A NBW METHOD FOR SOLVING
CONSTRAINT SATISFACTION PROBLEMS

Ra

Seidel

Department of Computer Science
University of British Columbia

ABSTRACT

This paper deals with the combinatorial search
problem of finding values for a set of variables
subject to a set of constraints. This problem is
referred to as a constraint satisfaction problem.

We present an algorithm for finding all the
solutions of a constraint satisfaction problem with
worst case time bound O(m*k™') and space bound
O(n*kf”), where n is the number of variables in
the problem, m the number of constraints, k the
cardinality of the domain of the variables, and f<n
an integer depending only on a graph which is
associated with the problem. It will be shown that
for planar graphs and graphs of fixed genus this f
is 0(/n).

. INTRODUCTION

Many problems in diverse fields of computer
science can be formulated as constraint
satisfaction problems: a number of variables
(sometimes called units) are to be assigned values
(labels), such that certain given constraints on
subsets of these variables are satisfied.
Instances of constraint satisfaction problems range
from graph theory and automata theory problems,
like graph colouring and automata homomorphism, to
problems in AX such as scene analysis and
combinatorial puzzles. For representative examples
see [4]. Problems involving more general
constraints are treated in [6].

Algorithms to solve these problems usually
rely on backtracking and/or on some forms of
relaxation methods or look-ahead operators ([1],
[31, [12], [10], [2], [4], [5], [9]). AIl these
algorithms seem to work well most of the time. But
they can behave badly in some cases and do not
allow a tight worst case analysis. This is not
surprising as Montanari [11] showed that the
general constraint satisfaction problem s
NP-complete.

Ore of the reasons why backtrack algorithms
have a potentially bad behaviour is the fact that
they use a minimal amount of space. Observe for
instance, that a simple exhaustive backtrack search
has an exponential running time but uses only a
linear amount of space. One can view the
relaxation methods and look-ahead operators
proposed in the literature as attempts to invest in

space in order to save time.

In the following sections we develop an
algorithm which invests in space heavily. Using
the terminology of backtrack search and search
trees one can say that the saving in time is
achieved by identifying initial segments of a
search tree which are effectively identical, that
is, they differ only on variables which do not
constrain the remaining uninstantiated variables.
However, we found it advantageous to formulate our
algorithm not in terms of backtrack search but
using the concept of dynamic programming. Thus in
contrast to other methods, our algorithm permits
easy analysis of its time and space complexity.

I THE PROBEV

A constraint satisfaction problem (CSP) can be
defined as follows: given is a set of variables
X1,..., X, and associated with each variable X; a
domain D; of values. Furthermore, on some subsets
of the variables constraints are given, limiting
possible value tuples for those variables. A
solution of a CSP is an n-tuple of values
(ai,...") e D*x...", which simultaneously
satisfies all given constraints. The conplete set
of solutions of a CSP is the subset oTDiXTT.xi5J77
comprising exactly all the solutions. A CSP is
called unsatisfiable if its conplete set of
solutions is emptyl

For our purposes all domains are finite. We
also assume that the domains of all n variables are
of equal cardinality, |Dtj«k for i=I,...,n. We
shall see later on, that this assumption is just a
convenience for the sake of analysis and by no
means vital to the algorithm to be proposed.

Furthermore we will restrict our attention to
CSPs involving only binary constraints. This
restriction seems more critical. But it will be
seen that the method to be presented can be applied
to general CSPs without much modification.

Montanari [11] pointed out that a CSP only
involving binary constraints can be represented by
a graph. Let us call it the constraint graph.
Each of its vertices corresponds to a variable.
Tuo vertices are adjacent iff there is a constraint
between the corresponding two variables. In the
following we will feel free to call a vertex a

variable or vice versa, or to identify edges with
constraints.

I11. A SIMPLE EXAVRUB

Let us look at the following exanple. Let us
assume we have a CSP involving 10 variables and 19
binary constraints, and it can be represented by
the constraint graph given in figure 1. Let C+* be
the constraint between variables Xt and Xj .

