
HPM: 
A COMPUTATIONAL FORMALISM FOR HEURISTIC PROCEDURE MODIFICATION1 

Robert Neches 
Learning Research and Development Center 

University of Pittsburgh 
Pittsburgh, PA 15260 

USA 

Abstract 

The HPM (Heuristic Procedure Modification) system is a model 
of strategy learning and optimization, implemented as a 
processing environment within the PRISM production system 
package [4]. This paper describes progress in getting HPM to 
emulate children's discoveries about basic addition procedures. 
HPM s goal-trace and production trace formalisms allow it to 
maintain a history of its actions which is both goal ordered and 
time ordered. Heuristics about meaningful patterns in these 
traces guide the construction of new productions, which modify 
procedures by replacing or circumventing preexisting 
productions. 

1. Introduction 
Young children (approx. 4 years) often add by a counting 

procedure called the "SUM method". This method consists of (a) 
counting out a set of objects to represent the first addend; (b) 
counting out another set of objects to represent the second 
addend; (c) merging the two sets, and counting the number of 
objects in the new set. One strategy used by older children is the 
"MIN method", which starts with the larger number and 
increments it the number of times given by the smaller addend. 
This development can be modelled as an additive production 
system, in which the MIN procedure is obtained from the SUM 
procedure by the insertion of a series of productions that mask or 
circumvent pre existing productions. 

Given an initial production system for the SUM method coded in 
its goal structured formalism, the HPM system can discover for 
itself some of the productions in the additive set. Its goal 
formalism allows HPM to maintain a history of its actions which is 
both time-ordered and goal-ordered. Strategy transformation 
productions, which can fire in parallel with performance 
productions, respond to patterns in this history by building 
productions which predict future outcomes, in addition to 
productions which produce changed performance. The patterns 
which evoke initial strategy transformation productions each 
represent a different heuristic for suggesting when and where a 
certain type of transformation might be fruitful. 

Like Barr (2], I am concerned with exploring how meta­
knowledge can be exploited in an intelligent learning system. The 
key concept in HPM is the specification of conventions to be 
followed when processing goals and passing information between 
them. Their existence allows informal strategy change heuristics 
to be respecified formally as productions with their conditions 

The research reported in this paper was supported in part by NIMH Grant 
*MH0772?, and by ARPA Grant # F33615 78 C 1551 

expressed as propositions in the goal-description formalism. This 
enables the system to carry out strategy transformations by having 
those productions construct new productions which mask or 
circumvent preexisting productions. The formalism which 
implements the conventions also has the benefit of imposing 
constraints that reduce the reasoning power required to construct 
appropriate changes. 

HPM is part of a larger project on procedure learning and 
optimization [7]2. The program is a self-modifying production 
system [5] implemented in MACLISP on a PDP KL-10. Its design 
has been influenced by analyses of human performance in 
procedure learning tasks. These analyses indicate that procedure 
modifications involve precompiled heuristics for applying 
transformations, simple procedures for producing particular kinds 
of changes. 

Neches [7] describes 21 application heuristics associated with 
various transformation types. The heuristics subsume most of 
those suggested by Anzai & Simon [1]. This paper, however, will 
present only the heuristics actually implemented in the HPM 
system: 

• Result still available: IF a procedure is about to be executed 
with a certain input, but the result of that procedure with the 
same input is recorded in working memory, THEN try to 
borrow that result now and in the future. (Requires 
procedure/goal, input, result, time, and processing 
information.) 

• Untouched results: IF a procedure produces an output, but 
no other procedure receives that result as input, then try 
deleting the procedure. (Requires procedure/goal, input, 
result, and episode information.) 

• Effort difference: IF a difference in expended effort is 
observed when the same goal is operating on the same 
input(s) at different times, THEN set up a goal to find a 

difference between the methods used, and try to produce the 
circumstances which evoked the more efficient method. 
(Requires effort, procedure/goal, input, event, and subgoal 
information.) 

As the parenthesized notes indicate, each of these heuristics 
depends on the availability of certain information about a 
procedure's processing history. The formalism described in 
Section 2 is designed to capture the information required by such 
heuristics. Retaining that information, although necessary to 
enable learning, makes HPM vulnerable to breakdown under a 
glut of extraneous information. Section 3 briefly describes 
mechanisms for handling the information explosion problem. 

