THE INTERACTION WITH INCOMPLETE KNOWLEDGE BASES:
A FORMAL TREATMENT*

Hector J.

Levesque

Department of Computer Science
University of Toronto

Toronto,

ABSTRACT

Some formal representation Issues underlying
the Interaction between an expert system and Its
knowledge base are discussed. It Is argued that a
language that can refer both to the application
domain and to the state of the knowledge base Is
required to specify and to question an incomplete
knowledge base. A formal logical language with
this ability is presented and its semantics and
proof theory are defined. It is then shown how
this language must be used to interact with the
knowledge base.

1. INTRODUCTION

An Important characteristic of any knowledge-
based system Is its interaction with a knowledge
base (or KB for short) that provides and maintains
information about the application domain. In
general, there are two distinct modes of inter-
action between an expert system and its KB: the
system will want to ask and to tell the KB about
the application area. In this paper, | will
examine what special expressive requirements are
placed on the language(s) of interaction when a
system must deal with a KB that is Incomplete.

Loosely speaking* a KB is Incomplete when it
does not have all the Information necessary to
answer some question of Interest to the system.
When a knowledge-based system is forced to depend
on an incomplete KB, its ability to make decisions
or solve problems is seriously compromised. In
some cases, the lack of knowledge can be circum-
vented using general defaults [1], while in other
situations, special heuristics are required [2].
However, no matter how a system plans to deal with
incompleteness, it must first be able to determine
where this incompleteness lies. In other words, a
system has to find out exactly where knowledge Is
lacking before it can decide what to do about it.
This suggests that a KB must be capable of provid-
ing information not only about the application area,
but about Itself as well. Thus, the language used
to interact with a KB must allow a user to define
and inquire about what the KB does and does not
know. The major issue of this paper, then, is what
impact this capability will have on the language
of interaction.

This work was sponsored in part by the Natural
Sciences and Engineering Council of Canada and the
Department of Computer Science, U. of Toronto.

Ontario

The approach taken in my work [3] focuses
primarily on the formal aspects of this issue. As
described in section two, | will be dealing with
KB's consisting of formulas of the first order
predicate calculus. In section three, | examine
what questions one would like to be able to ask
such a KB and conclude that these questions are
best phrased in a superset of the predicate calculus

I call KL. In section four, | examine the language
KL in detail and provide a semantics and proof
theory. Given this analysis of KL, | then consider

its use as a language to interact with a KB: in
section five, the formulas of KL are used to query
a KB and | show that this involves a non-monotonic
version of the language; in section six, the formu-
las of KL are used to define a KB and | indicate
why this requires converting the formulas into the
language of the KB.

Three areas of related research should be
noted. First of all, my formalization of KL owes
much to the work on the logic of knowledge and
belief pioneered in [4] and continued in (5] and
[6] (though my application is somewhat different).
Secondly, there has been research on incompleteness
from the database area ([7],[8]) concentrating
primarily on efficient query evaluation. Finally,
although the research here does not deal with
defaults or assumptions, the work on non-monotonic
reasoning ([9],(10],[11], [12]) has provided techni-
cal inspiration.

2. FIRST ORDER KNOWLEDGE BASES

As described in [13], a first order KB is a
finite set of closed formulas of first order logic
(FOL). I will restrict my attention to consistent
sets of formulas that do not contain function
symbols other than a (possibly infinite) set of
O-ary symbols called constants. Moreover, a
bijection is assumed to exist between the set C of
constants and the set D of entitles in the domain
of discourse.

A query in this framework is any formula of
FOL and is answered by consulting the provability
relation H to determine what does and does not
follow from the KB. For each closed query there
are three possible replies: yes, no or unknown,
depending on whether the query, its negation or
neither follow from what is available in the KB.
A KB is incomplete when some query has an unknown
answer and complete otherwise.