Figure 1

We can find out whether such a CSP is satisfiable
in the following way:

Create a ternary constraint relation C123 for %i ,
X2 , and X3 which comprises all value triples for
those variables allowed by C12 and C13. Next,
using C123 construct a ternary constraint relation
C234 which conprises all value triples for X2 X3 ,
and X4 which permit a value for Xi , such that
c12 'c13 ' CIA 'C2A # and C3A are satisfied. Note
that, as indicated in figure2 by the shaded lines,

Figure 2

339

X2 X3 , and X4 "cut" the constraint graph and thus
all of the influence of X] on the CSP is subsumed
by C2A and therefore Xi , C14 9 C4 , C#4 , and
C123 are of no importance any more. (Ttiis is
indicated by the dashed lines in figure 2.) Also
note that if C2BA is empty the CSP must be
unsatisfiable.

In the same manner, we construct using C23A a
ternary relation C345 for X3 , X4 , and X5 , which
conprises all value triples allowed by C34 and
C45 , and permits values for X\ and X2. Again, if
C345 is empty the CSP must be unsatisfiable and we

can stop. Otherwise we continue in the same way
and construct ternary relations C45 , C50 ,
c678 ' ¢789 and C8910 < If AY of those relations

is enpty, the CSP is unsatisfiable. If Cg9%%o is
nonenpty we can generate a general solution for the
CSP by using the created ternary constraints and
instantiating the variables in the reverse order to
the order in which they were discarded.

If each of the variables Xt can assume k
different values, then any of the ternary relations
above can have at most k3 elements. Therefore only
kA combinations of value triples and values need to
be considered for the construction of a new ternary
relation. Hence a CSP representable by such a
graph can be decided in 0(k*) steps. Note that
this worst case complexity is completely
independent of the specific instances of the
constraint relations CJJ.

IV. THE INVASION PMJCKUUBE

In order to describe, how the method outlined
above can be generalized so that it can be applied
to an arbitrary constraint graph, we need a few
definitions.

Given an n-vertex graph G, call a sequence
\Gt}, i«l,...,n, of induced subgraphs of G, where
the number of vertices in Gi is i and G, is a
subgraph of Gi+i, an invasion of G. We call the

set FA of vertices of G*» which are adjacent to
vertices not in G? the front of Gi. Vertices in
G1-Fi are called conquered vertices. Hie front

length f* of G* is the number of vertices in Fj.
The front length""bf an invasion is the maxdmum
front length of the subgraphs Gi involved. An
invasion of a graph G is called optimal if its
front length is not greater than tlhhe front length
of any other invasion of G.

Given an invasion {Gj}, i=l,...,n, of a
constraint graph G, we claim that satisfiability of
a corresponding CSP can be decided by the procedure
outlined below:

For i«l to n inductively find all value tuples
for the front vertices Fi of Gt which are
consistent with one of the allowed value tuples

of Fi_i. If there are no such tuples, stop and
report the CSP unsatisfiable.
The correctness of this algorithm follows by

induction using two observations:

Ist <Xi,...,X1> ba the i-tuple of the vertices in
Gy arranged in a way such that Xj,...,K¢, are the
vertices in Fy.

i) The congamred vertices
involved
Gy,
‘algaoop

Xfi4ls.-.,X1 are mot
in cormtraints vith variables not in

a;.> is made a valid labeling tuple
for the veltices in Fy if and only if there
are values A 4lreerl for the red
vertices Xr +1...,§1 suc"l that <ai,...,ai>is a
valid].ahehn; for the vertices in G;, i.e.
<al,....8i> satisfies all constraints within

ii)

HOW TO CONBTRUCT ALL SCLUTIONS OF A CSP

Given an imasion {G;}, i=1,...,n, for the
constraint graph of a CSP, the above procedure just

!0

anowars the question whether the CSp is
satisfiable., PBut it can be improved to render a
graph which represents the oomplete set of

solutions of the CSP, Call this graph the solution
raph of & CSP with respect to invasion {Gy], 'This
solotion gr is a circuit-free directed
multigraph with labeled arcz. (To avoid confusion
let us use the terss node and arc for the asolution
graph, and the terms vertex and edge for the
constraint graph.) It has two distinguished nodes
such that the set of directed paths between these
two nodes corresponds one to one with the oawplete
set of solutions of the CSp,