This section has been greatly abbreviated due to limited apace. Please consult 
this reference lor more details 

283 



Once these issues are clarified, it is possible to examine the 
operationalization and application of these heuristics, the topic of 
the remaining sections. 

2. Execution history: The goal trace and 
the production trace 

HPM fundamentally operates by manipulating propositions 
stated as node relation object triples. An object can be either a 
node, a proposition, a list of nodes, or a list of propositions. 
Activation is associated with propositions. 

The condition, or left hand side (LHS), part of productions 
match against sets of propositions in active memory. When a 
production matches successfully and is selected for firing, its 
action part, or right-hand side (RHS), contains (a) propositions 
which are added to the semantic network and made active; 
and/or, (b) actions, or RHS functions, which perform 
computations without necessarily adding propositions to memory. 

HPM uses PRISM'S trace-data option to invoke a procedure 
after each production firing that adds a description of the firing to 
active memory. The description reflects the production 
instantiation rather than the production itself. 

HPM represents processes in a hierarchical goal structure 
similar m organization to Sacerdotis [8] planning nets. Goals are 
decomposed into partially ordered lists of subgoats until 
executable goals are reached. Each goal is represented in terms 
of relations from a common node to other objects which define it. 
The rules of the representation constrain the form of HPM 
productions, procedures are productions that build goal 
structures. 

For example, one of the first rules in a production system for 
addition by the SUM method is. "To add two numbers, generate 
sets corresponding to them and then count how many elements 
the two sets contain." Figure 1a shows the goal-trace propositions 
involved in this production, with those matched as conditions 
shown with dark lines and those added as actions shown with 
lighter lines. Figure 1b shows the corresponding production trace 
propositions. 

The production responds to a goal to ADD by building 
structures in the network representing goals to GENERATE-SETS 
and COUNT-UP. These are linked by a subgoal relation from the 
initial goal, and a then relation from the first subgoal to the 
second These establish the goal subgoal hierarchy and the 
ordering of subgoals. input and result relations from the goal 
nodes point to nodes describing operands of the goals. These are 
described in terms of various relations, with the most important 
being value, which indicates the concept instantiated by an 
operand. 

The goal and value relations are HPM's means of representing 
the type token distinction discussed by Woods [10]. HPM's 
strong type token distinction means that objects are represented 
in network structures of some potential complexity. To avoid 
comparison problems, "formal-value" tags, associated with nodes 
in the semantic network, are constructed in a canonical fashion 
which causes nodes representing equivalent structures to have 
identical tags. This enables HPM to immediately recognize 
equivalent objects by comparing their tags. 

As Figure 1 illustrates, a production must only specify the 
propositions relevent to its own processing; it need not indicate all 
relations from a node Nevertheless, it is required to construct a 

goal trace representation by using only a restricted set of 
propositions and obeying their semantics. The semantics of the 
goal trace representation allow only the following types of nodes: 
(a) GOAL nodes; (b) DATA nodes, which instantiate concepts; (c) 
SET nodes, used for concepts which represent sets of data nodes; 
(d) FIRING EVENT nodes, discussed previously: (e) PREDICTION 
nodes, discussed in section 4; and. (f) EFFORT nodes, which have 
a numeric value associated with them representing the estimated 
processing effort of a goal. 

An HPM production system for solving a task primarily consists 
of productions which add goals (such as was just illustrated), 
productions which set up data structures tor goals requiring 
iteration by establishing has data relations from the goals to DATA 
nodes, and productions which terminate processing of a goal by 
manipulating result, value, and status relations. 

These goal structures are augmented by system productions 
which collect information. For example, effort estimation is 
managed by two HPM system productions. The estimate is linked 
to goal nodes by the 'effort relation. 

284 



In summary, productions build goal structures similar to many 
familiar goal representations. Thus, HPM can express a range of 
procedures and processing constructs. The goal structure 
remains afterwards, and forms a trace of a procedure's actions. 
HPM also retains a production trace, which indicates the 
conditions under which portions of the goal trace were created or 
modified. Section 4 will consider how the information contained in 
the goal and production traces is utilized by strategy modification 
heuristics. However, that discussion requires some 
understanding of HPM's mechanisms for managing the 
information explosion entailed by retention of the two forms of 
trace data, the topic of section 3. 

