
A NEW METHOD FOR SOLVING
CONSTRAINT SATISFACTION PROBLEMS

Ra

Department of
Un ive rs i t y of

ABSTRACT

This paper deals with the combinatorial search
problem of f inding values for a set of variables
subject to a set of constraints. This problem is
referred to as a constraint sat isfact ion problem.

We present an algorithm for f inding a l l the
solutions of a constraint sat isfact ion problem with
worst case time bound 0(m*k f+1) and space bound
0 (n*k f + 1) , where n is the number of variables in
the problem, m the number of constraints, k the
cardinal i ty of the domain of the variables, and f<n
an integer depending only on a graph which is
associated with the problem. It w i l l be shown that
for planar graphs and graphs of f ixed genus th is f
i s 0 (/n) .

I. INTRODUCTION

Many problems in diverse f ie lds of computer
science can be formulated as constraint
sat isfact ion problems: a number of variables
(sometimes called units) are to be assigned values
(labels), such that certain given constraints on
subsets of these variables are sa t is f ied .
Instances of constraint sat isfact ion problems range
from graph theory and automata theory problems,
l i ke graph colouring and automata homomorphism, to
problems in AX such as scene analysis and
combinatorial puzzles. For representative examples
see [4] . Problems involving more general
constraints are treated in [6] .

Algorithms to solve these problems usually
re ly on backtracking and/or on some forms of
relaxation methods or look-ahead operators ([1] ,
[3] , [12], [10], [2] , [4] , [5] , [9]) . A l l these
algorithms seem to work well most of the time. But
they can behave badly in some cases and do not
allow a t ight worst case analysis. This is not
surprising as Montanari [11] showed that the
general constraint sat isfact ion problem is
NP-complete.

One of the reasons why backtrack algorithms
have a potent ia l ly bad behaviour is the fact that
they use a minimal amount of space. Observe for
instance, that a simple exhaustive backtrack search
has an exponential running time but uses only a
linear amount of space. One can view the
relaxation methods and look-ahead operators
proposed in the l i te ra ture as attempts to invest in

Seidel

Computer Science
B r i t i s h Columbia

space in order to save time.

In the following sections we develop an
algorithm which invests in space heavily. Using
the terminology of backtrack search and search
trees one can say that the saving in time is
achieved by ident i fy ing i n i t i a l segments of a
search tree which are ef fect ively ident ica l , that
i s , they d i f fe r only on variables which do not
constrain the remaining uninstantiated variables.
However, we found it advantageous to formulate our
algorithm not in terms of backtrack search but
using the concept of dynamic programming. Thus in
contrast to other methods, our algorithm permits
easy analysis of i t s time and space complexity.

II. THE PROBLEM

A constraint sat isfact ion problem (CSP) can be
defined as fol lows: given is a set of variables
X 1 , . . . ,X n and associated with each variable Xi a
domain Dt of values. Furthermore, on some subsets
of the variables constraints are given, l im i t ing
possible value tuples for those variables. A
solution of a CSP is an n-tuple of values
(a i , . . . ^) e D ^ x . . . ^ , which simultaneously
sat is f ies a l l given constraints. The conplete set
of solutions of a CSP is the subset oTDixTT.xi5J77
comprising exactly a l l the solutions. A CSP is
called unsatisfiable i f i t s conplete set of
solutions is emptyl

For our purposes a l l domains are f i n i t e . We
also assume that the domains of a l l n variables are
of equal card ina l i ty , |Dt|«k for i = l , . . . , n . We
shal l see later on, that th is assumption is just a
convenience for the sake of analysis and by no
means v i t a l to the algorithm to be proposed.

Furthermore we w i l l res t r i c t our attention to
CSPs involving only binary constraints. This
rest r ic t ion seems more c r i t i c a l . But it w i l l be
seen that the method to be presented can be applied
to general CSPs without much modification.

Montanari [11] pointed out that a CSP only
involving binary constraints can be represented by
a graph. Let us ca l l it the constraint graph.
Each of i t s vertices corresponds to a variable.
Tuo vertices are adjacent i f f there is a constraint
between the corresponding two variables. In the
following we w i l l feel free to c a l l a vertex a

8

variable or vice versa, or to ident i fy edges with
constraints.

I I I . A SIMPLE EXAMPUB

Let us look at the following exanple. Let us
assume we have a CSP involving 10 variables and 19
binary constraints, and it can be represented by
the constraint graph given in figure 1. Let C±* be
the constraint between variables Xt and Xj .