Consider a typical KB containing facts such as

Teachea(John, bill), Student(bill),...
To avoid having to include within this KB all the

"negative" facts about the application such as
-Student (John), nTeaches(bill,john),. -«

an assumption is usually made (once and for all)
that the negation of any atomic formula can be in-
ferred from the inability to infer the atomic
formula. This is the closed world assumption (CWA)
[14] which, along with the assumption that there is
a bljection between constants and entitles in the
domain, guarantees that any KB is complete.

If,
tains

on the other hand, we have a KB that con-

[Student(mary) v Student(susan)]
but does not contain either

Student(mary) or Student(susan),

the OMA cannot be used since it would allow us to
conclude that neither Mary nor Susan are students,
contradicting what is in the KB. This KB only
partially describes a world, in that it specifies
that one of Mary or Susan is a student but not
which. Thus, there is a query that is true in the
intended application but whose truth cannot be
determined on the basis of what is available in the
KB. The KB is, consequently, incomplete.

For the rest of this paper, | will say that a
KB knows a formula if it answers yes to the query
and, for any predicate p and constant ¢, that c is
a known p when the formula p(c) is known.

3. THE KNOMEDGE BASE QUERY LANGUAGE

there may be
suppose

Even though a KB is incomplete,
completeness in certain areas. For example,
that

KB (x)[Teacher(x) = (x-John v x-Jim)]

In this case, not only are John and Jim teachers,
but the KB knows that they are the only teachers.

It therefore has a complete picture of the teachers.
On the other hand, it may be the case that

KB h (Ex)Teacher(x)
without there being any known teachers. In this
situation, the KB knows that there is a teacher but
does not know who and so does not have a complete
list of teachers. There is, moreover, a third
possibility which is that it cannot be determined
from what is available in the KB whether or not it
has complete knowledge of the teachers. So just as
the question

Is John a teacher?
no or unknown,

may be answered yes, the question

Are all the teachers known?

241

may also be yes, no or unknown depending only on
what is in the KB.

If the purpose of a query language is to
provide an accurate picture of what is and is
not available in the KB, we should be able to for-
mulate queries that ask the KB about its in-
completeness. In FOL, a query that asks if there
is a teacher apart from the known teachers might
be expressed by
(Ex)[Teacher(x) -»(x«cl V...V x«ck)]
where the c's are constants ranging over all the
teachers known to the KB.

There are a couple of problems with this
method of asking if all the teachers are known.

First of all, there could be a very large number of
known teachers. In some applications and for some
predicates, there may even be an Infinite number.

Secondly, we have to know what these constants are
in the first place to be able to formulate the
query. For a large and complex KB, it could happen
that only the KB has this information. One can
also Imagine situations where the KB will not
divulge this information for security reasons while
still being willing and able to answer questions
about its incompleteness.

This suggests that the KB Itself should keep
track of Its Incompleteness in the same way it
maintains knowledge of the application area. One
possibility, for example, Is to have a predicate
"Known-teacher" and to allow a KB containing the
following:

Teacher(john), Known-teacher(John),
[Teacher (Jim) v Teacher(dan)],
-Known-teacher (jim), -Known-teacher (dan).

The problem with this approach (and any other that
Involves a direct encoding into FOL) is the manage-
ment of this extended language. There is a very
definite relationship between "Teacher" and
"Known-teacher" that must be captured somehow.
Among other things, we want that whenever

Teacher(c)
is in the KB, then

Known-teacher(c)
is as well. The closest we can come to expressing
this is by an axiom stating that

(x)[Teacher(x) = Known-teacher(x)].
However, this does not work since this formula is
inconsistent with the above KB. The correspondence
between "Teacher" and "Known-teacher" is much more
complex. In a nutshell, "Known-teacher" should not

be a predicate for the simple reason that Its
truth or falsity does not depend on the domain
being modelled but on the model (i.e. the KB)
Itself.

is to leave the KB as is

The solution, then,

but to extend the query language to allow questions
that refer to the current state of knowledge of the
KB. The query language | propose, called KL,

contains all of FOL and, in addition, has formulas

of the form
Ka
read as
The KB knows that a.