3. HPM processing mechanisms 
By the very nature of learning, a self-modifying system cannot 

know in advance what it will learn in a specific case. Therefore, it 
also cannot know in advance what information it will require to do 
that learning, which in turn implies that it must retain all 
information which it is likely to need. 

The implication of this observation is that a large information 
base is an unavoidable requirement of a realistic model of 
performance and learning. This places greater stress on the 
attention-focusing mechanisms of production systems. Since they 
must retain a potentially large body of extraneous information in 
order to avoid missing critical information, it becomes crucial that 
learning systems have effective means for concentrating attention 
on important data and avoiding distractions inherent in a larger 
information space. Two processes affect focus of attention in 
HPM: associative retrieval and conflict resolution. 

3 .1 . Goal-driven associative retrieval 
HPM has a mechanism called "goal driven spreading" for 

associative retrieval by spreading activation. When any 
proposition is asserted, the scheme activates all other 
propositions about nodes contained in that proposition. When a 
goal becomes active, activation is spread not only from the 
proposition describing the goal, but also from the proposition(s) 
describing its inputs and goal type. Similarly, when a goal is 
terminated, activation is spread from the propositions describing 
its result, its planned successors, and the goal which invoked it. 

Associative retrieval functions as an attention focusing 
mechanism by allowing HPM to partition its memory into active 
and non active sections, with the non-active section automatically 
eliminated from consideration. Goal-driven spreading activation 
helps reduce the size of active memory. It enables retrieval of 
indirect associates most likely to be relevent to the system's 
immediate performance and learning goals, while avoiding the 
combinatorial explosion inherent in activating all indirect 
associates. 

3.2. By-class conflict resolution 
Even under this context-sensitive associative retrieval method, 

active memory can still be quite large. This produces an increase 
in matches - many more productions are likely to find matching 
data, and many of those productions are likely to have more than 
one way to match against the data. This introduces the familiar 
problem of "conflict resolution". 

Parallelism simplifies these problems. First of all, it reduces the 
demands on conflict resolution by lowering the criterion of 
success. Finding a single "best" production instantiation is 
difficult to do satisfactorily; it is much easier to find a set of 
"good" productions which do not interfere with each other. 

Second, paralleliam - like the notion of "beam search" in the 
HARPY system [6] -• helps avoid errors due to premature 
restriction of attention. Third, it enables reducing active memory 
size because important data will be attended to promptly upon its 
assertion and can safely be eliminated from active memory much 
earlier than in a serial system. Reducing memory size reduces the 
number of potential uninteresting matches, thereby easing the 
conflict resolution problem. 

HPM emulates a parallel production system. Productions are 
grouped into six different classes, with a separate conflict 
resolution policy for each class. The production instantiations 
fired on a given cycle represent the union of selections from the 
individual classes. Productions in different classes can be 
presumed not to interfere with each other, and can safely fire in 
parallel. The circumstances under which productions in the same 
class might interfere with each other depend on the task 
performed by that class. Therefore, conflicts are resolved by 
class-specific policies. 

The six conflict resolution classes currently distinguished by 
HPM are: 

• Goal manipulation: productions which operate upon goal-
trace structures. 

• Data bookkeeping: productions which maintain the 
correctness of HPM's representation of complex data objects. 

• Goal-bookkeeping: productions which maintain correctness of 
goal structures. 

• Data-description: productions which add information 
representing knowledge about properties of data objects. 

• Strategy-change noticing: productions which detect or 
predict situations relevent to development of a strategy 
change. 

• Strategy-change-maker: productions that perform actions 
which effect changes to a procedure, usually by building a 
new production. 

4. An example: discovering improved 
addition strategies 

This section is concerned with showing how the HPM goal 
trace formalism applies to the simulation of cognitive processes. 

4 . 1 . The SUM strategy for addition 
Psychological researchers have shown that very young children 

who solve addition problems by a SUM or "counting-all" method 
can discover MIN [3]. The essential properties of SUM are that 
external objects (e.g., fingers or blocks) are counted out to 
represent each addend, and that these sets of objects are then 
merged and the combined set counted in order to produce the 
sum. 

