes In the
k-partltlon. At each level of the search tree, a
complex is selected from the star corresponding to

this level and is added to the partial partition (a
The selected

sequence of fewer than k complexes).

complex is the one which most likely will lead to
the optimal k-partlition. This procedure avoids
testing (possibly very many) clusterings, for which

it is possible to predict that they will not be
optimal.
Figure 3 illustrates the search process.
{(LEVEL T
(LEVEL R}
LEVEL Y

al
on ) 120 au an o
COVER
Figure 3. A search tres illustrating algorithm PAF

Branches emanating from a node at level i represent

complexes in star Gi. A path from the root to a
node at level 1 represents a partial k-partition
with 1 complexes. When i-k, the path represents a
complete k-partltion.

In the first step, the sequence of complexes
af» a2»***> og is determined, where < is the
complex in star G+ with the smallest sparseness.
In the next step, node (1) (Figure 3) is expanded
by pairing the "best" complex In G}, i.e., oj, with

If the complexes intersect, a
so that they

every complex In Gj.
special procedure NID modifies them

become disjoint. If NID cannot make the complexes
disjoint, the path is abandoned (procedure NID |Is
described In detail in [3]). Every so obtained
pair of complexes is a partial k-partitlon with 1-2
complexes. This process is repeated for the other
complexes In G}» in the order of their increasing
sparseness. Nodes corresponding to all these

clusterings (first generation nodes) are assigned a
value of the evaluation function: f - h 4- g, where



h is is the sprseness of the obtained partial
disjoint cover and g Is the expected cost of the
remainder of the k-clustering to be determined (the
sum of the sparsenesses of the complexes along the
path from node 1+1 to leaf node k).

A lower bound for g Is determined on the basis
of complexes a? generated In the first step. |If
any of these complexes Intersect, procedure NID
transforms them Into certain "core" complexes, of
which It can be proven [3], that the sum of their
sparsenesses Is a lower bound on the sparseness of
the optimal k-partitlon constructed from complexes
of the start.

the node to be
the one which Is
evaluation

According to the algorithm A*,
expanded at the next step |Is
associated with the lowest value of the
function* The order of expanding nodes In the tree
In Figure 3 Is shown by numbers In circles. The
value of the evaluation function associated with
each node Is given In parentheses. If complete
(not-bounded) stars are used, this algorithm will
produce the optimal k-clustering (l.e., In this
case, a k-clusterlng with the minimum total
sparseness).

The method can simultaneously use not Just
but several criteria of clustering optimallty.
these other component

one,
In addition to sparseness,
criteria Include [4]:
e maximising Inter-cluster differences,
e maximising essential dimensionality,
e maximising simplicity of cluster
representations, and
e maximising uniformity of cluster
populations.

C. OQuter layer of CLUSTER/PAF

As described above, the Inner layer (PAF)
determines an optimal or suboptimal k-clustering of

a given collection of events. The outer layer
performs two loops, one Iterative and one
recursive. The Iterative loop repeats algorithm
PAF for a sequence of values of k (say,
k«2,3,...,7) In order to find the value of k for
which the most desirable clustering of the given
event set |Is obtained. It Is assumed that

Interesting solutions should have only a few (e.g.,
less than 7) different clusters.

The recursive loop applies the above process
recursively In order to create a hierarchy of
clusterings. In the first step, the process Is
executed for the Initial event set E, and a
collection of subcategories (clusters) of E Is
determined. Consecutive steps repeat the same
operation for each event set (cluster) obtained In
the previous step.

The obtained hierarchy grows In a top-down

"contlnuatlon-of-growth® criterion
requires that the "fit"
of the complexes to the

fashion until a
falls. This criterion
(measured by sparseness)
events they describe be better by a certain
threshold at each next Ilevel of the hierarchy.
When this criterion Is not met, the latest obtained
subcategories become leaves of the hierarchy.

4*4

The algorithm described above has been
Implemented In  program CLUSTER/PAF, written In
PASCAL.

V A MUSICOLOGICAL EXAMPLE

This example lllustrates an application of the
described method to structuring a collection of one
hundred old Spanish folksongs.

The folksongs were characterized by 22
muslcologlcal attributes, such as degree of rubato
(rhythmic freedom), tonal range, style (monophonlc

The attributes and the data

vs. polyphonic), etc.

for the experiment were provided by musicologist
Pablo Poveda who studied this problem using
traditional methods of numerical taxonomy [6]. The
results obtained by those methods, however, were
very difficult to Interpret because they do not

provide any description of the generated clusters*

The top five levels of the conjunctive
hierarchy of folksongs produced by CLUSTER/PAF are
presented In Figure 4. The criterion of clustering

optimallty was "minimizing the total sparseness.”
The branches In the hierarchy have been Ilabeled
with the particular characteristic of the folksongs
which discriminates between the left and right
subcategories. The number of clusters (k) formed

at each level was 2 to meet a requirement Imposed
by the musicologist.
Tips of the hierarchy marked by ai»a2» " *'?1I

groups of songs (the number of songs is
above the tip), whose complete
description consists of properties Indicated along
the path from the root to the tip, and some
additional properties not shown In the figure.
(These additional properties are less relevant for
classifying the songs, as they occur at the lower
levels of the hierarchy.) For example, the group
denoted by ah has the following complete
description:

represent
Indicated

range-low]
(A)

[style-monophonic](rubato-lowJ[tonal
[type-secular][Instruments-no]

[no. of tones-5..8][panegyric-no][tenslon-1..3]
[no. of phrase8-1..2][melisma-0..2][dance-no] (B)
Part A contains properties shown In the hierarchy
(Figure 4) while part B contains additional
properties selected by the program from the
complete set of attributes.

One Interesting aspect of the determined
hierarchy Is that the value sets of some variables

have been split Into ranges. These ranges can be
considered as new constructed (generalized) values
of variables. For example, the range of the degree
of "rubato" has been split Into two ranges 0..3 and
4..5, which can be described as "low" and "high,"
respectively (see complex 04). Similar
partitioning of value sets Into ranges of values
was found for the degree of embellishment, the
degree of mel1ana, the tonal range, and the number
of tones In the song. It should be noted that
although the nodes In this particular hierarchy are
marked by single attributes, the method, In
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