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ABSTRACT 

This paper deals with the combinatorial search 
problem of f inding values for a set of variables 
subject to a set of constraints. This problem is 
referred to as a constraint sat isfact ion problem. 

We present an algorithm for f inding a l l the 
solutions of a constraint sat isfact ion problem with 
worst case time bound 0(m*k f+1) and space bound 
0 (n*k f + 1 ) , where n is the number of variables in 
the problem, m the number of constraints, k the 
cardinal i ty of the domain of the variables, and f<n 
an integer depending only on a graph which is 
associated with the problem. It w i l l be shown that 
for planar graphs and graphs of f ixed genus th is f 
i s 0 ( /n ) . 

I. INTRODUCTION 

Many problems in diverse f ie lds of computer 
science can be formulated as constraint 
sat isfact ion problems: a number of variables 
(sometimes called units) are to be assigned values 
( labels), such that certain given constraints on 
subsets of these variables are sa t is f ied . 
Instances of constraint sat isfact ion problems range 
from graph theory and automata theory problems, 
l i ke graph colouring and automata homomorphism, to 
problems in AX such as scene analysis and 
combinatorial puzzles. For representative examples 
see [4 ] . Problems involving more general 
constraints are treated in [6 ] . 

Algorithms to solve these problems usually 
re ly on backtracking and/or on some forms of 
relaxation methods or look-ahead operators ( [ 1 ] , 
[ 3 ] , [12], [10], [ 2 ] , [ 4 ] , [ 5 ] , [9 ] ) . A l l these 
algorithms seem to work well most of the time. But 
they can behave badly in some cases and do not 
allow a t ight worst case analysis. This is not 
surprising as Montanari [11] showed that the 
general constraint sat isfact ion problem is 
NP-complete. 

One of the reasons why backtrack algorithms 
have a potent ia l ly bad behaviour is the fact that 
they use a minimal amount of space. Observe for 
instance, that a simple exhaustive backtrack search 
has an exponential running time but uses only a 
linear amount of space. One can view the 
relaxation methods and look-ahead operators 
proposed in the l i te ra ture as attempts to invest in 
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space in order to save time. 

In the following sections we develop an 
algorithm which invests in space heavily. Using 
the terminology of backtrack search and search 
trees one can say that the saving in time is 
achieved by ident i fy ing i n i t i a l segments of a 
search tree which are ef fect ively ident ica l , that 
i s , they d i f fe r only on variables which do not 
constrain the remaining uninstantiated variables. 
However, we found it advantageous to formulate our 
algorithm not in terms of backtrack search but 
using the concept of dynamic programming. Thus in 
contrast to other methods, our algorithm permits 
easy analysis of i t s time and space complexity. 

II. THE PROBLEM 

A constraint sat isfact ion problem (CSP) can be 
defined as fol lows: given is a set of variables 
X 1 , . . . ,X n and associated with each variable Xi a 
domain Dt of values. Furthermore, on some subsets 
of the variables constraints are given, l im i t ing 
possible value tuples for those variables. A 
solution of a CSP is an n-tuple of values 
( a i , . . . ^ ) e D ^ x . . . ^ , which simultaneously 
sat is f ies a l l given constraints. The conplete set 
of solutions of a CSP is the subset oTDixTT.xi5J77 
comprising exactly a l l the solutions. A CSP is 
called unsatisfiable i f i t s conplete set of 
solutions is emptyl 

For our purposes a l l domains are f i n i t e . We 
also assume that the domains of a l l n variables are 
of equal card ina l i ty , |Dt|«k for i = l , . . . , n . We 
shal l see later on, that th is assumption is just a 
convenience for the sake of analysis and by no 
means v i t a l to the algorithm to be proposed. 

Furthermore we w i l l res t r i c t our attention to 
CSPs involving only binary constraints. This 
rest r ic t ion seems more c r i t i c a l . But it w i l l be 
seen that the method to be presented can be applied 
to general CSPs without much modification. 

Montanari [11] pointed out that a CSP only 
involving binary constraints can be represented by 
a graph. Let us ca l l it the constraint graph. 
Each of i t s vertices corresponds to a variable. 
Tuo vertices are adjacent i f f there is a constraint 
between the corresponding two variables. In the 
following we w i l l feel free to c a l l a vertex a 
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variable or vice versa, or to ident i fy edges with 
constraints. 

I I I . A SIMPLE EXAMPUB 

Let us look at the following exanple. Let us 
assume we have a CSP involving 10 variables and 19 
binary constraints, and it can be represented by 
the constraint graph given in figure 1. Let C±* be 
the constraint between variables Xt and Xj . 