The HPM production system for SUM requires 14 productions. 
Following is a summary of its operation, with the names of key 
productions given in parentheses. Unless otherwise stated, the 
productions belong to the goal-manipulation class. 

The production system solves addition problems by asserting 
goals to GENERATE SETS and COUNT-UP the sets (Addition-
plan), in response to a goal to ADD (Goal-to-add). The first goal is 
decomposed into two goals to MAKE-A SET, one for each addend 
{Goal to-generate-sets). These goals produce sets of objects 
corresponding in size to the addends. Both spawn a aeries of 
CORRESPOND-ELEMENT goals, which produce pairings of 

285 



objects with numbers {Make*-set of-fingers. Goal to correspond-
elements). Each of these objects is appended to a set associated 
with the MAKEASET goal. In both cases, the series of 
CORRESPONDELEMENT goals is terminated when an object is 
appended to the set that has a number assignment matching the 
appropriate addend (Have-a-set). After the two sets are 
constructed by the MAKE A SET goals, a set representing their 
merger is constructed during termination of the GENERATESETS 
goal (Sets-have been generated). 

The COUNT UP goal then becomes active (Continue planned-
subgoai in the goal bookkeeping class), and counting of that set is 
initiated (Start counting-up). The counting involves finding 
objects in the set of objects-to be counted, assigning a new 
number to them, and appending them to a set of counted objects. 
This process is also accomplished by a sequence of 
CORRESPONDELEMENT goals (Count-element). The sequence 
is terminated when the set of counted objects matches the set of 
to be counted objects (Finished-counting up). The answer is then 
given by the size of the counted objects set (Finished-adding). 

4.2. Strategy transformations in HPM 
The goal trace formalism is designed to facilitate domain-

independent heuristics for modifying procedures, like the three 
mentioned in Section 1. This section discusses their application in 
modifying the SUM strategy; the next section illustrates how they 
are operationalized by discussing the implementation of the first 
heuristic. 

HPM gets from SUM to MIN through a series of incremental 
refinements. The first involves eliminating redundancies in 
counting up the combined set of objects representing the two 
addends. Since counting consists of creating a set of objects in 
which numbers have been assigned sequentially to each object in 
the set. there is a point where the counting up process creates a 
set of objects and number assignments equivalent to that created 
when building a set to represent one of the addends. After that 
point, the process continues adding to the set by taking objects 
corresponding to the other addend, which makes the set unique. 

At this intermediate point, however, it is possible to recognize 
through the Result still available heuristic that the counting out for 
one addend (i.e.. the result of a MAKE-A-SET goal) can also serve 
as part of the counting up process (i.e., as an intermediate result 
in processing the COUNT UP goal). When a production is built 
that implements the change, the resulting procedure differs in that 
the COUNT UP goat starts its iteration of CORRESPOND* 
ELEMENT subgoals with a set containing the elements produced 
by one of the MAKE A SET goals, rather than starting with an 
empty set. This causes processing to pick up with the result of the 
other MAKE ASET goal. Rather than counting all of the objects in 
the combined set, the new procedure therefore counts only the 
objects representing one of the addends, but counts them starting 
from the number given by the other addend instead of starting 
from 1. 

Now, when double-counting of the one addend is eliminated in 
this fashion, an inefficiency is introduced which can be detected 
through the Untouched-results heuristic. When the objects 
produced under MAKE A SET goal are no longer counted under 
the COUNT-UP goal, they are not really used at all. That is, there 
is no point in creating these objects if they aren't going to be 
counted. The only function which they still serve is to give the 
starting number for counting up the objects representing the other 
addend. That information can be gotten elsewhere, however, 
since the size of the set representing an addend is (of course) 
given by the addend itself. 

This change is realized by building a production which 
responds to the MAKE A SET goal used in the first strategy 
change to speed up processing of the COUNT-UP goal. The 
production asserts that the MAKE A SET goal has assigned to an 
object the number given by the addend which was input to the 
goat This satisfies its termination conditions, causing the goal to 
complete with a single element set as its result. That single 
element has the correct number assignment for initializing 
counting of the objects representing the other addend. Note that 
this new production would give an erroneous result if it fired to all 
instances of MAKE A SET goals. However, the conditions of the 
new production are constructed from the production trace. 
Therefore, the conditions describe the context for asserting the 
particular goal instance that is used in the first shortcut, and the 
new production will not fire in the general case. The result of this 
second change is a procedure which counts out objects 
corresponding to one of the addends, and then counts up those 
objects starting from the number after the other addend. 