Consider the following simple example: four
variables X1,...,% are given:; each variable is to
be assigned an integer between 1 and 3 such that
the constraints X1<X2 , X <X , xﬁh r and AgeX,

ntg

Figure 3

We are now ready to state an improved version of
the invasion procedure which constructs the
solution graph of a CSP with respect to a given
invasion.
Assume a CSP with n variables involving only
binary constraints is given. For its constraint
graph an invasion {Gi}, i=1,...,n, is given, Let
Gp be the empty set and let X; be the single
vertex of G;—Gy_;.
Furthermore let 5; , i=l,....n, be digjoint sets
of nodes of the solution graph. The elsments of
54 shall be named by labeling tuples of the front
vertices F; of G;. (By convention let there be
only ocne labeling tuple for an empty set of
variables, Thus, if F; is empty, Sy contains at
most one element, let us call it sy.)

Initially 8; i{s empty for i=1,...,n.

So is set to {5},

For i=] to n do: .
Por each value tuple a in 5,y ad for each
value c of X; whose cambination satisfiee all
constraints between the vertices in Fy.y and

hold, Pigure 3 shows the constr raph G for X; do:
this CSp, Figure 4 shows the eolution gr with Let b be the resulting value tuple for the
r to the invasion {G;| G, ie the subgraph of vertices in F;.
G induced by the vertices e ki), The labels Set S; to the union of 5; and (b},
along the directed paths from & to 8 represent Construct an arc from b to a and label it
all the soluticns for this CSP. with c.
possible possible possible possible
labelings labelings labelings labelings
for the front for the front for the front for the front
of Gl <x1> of G2 <x1.x2> of G3 <x2,x3> of G‘ <>
2 2
<1 <1,2» <2,2>
2
1 3 3
3
<2,3> 3
2
‘0 <2 <1, 35 /d
3 <3,2>
3
3
k|
3> <, e——>¢3, 3>
possible possible pogsible possible

values for X values for :!(2

b

values for X values for X

3 4

Figqure 4

340

Claim;

T, The above procedure vyields a circuit-free
directed multigraph.

2. The tuple <aq...a,> is a solution of the CSP
if and only if there is a directed path from s, to
so whose arc label sequence is a,...,aq.

Proof:

1. the solution graph is circuit-free because for
all i and j, i = j, S;jand S; are disjoint and
there are only arcs from nodes in S; to nodes in
SJ.J. It is possible to have more than one arc
between a node in S; and a node in Si; in the case
that X; is not a front vertex of G;.

2. This statement follows from the inductive
argument that the set of paths between a node
<aj...;af1> in S; and s, represents exactly all
the solutions of the CSP restricted to Gj which

have a,;...,as; as instantiation of the front
vertices of G;.

Q.E.D.

It is now natural to ask about the complexity

of this procedure. The following theorem gives an
answer to this question. It is assumed that it
takes constant time to determine whether two
variables satisfy a common constraint.

Theorem:

Given is a CSP involving m binary constraints on n
variables. Each of the variables can take on k
different values. For the constraint graph of the
CSP an invasion {G*%), i=I,...,n, with front length
f is given.

The above algorithms produces a solution graph of
the CSP in time at most O(m*k™') and uses space at
most 0(n*kf+l).

Proof:

S: 1 can not have more than k™~ < k' elements.
Tnus at most k™' combinations are possible between
elements of S*.j and values of X«. Therefore there
can not be more than k**' arcs rroro nodes in Si to
nodes in Sj.j. So the algorithm uses space
o(n*k™").

For each i at most f binary constraints need to be
checked for each of the ‘at most k"' combinations
between elements in Si-i and values of Xi.
Therefore there are not more than n*f*k'*' checks.
But overall there exist only m constraints. Thus
only m*k™" checks are necessary, and the algorithm
uses time O(m*k™").