This leaves us with a first order KB while still
allowing us to query the KB regarding its in-
completeness. In particular, we have a new form of
query evaluation

KB {F a

where |l is some (as yet to be specified) provabi-
lity relation and a is any formula of KL. For
example, to find out if the KB has an Incomplete
list of teachers, we ask if

KB Ii- (Ex)[Teacher(x) » =Kk [Teacher(x)]].

Similarly, while the query

(Ex)Teacher(x)
can be used to find out if there are any teachers,

the query
(2x)K[Teacher (x)}

asks if the KB knows who any of them are. To be
able to define the |k relation, we must first look
at the semantics of the language KL Itself.
4. THE LANGUAGE KL
The query language KL has the same formation
rules as FOL but also includes the rule

If o ¢ KL then Ko € KL.

There are, two kinds of formulas in

KL: the first,

consequently,
like

ple) A (Ex)q(x)

will be true or false depending only on how the
world is, that is, on the interpretation of the
constant and predicate symbols; the second, like

Kiplc} » (Ex)qix)}

will be true or false depending only on how the KB
is, that is, on what is and is not known. | will
call the latter formulas pute. There are also
formulas in KL that are mixtures of the two types
and whose truth value depends both on the world and

the KB. KL also allows for metg=knowledgs in

formulas such as
KI(Ex)Kp(x)]

which talk about the KB's knowledge of its own
knowledge.

242

The semantic Interpretation of a closed formu-
la of KL will depend on both a world description
(or interpretation, in the Tarsklan sense) and a
description of a KB. In general, a KB can be view-
ed as a partial description of s world and can thus
be characterised by a set of world descriptions.
To make all of this more precise, first note that
because of the assumed bljection between constants
snd entitles in the domain, a world description
need only assign a truth value to the atomic sen-
tences. Thus, we csn define the set of world
descriptions as

WD = [ATOMS + (T,F}].
then, Just non-empty sets of

KB descriptions are,
world descriptions:

M0 = {m = WD | & not wmptyl.

The interpretation of any closed formula a is pro-
vided by the function V.

V « [KL x WD x MD ~+ {T,F}] is defined by
Vi{a,w,n) = w{t) when a is atomic,
Viw,v,m) = T 4ff V{a,w,m) = F,
v{avp,w,m) = T 1ff V{a,w,m) = T or V{p,w,m) = T,
V{{Ex)a,w,m) = T iff for some c, V(u<x/c>,w,a)=T,
vika,wv,m) = T 1ff for evary w'em, Vi{o,w',m) = T,

A formula is valid when it is true with respect to
every world and KB description. In the case where
a is pure, | will use V(a,m) to refer to the truth
value of a with respect to the KB described by m.

Turning now to the proof theory for KL, since
the language includes FOL as a subset, we will need
the axioms of FOL and its two inference rules:
modus ponens snd universal generalization. To
account for the K operator, we have to realize
that it behaves like s provability relation in
that something is known when it "follows" from what
is available in the KB. We will, therefore, insist
that the axioms of FOL are known and that the KB
Is able to perform modus ponens and universal

generalization based on what is known. This might
be called the assumption of competence. As for

meta-knowledge, it is convenient to assume that the
KB knows the correct truth value of any pure formu-
la. In other words, there is never any reason to
tell the KB about itself nor is there any reason
to doubt what the KB knows about Itself. No matter
how incomplete or inaccurate a KB can be about the

world, it is assumed to be the final authority on
itself. This might be called the assumption of
closure. Note that this assumption applies only to

pure sentences. Fortunately, these can be given a
syntactic characterization: a formula is pure iff
every occurrence of a predicate symbol appears
within the scope of a K operator. We therefore
have the following axlomatization of the language
KL:

Axiom Schemats

1. The axioms of FOL

2, Ky where a {s an axiom of FOL
3. Ka=p) > (KasKp)

4, (x)Kko > K(x)a

5. a = Ko where o is pure

Rules of Inference

Modus Ponens and Universal Generalization

If we let F denote the provability relation for this
axiomatization, then the key result here is that the
proof theory is both sound and complete with respect
to the semantics given above:

Theorem: | o Lff o ls valid.