When one or both of these changes are made, the opportunity 
is created for HPM to discover effort differences between different 
trials with the same problems. This is because the effort involved 
depends on whether the addend treated specially is the larger or 
smaller of the two Effort is minimized in the case where objects 
are generated to represent the smaller addend and their counting 
is initialized by the larger addend The result is a procedure in 
which, for problems in which the other shortcuts would treat the 
smaller addend specially, the problem is first transformed into an 
equivalent form where the larger addend is taken as special. 
Problems in which the shortcuts would initially be applied to the 
larger addend are left as they are. This new procedure has the 
properties of the MIN procedure: effort is now proportional only to 
the size of the smaller addend, but there is a small effect of the 
order of the addends3. 

it is important to note that the independence of these last two 
strategy changes means that they can take place in either order, 
which means that HPM can follow several different paths from 
SUM to MIN. 

5. Operationalization of heuristics 
We have seen that very straightforward heuristics can be used 

to account for transitions between procedures. Operationalizing 
these heuristics in HPM requires dealing with the following set of 
problems: (a) detecting instances of situations described in the 
heuristics' conditions; (b) determining the precursors of those 
situations, i.e., learning to predict them; (c) constructing 
appropriate new actions for productions which implement strategy 
changes; and. (d) discovering the range of application for a new 
production. This paper is primarily concerned with (a) through (c). 
where the goal trace conventions permit making assumptions that 
greatly simplify the problems. 

5 .1 . Determining applicability of heuristics 
The approach taken in HPM to operationalizing conditions for 

heuristics basically consists of re-expressing the conditions as 
patterns in sets of goal-trace propositions. It is not essential that 
all of these patterns co exist in time, because of the production 
trace. 

latter observation was first reported by Svenson [9], and has been 
confirmed in recent studies of his reported in a personal communication 

286 



In the Result-stillavailable heuristic, the stated condition is that 
a previously computed item is needed again. However, this 
explicit condition really consists of several implicit conditions 
which go into deciding that an item is "needed again" In HPM, 
the first step begins when the system notices that the input for a 
goal is something that has been used before. This post hoc 
discovery comes too late for HPM to change its course of action 
on that trial; HPM cannot tell that it will re-use a computed value, 
only that it just has reused one. Since inputs can come to a goal 
either as the result of another goal or through a hasdata relation 
from a higher-level goal, two versions are needed of the 
production which makes this discovery. Figure 2 illustrates the 
production which applies when the current source of a goal's 
input is a has data node. This is the production which initiates the 
first strategy transformation in the development from SUM to MIN. 

Considerkeep-partials-for-datanode: 

IF a goal has just been asserted with a particular data node 
as input, there is a different data node with an equivalent 
value, the goal was established in response to a has data 
relation between the input and a higher goal, 
and trace-data is available for the production asserting the 
goal and for the actions of the production which terminated 
the goal that had the other data node as its result, 

THEN build a production to predict that this relationship will recur: 

IF another instance of this goal is asserted with this 
input under the equivalent conditions, and another 
instance of the other goal terminated in the same way as 
observed this time, 

THEN predict that the result of that other goal will be 
equivalent to the input of the new goal-instance. 

Figure 2. 

The conditions for the production can be put into three groups: 
conditions governing when it fires (ensuring that it will fire as early 
as possible), main conditions checking that criteria for firing the 
production are met (in this case, that the goal's input has a 
potential alternative source), and conditions which pick up data 
needed on the action side of the production (by inspecting the 
production trace to find the context in which the earlier source 
completed and the current source was asserted). 

5.2. Finding conditions for the new production 
The action of the first production builds a new production which 

essentially predicts that the same situation, if observed again, 
would produce the same relationships between goal trace 
propositions. That is, the prediction is that any goal terminating 
with equivalent assertions to the observed earlier source will have 
its result equivalent to the input of any goal asserted under 
conditions equivalent to those for the observed current goal. 