Q.E.D.

Implementation of this procedure should be
straightforward. But one should carefully select
the data structure to represent the sets Sj so that
set insertion and set enumeration can be done
quickly, but no excessive amount of space is used.
The actual usefulness of this procedure will of
course depend heavily on the front length of the
invasion used, and on the actual sizes of the sets
Si to be constructed.

VT. THE GENERAL C3P

So far we have looked only at CSPs involving
binary constraints. Can our procedure also handle
general CSPs with constraints involving more than
two variables? The changes and generalisations
necessary to answer this question positively should
be obvious: we only need to generalize the notion
of a constraint graph; variables correspond again
to vertices, and two vertices are adjacent if the
corresponding two variables are involved in some
common constraint. With this definition of a
constraint graph only a few modifications in
bookkeeping are required so that the invasion
procedure can be applied to general CSPs.

1. FINDING A GQOCD INVASION

In order to make efficient use of the
algorithm of the last section, one needs "good"
invasions, that is invasions with small front
length. But good invasions do not exist for all
graphs. Consider a complete n-vertex graph: each
of its invasions has front length n-1. Furthermore
there are nl invasions for an n-vertex graph, but
no good algorithm is known to select an optimal or
almost optimal invasion. But if we restrict our
attention to the class of planar graphs, we can
exhibit an algorithm which computes an invasion
with front length 0(/n). Similar algorithms exist
for the classes of graphs of fixed genus. But we
will concentrate on planar graphs. The importance
of this class is illustrated by the fact that for
instance most CSPs arising in A.l. vision involve
planar constraint graphs.

In the construction of the invasion of a
planar graph we will make use of a planar separator
theorem by Lipton and Tar jan f7]:

Let G be an n-vertex planar graph. The vertices
of G can be partitioned into three sets A, B, C,
such that no edge joins a vertex in A with a
vertex in B , neither A nor B contains more than
2n/3 vertices, and C contains no more than /§n
vertices.

Lipton and Tarjan also exhibit an algorithm which
finds such a partition in O(n) time. In [8] they
show how this theorem can be extended to graphs of
arbitrary genus.

In the previous section we formally defined an
invasion of a graph as a sequence of induced
subgraphs. It should be clear that each invasion
of a graph G induces a numbering on the vertices of
G, and vice versa. Thus if the vertices of G are
numbered Xj,...”", then \G\ Ga is the subgraph of
G induced by the vertices Xj, with j£i}, i»l¢...,n,
is clearly an invasion of G. So finding an
invasion for a graph is equivalent to finding the
corresponding numbering of its vertices.

In the following we specify a divide and
conquer type procedure INVME-PLANAR-GRAPH which
numbers the vertices of a planar graph. We shall
mean by ‘"invade S starting with i", where S is a

subget Of the n vertices of a graph and i
i + ltien, that each integer between i
i+|s|-1 is assigned to one of the vertices in s,

THVADE-PLANMR-GRAPH (G, 1)
where INVADE-PLANAR-GRAPH (G,i) is:
If there are no moxe than & vertices in G,
invade them starting with 1.
Otherwige, using Lipton's and Tarjan's method,
pactition the wvertices of G into three set.s
A, B, C, auch that there are no odges between
vertices in A and vertices in B,
Irwade C starting with i.
INVADE-PLANAR-GRAPH {G, , l.-l-l
INVADE-PLANAR-GRAPH (Gy ,i+]C +|AH.
(GA aniGi are the subgraphs induced by A and
tively.}

an
ane]

Claim:

Glven a planar nvertex graph G, the ahove
procedure yields an 1m.[g1 for G whose front
la\gth f is soaller than 16

Gy}, i=l,...,n, be the invasion induced by the
ing of the vertices achleved by the above
procedure, Let £; denote the front length of Gj
for allt i, Let A, B, C be the three sets into
which the vertices of G are partitioned.
For all i < |C|, 4 must be leas than |c) < /8n.
Por all i, |c| < i L ICMA[, f; must be less than
1C|+£ the front length of the
etin of the s&:graph induced by A.
Por all i, |C|+[A] <ig n, £, must be less than
IC]+£ (with fp defined as £ there are
no es between vertioes n.\andBandthusall
the vertices in A must be conquered,
Thus the following inequality holds:

£< /8n + maxtf,,fp)

Using the fact that neither A nor B containg more
than 2n/3 vertices, we ocan derive the following
recursive relation for the front lemgth:

£in) = n for n< 4

£in) < /8n + £{|2n/3]) otherwise
be shown that £(n) is bounded from

Thus
Q.E.D.