Figure 1

We can f ind out whether such a CSP is sat is f iable
in the following way:
Create a ternary constraint relat ion C123 for %i ,
X2 , and X3 which comprises a l l value t r ip les for
those variables allowed by C12 and C13. Next,
using C123 construct a ternary constraint relat ion
C234 which conprises a l l value t r ip les for X2 rX3 ,
and X4 which permit a value for Xi , such that
c12 ' c13 ' C1A 'C2A # and C3A are sa t is f ied . Note
that, as indicated in figure2 by the shaded l ines,

F igure 2

X2 ,X3 , and X4 "cut" the constraint graph and thus
a l l of the influence of X] on the CSP is subsumed
by C23A and therefore Xi , C14 9 C24 , C34 , and
C123 are of no importance any more. (Ttiis is
indicated by the dashed l ines in f igure 2.) Also
note that if C23A is empty the CSP must be
unsatisf iable.

In the same manner, we construct using C23A a
ternary relat ion C345 for X3 , X4 , and X5 , which
conprises a l l value t r i p les allowed by C34 and
C45 , and permits values for X\ and X2. Again, if
C345 is empty the CSP must be unsatisfiable and we
can stop. Otherwise we continue in the same way
and construct ternary relations C456 , C50 ,
c678 ' c789 and C8910 • If ^Y of those relations
is enpty, the CSP is unsatisf iable. If Cg9xo is
nonenpty we can generate a general solution for the
CSP by using the created ternary constraints and
instant iat ing the variables in the reverse order to
the order in which they were discarded.

If each of the variables X± can assume k
d i f ferent values, then any of the ternary relations
above can have at most k3 elements. Therefore only
k^ combinations of value t r ip les and values need to
be considered for the construction of a new ternary
re la t ion. Hence a CSP representable by such a
graph can be decided in 0(k*) steps. Note that
th is worst case complexity is completely
independent of the specif ic instances of the
constraint relations CJJ .

IV. THE INVASION PMJCKUUBE

In order to describe, how the method outl ined
above can be generalized so that it can be applied
to an arbi trary constraint graph, we need a few
def in i t ions.

Given an n-vertex graph G, c a l l a sequence
\Gt}, i « l , . . . , n , of induced subgraphs of G, where
the number of vertices in Gi is i and G, is a
subgraph of Gi+i , an invasion of G. We ca l l the
set FA of vertices of G^ which are adjacent to
vertices not in G^ the front of Gi. Vertices in
G1-Fi are called conquered vert ices. Hie front
length f^ of G* is the number of vertices in F j .
The front length""bf an invasion is the maximum
front length of the subgraphs Gi involved. An
invasion of a graph G is called optimal if i t s
front length is not greater than tlhe front length
of any other invasion of G.

Given an invasion {Gj}, i = l , . . . , n , of a
constraint graph G, we claim that s a t i s f i a b i l i t y of
a corresponding CSP can be decided by the procedure
outlined below:

For i « l to n inductively f ind a l l value tuples
for the front vertices Fi of Gt which are
consistent with one of the allowed value tuples
of F i _ i . If there are no such tuples, stop and
report the CSP unsatisf iable.

The correctness of this algorithm follows by
induction using two observations:

339

340

Claim;
T, The above procedure yields a c i rcu i t - f ree
directed multigraph.
2. The tuple < a 1 . . . a n > is a solution of the CSP
if and only if there is a directed path from sn to
s0 whose arc label sequence is a n . . . , a 1 .

Proof:
1. the solution graph is c i rcu i t - f ree because for
a l l i and j, i = j, S i and S j are d is jo in t and
there are only arcs from nodes in Si to nodes in
S J . J . It is possible to have more than one arc
between a node in Si and a node in Si-1 in the case
that X t is not a front vertex of G i.

2. This statement follows from the inductive
argument that the set of paths between a node
< a] f . . . f a f 1 > in S i and s0 represents exactly a l l
the solutions of the CSP restr icted to Gj which
have a l r . . . , a f i as instant iat ion of the front
vertices of G i.

Q.E.D.

It is now natural to ask about the complexity
of th is procedure. The following theorem gives an
answer to th is question. It is assumed that it
takes constant time to determine whether two
variables sat is fy a common constraint.