Since a new prediction production is only built when the 
prediction is known to be true for the current case, HPM behaves 
as if the prediction had been made and tested for that case. This 
causes a strategy transformation production to fire and build a 
second production which will change the strategy. The strategy 
transformation production is shown in Figure 3. 

Keep partial-set -for-data: 

IF a goal has just been asserted with a particular data node 
as input, there is a different data node with an equivalent 
value, the goal was established in response to a has-data 
relation between the input and a higher goal, 
and trace-data is available for the production asserting the 
goal and for the actions of the production which terminated 
the goal that had the other data node as its result, 
AND a prediction has been asserted and confirmed that the 
goal's input and the other data node would match, 
AND the input is a set with an element as current member, 
AND the other data node has some relation associating it 

with an element equivalent to that current member, 

THEN construct a production to avoid recomputation of the set 
by copying the prior data node over: 

IF the evoking conditions are present for the production 
which asserted the hasdata relationship between 
the higher goal and the current input of the current goal, 
andan instantiation of the goal which produced the 
alternative source has both been asserted and completed 
under the same circumstances as this occasion, 
and that goal's result has relations that correspond 
to those needed to predict what the current member 
should be, 

THEN assert that the higher goal has data to a node which 
has the set represented by the alternative source as 
its subset; assert a current-member for this new set, 
along with any other relations used in the conditions 
of the goal of interest. 

Figure 3. 

As before, there are several versions of the production in order 
to allow for each of the alternative information-passing methods 
which can be used in the goal-trace formalism. The one shown is 
the version which applies in making the first strategy change. Its 
first conditions require that a successful prediction has been 
made. Like the noticing production, it also contains conditions 
which identify the context in which the new source goal was 
terminated. In addition, it contains conditions which identify the 
circumstances under which the to-be-replaced goal was asserted. 
Finally, it has conditions specialized for has-data data nodes 
which represent sets; these conditions test whether the current 
goal makes use of any propositions allowed in describing sets 
(e.g., the current-member relation) or other data objects. Related 
to those conditions are others which seek to find or construct the 
analogous propositions for the result of the potential new source 
goal. 

When the production actually builds the production for the 
strategy change, the conditions of that production are derived 
from the conditions just described. First, they borrow the 
conditions which led to assertion of the data's current source. 
This ensures that the new production can fire at the time the 
source would have been asserted, thus enabling it to override the 
production which would do so. Second, they borrow the 
terminating conditions of the goal which first produced the data. 
This ensures that the value is available to be copied, and that the 
new production has the ability to do so. Third, they borrow the 
initiating conditions of the first goal, expressed in terms of the 
production trace since they may no longer be true at the critical 
point in time. These conditions increase the likelihood that the 
new production will fire only in siuations closely equivalent to the 

287 



current situation. Finally, the new production is given the 
conditions needed to specify auxilary propositions such as 
current member relations. Figure 4 provides an example of a new 
production resulting from this process. This new production, 
which implements the first shortcut for the problem 2 \+ 3, will 
compete with the Start counting up production mentioned in 
section 4.1. 

IF a set containing a left thumb, a left index finger, a right thumb, 
a right index finger, and a right middle-finger is input to 
an active COUNT-UP goal, 
AND that goal has no has data node. 
AND a goal to MAKE A SET that produced a left thumb and a 
left index finger is done, and that goal was asserted as 
a subgoal of a GENERATE SETS goal, and the set produced 
by the MAKE-A SET goal has a left-thumb as its first and a 
left index finger as its last element, and the set is of size 2, 

THEN assert that the COUNT UP goal has-data to a node which 
has the MAKE A SET goals result as a subset, the left thumb 
as its first member, the left-index finger as its current and 
last member, and the number two as its size. 

Figure 4. 