It can easily
abhove by o'n, where c is not greater than 16.
the front length.f im smaller that 16%/n.

This result leads immediately to the following

Corollar

A C5F with n variables, m constraints, k values for
each yariable, and a plmr canstraint graph can be
solved in time O(m*k1+16'T} and space O(n*k1+16M),

CONCLUS TON

We have described new algorithms to decide
satisfiability, or to campute the cowplete set of
solutions of a given C8P. The worst case
oamplexitiexs of the algorithme depend heavily on
the structure of the constraint graph of the CSp,
80 we do not claim that our method will be

VIII.

342

CSPs. But we could show that
planar constraint graphs this
to a considerable improvement in
the asymptotic worst case complexity of the
problem. It remains to be seen how the proposed
algorithms will behave in practical applications.

efficient for all
for CSPs with

algorithm leads

ACKNOWLEDGEMENTS

| would like to thank Alan Mackworth for
bringing this problem to my attention. | also want
to thank Alan, as well as David Kirkpatrick and
Derek Corneil for helpful discussions and valuable
comments. Finally | want to thank an anonymous
referee who pointed out the relation between the
invasion method and standard backtrack search.

REFERENCES

{11 E.C.Freuder, "Synthesizing Constraint
Bxpressions,” Commnications of the AM,
vol.21, no,11 (1978), PP.9%58-966,
E.C.Freuder, "an Sufficient Condition for
Backtrack Free Search," to appear in JAOM.
J.Gaschnig, “Experimental Case Study of
Backtrack vs. Waltz-type vs. New Algorithms
for sSatisficing Assignment Problems,” Proc.
2rd CSCSI Conf. (1978}, pp. 268-277.
R.M,Haralick and 1..G.Shapiro, "The Consistent’
Labeling Problem: Part I,* TEEE Trans.
Pattern Analysis and Machine Intelligence,
vol, PAMI-1, mo,2 (1979), pp. 173-184,

R.M Haralick and L.G.Shapiro, "The Consistent
Labeling Problem: Part II,* IEEE Trans.
Pattern Analysis and Machine Intelligence,
"vol, PAMI-2, mo.3 (1980), pp. 193-203.
J.L.Lauriere, "A Language and a Program for
Stating and Solving Combinatorial Problems,”
Artif,Intelligence, wol,10, no.l (1978}, pp.

29-127,

R.J.Lipton and R.E.Tarjan, “A Separator
Theorem for Planar Graphs " SIAM
J.Appl.Math., 36 (1979), pp. 177-189.
R.J.Lipton amd R.E.Tarjan, "Applications of a
Planar Separator Theorem,™ SIAM J.Camput.,
vol.9, no.3 (1980), pp. 615-627.

J.J .McGregor, *"Relational Congistency
Algorithms and their Applications in Finding
Subgraph and Graph Isomorphism,” Info.Sci,
19 {1979}, pp. 229-250.

A K. Mackworth, “"Consistency in Networks of
Relations,™ Artif.Intelligence, vwol.8, mo.l
(1977), pp. 99-118.

U.Montanari, “Netwoxrks of Constraints:
Pundamental Properties and Applicatims o
Picture Processing,” Info.Sci. 7 (1974), m.
95-132,

D.L.Waltz, “Understanding Line Drawings of
Scenes with Shadows,” in P.H.Winston (ed.)

The ho of Computer vision
L e 1975, pp. 19-9L.

(2]
[31

{4]

[5]

{61

"

[8)

(91

[10]

[111

f12]