Theorem:
Given is a CSP involving m binary constraints on n
variables. Each of the variables can take on k
d i f ferent values. For the constraint graph of the
CSP an invasion {G^), i = l , . . . , n , with front length
f is given.
The above algorithms produces a solution graph of
the CSP in time at most 0(m*k f+1) and uses space at
most 0(n*k f+ l) .
Proof:
S: ! can not have more than k f*~] <_ kf elements.
Tnus at most k f + 1 combinations are possible between
elements of S^.j and values of X«. Therefore there
can not be more than k*"*1 arcs rroro nodes in Si to
nodes in S j . j . So the algorithm uses space
0 (n *k f + 1) .
For each i at most f binary constraints need to be
checked for each of the at most k f + 1 combinations
between elements in S i - i and values of X i .
Therefore there are not more than n* f*k f + 1 checks.
But overal l there exist only m constraints. Thus
only m*k f+1 checks are necessary, and the algorithm
uses time 0(m*k f + 1) .

Q.E.D.

Implementation of th is procedure should be
straightforward. But one should careful ly select
the data structure to represent the sets Sj so that
set insert ion and set enumeration can be done
quickly, but no excessive amount of space is used.
The actual usefulness of th is procedure w i l l of
course depend heavily on the front length of the
invasion used, and on the actual sizes of the sets
Si to be constructed.

VT. THE GENERAL CSP

So far we have looked only at CSPs involving
binary constraints. Can our procedure also handle
general CSPs with constraints involving more than
two variables? The changes and generalisations
necessary to answer th is question posi t ive ly should
be obvious: we only need to generalize the notion
of a constraint graph; variables correspond again
to vert ices, and two vertices are adjacent if the
corresponding two variables are involved in some
common constraint. With th is de f in i t ion of a
constraint graph only a few modifications in
bookkeeping are required so that the invasion
procedure can be applied to general CSPs.

V I I . FINDING A GOOD INVASION

In order to make e f f i c ien t use of the
algorithm of the last section, one needs "good"
invasions, that is invasions with small f ront
length. But good invasions do not exist for a l l
graphs. Consider a complete n-vertex graph: each
of i t s invasions has front length n -1 . Furthermore
there are nl invasions for an n-vertex graph, but
no good algorithm is known to select an optimal or
almost optimal invasion. But if we res t r i c t our
attention to the class of planar graphs, we can
exhibi t an algorithm which computes an invasion
with front length 0 (/n) . Similar algorithms exist
for the classes of graphs of f ixed genus. But we
w i l l concentrate on planar graphs. The importance
of th is class is i l l us t ra ted by the fact that for
instance most CSPs ar is ing in A . I . v is ion involve
planar constraint graphs.

In the construction of the invasion of a
planar graph we w i l l make use of a planar separator
theorem by Lipton and Tar jan f7] :

Let G be an n-vertex planar graph. The vertices
of G can be part i t ioned into three sets A, B, C,
such that no edge joins a vertex in A with a
vertex in B , neither A nor B contains more than
2n/3 vert ices, and C contains no more than /§n
vert ices.

Lipton and Tarjan also exhibi t an algorithm which
finds such a pa r t i t i on in 0(n) time. In [8] they
show how th is theorem can be extended to graphs of
arbi t rary genus.

In the previous section we formally defined an
invasion of a graph as a sequence of induced
subgraphs. It should be clear that each invasion
of a graph G induces a numbering on the vert ices of
G, and vice versa. Thus if the vert ices of G are
numbered X j , . . . ^ , then \Gt\ GA is the subgraph of
G induced by the vert ices X j , with j £ i } , i » l f . . . , n ,
is c lear ly an invasion of G. So f inding an
invasion for a graph is equivalent to f inding the
corresponding numbering of i t s vert ices.

In the following we specify a divide and
conquer type procedure INvME-PLANAR-GRAPH which
numbers the vertices of a planar graph. We shal l
mean by "invade S star t ing with i " , where S is a

e f f i c i e n t fo r a l l CSPs. But we could show t h a t
f o r CSPs w i t h p lanar c o n s t r a i n t graphs t h i s

a lgo r i t hm leads to a considerable improvement in
the asymptot ic worst case complexi ty of the
problem. It remains to be seen how the proposed
a lgor i thms w i l l behave i n p r a c t i c a l a p p l i c a t i o n s .

ACKNOWLEDGEMENTS

I would l i k e to thank Alan Mackworth f o r
b r i ng ing t h i s problem to my a t t e n t i o n . I a l so want
to thank A lan , as w e l l as David K i r k p a t r i c k and
Derek Corne i l f o r h e l p f u l d iscuss ions and va luab le
comments. F i n a l l y I want to thank an anonymous
re feree who po in ted ou t the r e l a t i o n between the
invas ion method and standard backtrack search.

REFERENCES

342