5.3. Determining appropriate actions for new productions 
The actions of the new production are almost entirely 

determined by the constraints of the goal trace formalism. This is 
exactly the point of having such a formalism; the amount of 
reasoning which the system must do in order to construct a 
change is minimized. In this case, the intent to borrow a 
previously generated set in order to avoid reconstructing it 
completely determines the actions. Having found that the set was 
constructed as a hasdata node attached to a higher level goal, 
the first thing to do is to replace that node with one representing 
the previously computed set. However, it is only necessary to set 
up the new linkages, since the production's conditions ensure that 
it fires in place of the productions which would have added the old 
linkages. Since the constraints of the formalism say that elements 
may be added to a set while an active goal has a has-data link to it, 
the production asserts propositions creating a new set which has 
the previously computed set as a subset. This maintains the 
correctness of the goal trace if additional members are added to 
the set. as is the case here, because the additional members are 
represented as belonging to the "copy" of the set rather than the 
original set. The goal-trace formalisms for sets, and the HPM 
system productions which maintain them, guarantee that the 
original and the copy are treated identically when their values are 
accessed but are distinguished when querying the source of those 
values. 

The other actions of the new production are also determined by 
the constraints of the formalism. When a data node representing 
a set is being made available to subgoals by a hasdata relation, 
there is a restricted set of possible propositions which might be 
accessed by those subgoals. The remaining actions of the 
productions assert propositions which duplicate those which 
appeared in the set being copied. 

This new production will fire just after assertion of a COUNT-UP 
goal, skipping to the point just after counting of the set 
representing the first addend. Its specialized conditions make it 
applicable only for the particular problem, 2 + 3. Methods for 
generalizing such productions are discussed in [5]. 

This change opens the way for the Effort difference and 
Untouched results heuristics to apply in later strategy changes. 

6. Closing notes 
Three features of HPM are especially important. Formal-value 

tags let HPM represent subtle type/token distinctions without 
losing the ability to detect higher level identities between the 
objects represented. Goal driven associative retrieval helps HPM 
ameliorate problems of large working memory size while still 
ensuring that potentially relevent data will be in active memory. 
By class conflict resolution lets HPM fire productions with fewer 
concerns about introducing unintended interferences or database 
inconsistencies. 

The most important aspect of HPM is the notion of a goal trace 
formalism These conventions for specifying procedures and 
actions in the system cause those procedures to leave a history of 
their execution behind them. This history is a hierarchical 
semantic network representation of the process that preserves 
information about relations between goals and data. The parallel 
notion of a production trace preserves information about both the 
time-ordering of events and the context in which goals were 
initiated and terminated. 

The existence of the formalism greatly simplifies the 
implementation of heuristics for improving procedures, by 
providing a formalism tor specifying them and by imposing 
constraints which reduce the reasoning power required to 
construct appropriate modifications. Furthermore, the domain 
independent conventions move the system closer to the goal of 
being able to demonstrate domain independent learning 
capabilities. 

References 

(1] Anzai, Y., & Simon. HA. The theory of learning by doing. 
Psychological Review, 1979,86(2), 124-140. 

[2] Barr. A. Meta-knowledge and cognition. Proceedings of the 
Sixth International Joint Conference on Artificial Intelligence, 
1979,31-33. 

[3] Groen, G.J.. ft Resnick. LB Can preschool children invent 
addition strategies? Journal of Educational Psychology, 1977, 
69, 645-652. 

[4) Langley, P. and Neches, R PRISM Users Manual. Technical 
Report, Department of Psychology, Carnegie-Mellon 
University, 1981. 

[5] Langley. P.W., Neches, R., Neves, DM., ft Anzai. Y. A domain-
independent framework for procedure learning. Po//cy 
Analysis and Information Systems, 1981, 4(2), 163-197. 

(6) Lowerre, B.T. The HARPY speech understanding system. 
Pittsburgh: unpublished PH.D. thesis, Computer Science 
Department, Carnegie-Mellon University, 1976. 

[7] Neches, R. Models of heuristic procedure modification. 
Pittsburgh, PA: Psychology Department, Carnegie-Mellon 
University, Ph.D. thesis, 1981. 

f8) Sacerdoti, E.D. A structure tor plans and behavior. New York: 
American Elsevier Press, 1977. 

[9] Svenson, O. Analysis of time required by children for simple 
additions. Acta Psychologies, 1975,39,280-302. 

[10] Woods. W.A. What's in a link: foundations for semantic 
networks. In D.G. Bobrow ft A. Collins (Eds.), Representation 
and understanding. San Francisco: Academic Press, 1975, 
35 82. 

288 