One thing to notice is that by the closure property,

we have that for any pure a
b Kasa.

not the case for arbitrary a in
the set

This is, however,
that, for example,

{+p{c), Kple))

is satisflable and, hence, logically consistent.
This is a situation where the KB is behaving proper-
ly but just happens to be mistaken about the world.
So, in some sense, the K operator should be read as
"believe" rather than "know". On the other hand,
the kind of belief Involved here is very special

in that a KB will always think it is dealing with
knowledge since

bk K(Ka=x)

for any formula a. So there is an aspect of commit-
ment to what is believed in that a KB will never
believe it has mistaken beliefs.

5. QUERIES REVISITED

Having examined the semantics and proof theory
of KL, we are still faced with the problem of
specifying what is meant by

KB | o where KB £ FOL and a ¢ KL.
The idea here is that this should mean
"If I know only what is in KB, then I know o."

Semantlcally, this is saying that Ka is true with
respect to the knowledge base that has the least
amount of world knowledge consistent with knowing
everything in KB. Thinking of a knowledge base as
described by a set of world descriptions, we want
the least amount of world knowledge and, thus, the
largest possible set.

Lat M{(XB) = {w | v satisfies the KB}.

Any knowledge base that knows more than what is in
the KB is described by a subset of MJCB) and, so,
has a more refined view of the world. This
suggests how query evaluation can be defined
semantlcally:

Let K8 |F a 1ff V(Ko,M(KB}) « T.

So, the answer to a question is yes exactly when it
is known to be true in M(KB). For example, if

243

KBl = {Teachar(john}}
then

KBl || Teacher(john),

KBl |l -&[Student{bill)],

KBL | (Ex)K[Teachez(x}],

KBL | k- R~K[Studant(bill}],

KBl |} =K](Ex)[Teacher(x) A =KTeacher{x)]],

The last statement above confirms that KB1 knows
that it does not know if it has a complete list of
teachers. Note that 11- is a non-monotonic opera-
tor in that it is not the case that

KBl + Student{(bill) |} -K[Student(bill}].

However, unlike a fully general non-monotonlc logic
as presented in [9] or [10], the [i— operator here
has been given a simple and natural semantic
characterization. Below | will present a proof
theoretic analogue of this operator and claim a
soundness and completeness type result, but before
doing so it is necessary to examine how KL can be
used to specify a KB.

6. THE KNOWMLEDGE BASE DEFINITION LANGUAGE

Since, for incomplete KB's, the ONA is not
used uniformly, It would be extremely convenient to
be able to tell the KB when (if ever) the assump-
tion could be used for special cases. Conversely,
we should also be able to tell the KB when the ONA
cannot be used. If we let

A = (Ex){Teacher(x} A ~KTeacher(x}]

then =A states that if someone is not currently
known to be a teacher then he is not a teacher. So
=A is the OMA relativized to teachers while A
itself is a statement that this assumption cannot
be used (because there are teachers other than the
currently known ones). The question immediately
arises as to whether or not we can add formulas
such as h or =k to a KB, thus generalizing a KB to
be any consistent set of formulas from KL instead
of FOL.

There are a number of problems with this
generalization but | will address only one of these
relating to the formula A« The idea here is that
we would start off with a KB such as KB1 defined
earlier. Since KB1 does not know whether or not
John is the only teacher, it is not the case that
either

KBl [X or KBL [} =A,

Suppose we consider telling it that it does not

have all the teachers and get
KB2 = KBl + A,

If we now want to tell the KB that Jim is a teacher,
we get

KB3 - KB2 + Teacher(Jim).