Figure 1 

We can f ind out whether such a CSP is sat is f iable 
in the following way: 
Create a ternary constraint relat ion C123 for %i , 
X2 , and X3 which comprises a l l value t r ip les for 
those variables allowed by C12 and C13. Next, 
using C123 construct a ternary constraint relat ion 
C234 which conprises a l l value t r ip les for X2 rX3 , 
and X4 which permit a value for Xi , such that 
c12 ' c13 ' C1A 'C2A # and C3A are sa t is f ied . Note 
that, as indicated in figure2 by the shaded l ines, 

F igure 2 

X2 ,X3 , and X4 "cut" the constraint graph and thus 
a l l of the influence of X] on the CSP is subsumed 
by C23A and therefore Xi , C14 9 C24 , C34 , and 
C123 are of no importance any more. (Ttiis is 
indicated by the dashed l ines in f igure 2.) Also 
note that if C23A is empty the CSP must be 
unsatisf iable. 

In the same manner, we construct using C23A a 
ternary relat ion C345 for X3 , X4 , and X5 , which 
conprises a l l value t r i p les allowed by C34 and 
C45 , and permits values for X\ and X2. Again, if 
C345 is empty the CSP must be unsatisfiable and we 
can stop. Otherwise we continue in the same way 
and construct ternary relations C456 , C50 , 
c678 ' c789 and C8910 • If ^Y of those relations 
is enpty, the CSP is unsatisf iable. If Cg9xo is 
nonenpty we can generate a general solution for the 
CSP by using the created ternary constraints and 
instant iat ing the variables in the reverse order to 
the order in which they were discarded. 

If each of the variables X± can assume k 
d i f ferent values, then any of the ternary relations 
above can have at most k3 elements. Therefore only 
k^ combinations of value t r ip les and values need to 
be considered for the construction of a new ternary 
re la t ion. Hence a CSP representable by such a 
graph can be decided in 0(k*) steps. Note that 
th is worst case complexity is completely 
independent of the specif ic instances of the 
constraint relations CJJ . 

IV. THE INVASION PMJCKUUBE 

In order to describe, how the method outl ined 
above can be generalized so that it can be applied 
to an arbi trary constraint graph, we need a few 
def in i t ions. 

Given an n-vertex graph G, c a l l a sequence 
\Gt}, i « l , . . . , n , of induced subgraphs of G, where 
the number of vertices in Gi is i and G, is a 
subgraph of Gi+i , an invasion of G. We ca l l the 
set FA of vertices of G^ which are adjacent to 
vertices not in G^ the front of Gi. Vertices in 
G1-Fi are called conquered vert ices. Hie front 
length f^ of G* is the number of vertices in F j . 
The front length""bf an invasion is the maximum 
front length of the subgraphs Gi involved. An 
invasion of a graph G is called optimal if i t s 
front length is not greater than tlhe front length 
of any other invasion of G. 

Given an invasion {Gj}, i = l , . . . , n , of a 
constraint graph G, we claim that s a t i s f i a b i l i t y of 
a corresponding CSP can be decided by the procedure 
outlined below: 

For i « l to n inductively f ind a l l value tuples 
for the front vertices Fi of Gt which are 
consistent with one of the allowed value tuples 
of F i _ i . If there are no such tuples, stop and 
report the CSP unsatisf iable. 

The correctness of this algorithm follows by 
induction using two observations: 
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Claim; 
T, The above procedure yields a c i rcu i t - f ree 
directed multigraph. 
2. The tuple < a 1 . . . a n > is a solution of the CSP 
if and only if there is a directed path from sn to 
s0 whose arc label sequence is a n . . . , a 1 . 

Proof: 
1. the solution graph is c i rcu i t - f ree because for 
a l l i and j, i = j, S i and S j are d is jo in t and 
there are only arcs from nodes in Si to nodes in 
S J . J . It is possible to have more than one arc 
between a node in Si and a node in Si-1 in the case 
that X t is not a front vertex of G i. 

2. This statement follows from the inductive 
argument that the set of paths between a node 
< a ] f . . . f a f 1 > in S i and s0 represents exactly a l l 
the solutions of the CSP restr icted to Gj which 
have a l r . . . , a f i as instant iat ion of the front 
vertices of G i. 

Q.E.D. 

It is now natural to ask about the complexity 
of th is procedure. The following theorem gives an 
answer to th is question. It is assumed that it 
takes constant time to determine whether two 
variables sat is fy a common constraint. 

Theorem: 
Given is a CSP involving m binary constraints on n 
variables. Each of the variables can take on k 
d i f ferent values. For the constraint graph of the 
CSP an invasion {G^), i = l , . . . , n , with front length 
f is given. 
The above algorithms produces a solution graph of 
the CSP in time at most 0(m*k f+1) and uses space at 
most 0(n*k f+ l ) . 
Proof: 
S: ! can not have more than k f*~ ] <_ kf elements. 
Tnus at most k f + 1 combinations are possible between 
elements of S^.j and values of X«. Therefore there 
can not be more than k*"*1 arcs rroro nodes in Si to 
nodes in S j . j . So the algorithm uses space 
0 (n *k f + 1 ) . 
For each i at most f binary constraints need to be 
checked for each of the at most k f + 1 combinations 
between elements in S i - i and values of X i . 
Therefore there are not more than n* f*k f + 1 checks. 
But overal l there exist only m constraints. Thus 
only m*k f+1 checks are necessary, and the algorithm 
uses time 0(m*k f + 1 ) . 

Q.E.D. 

Implementation of th is procedure should be 
straightforward. But one should careful ly select 
the data structure to represent the sets Sj so that 
set insert ion and set enumeration can be done 
quickly, but no excessive amount of space is used. 
The actual usefulness of th is procedure w i l l of 
course depend heavily on the front length of the 
invasion used, and on the actual sizes of the sets 
Si to be constructed. 

VT. THE GENERAL CSP 

So far we have looked only at CSPs involving 
binary constraints. Can our procedure also handle 
general CSPs with constraints involving more than 
two variables? The changes and generalisations 
necessary to answer th is question posi t ive ly should 
be obvious: we only need to generalize the notion 
of a constraint graph; variables correspond again 
to vert ices, and two vertices are adjacent if the 
corresponding two variables are involved in some 
common constraint. With th is de f in i t ion of a 
constraint graph only a few modifications in 
bookkeeping are required so that the invasion 
procedure can be applied to general CSPs. 

V I I . FINDING A GOOD INVASION 

In order to make e f f i c ien t use of the 
algorithm of the last section, one needs "good" 
invasions, that is invasions with small f ront 
length. But good invasions do not exist for a l l 
graphs. Consider a complete n-vertex graph: each 
of i t s invasions has front length n -1 . Furthermore 
there are nl invasions for an n-vertex graph, but 
no good algorithm is known to select an optimal or 
almost optimal invasion. But if we res t r i c t our 
attention to the class of planar graphs, we can 
exhibi t an algorithm which computes an invasion 
with front length 0 ( /n ) . Similar algorithms exist 
for the classes of graphs of f ixed genus. But we 
w i l l concentrate on planar graphs. The importance 
of th is class is i l l us t ra ted by the fact that for 
instance most CSPs ar is ing in A . I . v is ion involve 
planar constraint graphs. 

In the construction of the invasion of a 
planar graph we w i l l make use of a planar separator 
theorem by Lipton and Tar jan f7 ] : 

Let G be an n-vertex planar graph. The vertices 
of G can be part i t ioned into three sets A, B, C, 
such that no edge joins a vertex in A with a 
vertex in B , neither A nor B contains more than 
2n/3 vert ices, and C contains no more than /§n 
vert ices. 

Lipton and Tarjan also exhibi t an algorithm which 
finds such a pa r t i t i on in 0(n) time. In [8] they 
show how th is theorem can be extended to graphs of 
arbi t rary genus. 

In the previous section we formally defined an 
invasion of a graph as a sequence of induced 
subgraphs. It should be clear that each invasion 
of a graph G induces a numbering on the vert ices of 
G, and vice versa. Thus if the vert ices of G are 
numbered X j , . . . ^ , then \Gt\ GA is the subgraph of 
G induced by the vert ices X j , with j £ i } , i » l f . . . , n , 
is c lear ly an invasion of G. So f inding an 
invasion for a graph is equivalent to f inding the 
corresponding numbering of i t s vert ices. 

In the following we specify a divide and 
conquer type procedure INvME-PLANAR-GRAPH which 
numbers the vertices of a planar graph. We shal l 
mean by "invade S star t ing with i " , where S is a 



e f f i c i e n t fo r a l l CSPs. But we could show t h a t 
f o r CSPs w i t h p lanar c o n s t r a i n t graphs t h i s 

a lgo r i t hm leads to a considerable improvement in 
the asymptot ic worst case complexi ty of the 
problem. It remains to be seen how the proposed 
a lgor i thms w i l l behave i n p r a c t i c a l a p p l i c a t i o n s . 
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