The problem here is that KB3 still contains & end,
consequently, still thinks it is missing a teacher.
In fact, no matter how many teachers we tell the KB
about, it will still think it is missing at least

one. Moreover, if we try to tell it that it finally
has all of them by adding =k, then we arrive at an
Inconsistent KB since it also contains A.

What should have happened here is somewhat
different. Once we arrived at KB2, the KB should
know that it is missing a teacher and hence believe
A. However, once a new teacher is added to the KB
to produce KB3, the KB has no way of knowing
whether or not this is the last teacher it was
missing and so it should be the case (as with KB1)
that neither

K33 JF A mor KBI |} -,

In other words, after the introduction of Jim, the
KB should no longer know whether or not it has all
the teachers. |In fact, the knowledge it had as KB2
is lost when it becomes KB3.

This is a strange kind of non-monotonicity.
The usual symptom of a non-monotonic logic is that
the addition of a new axiom Invalidates a previous
theorem. In our case, the addition of the new
axiom Invalidated a previous axiom. The curious
puzzle here is that there is no "belief revision"
going on in the sense of a realisation that an axiom
was incorrectly added to the KB. Similarly, there
is no admission of the world having changed in the

sense of someone becoming or ceasing to be a teacher.

In fact, the only change that has taken place is a
change in what is known about the world. But this
is enough since A does make reference to the
current state of the KB. So without admitting that
the world has changed or that some previous state-
ment about the world needs revision, we can still
maintain that the truth value of A can change by
noting that the state of the KB has changed. Thus,
A cannot be part of the KB since the state of
knowledge it refers to disappears as Information is
acquired.

The solution to the problem of the addition of
A to a KB is, therefore, to treat the formula as
ordinary world knowledge where the K operator is
used to refer to the current state of the KB. This
is only natural since a KB la assumed to have com-
plete knowledge of itself. Conaequently, any
mention of what is known in a new piece of informa-
tion must be "referential” and not "attributive".
Thus, the addition to the KB must be understood by
first resolving these references. In other words,
the solution to the problem is not to prohibit
additions like A, but rather to allow A in the KB
definition language but not the KB itself. For
example, KB2 now becomes

KB2 = KBL + A = {Teachatr(john),
(Ex) [Taacher (x) A =(x=john)])}

where we have replaced the open formula
KfTeacher(x)]

by a first order formula that resolves this

244

reference with respect to KB1:
(x-john).

This produces the property that
KB2 | A

and neither KB3 11
as desired.

A nor KB3 | (- -A

The solution | have proposed above presupposes
that there will always be a formula of FOL that can
be used to resolve any reference to what Is known.
It Is worth noting that this cannot be done
Independently of a KB In that there Is no formula
a of FOL such that

} Xi = Ka.

Of course, all we really need Is a formula for each
KB and not a formula that works for every KB.
Fortunately, If we assume the availability of an
equality predicate and restrict ourselves to finite
KB's, this can always be done.

Theotem: Assuse KB is finite and a{xl,...,xk) € KL,
There is a formula /o/ ¢ FOL (with equality)
such that KB || (xI)...{xk){Ka = X/a/].

The formula required here can be defined by:

/=af = «faf,
f(x)al = (x}/a/ and

Ja/ = o vhen a ¢ FOL,
f(xp)/ = {fa/>/p/},
/Ka/ = RESOLVE[/a/].

RESOLVE[a] = If a has no free variables
then if KB | o then (x)(xwx) else =(x)(x=x)
/% Aspume x {s free in o and that
¢l,+u.yck but not c are all the constants
in o or KB */
elsa [(xwcl A RESOLVE[oa<x/cl>]) v.,.v
(x=ck A RESOLVE[a<x/ck>]) ¥
(xdecl A.,.A xdck A RESOLVE[a<x/c>])<c/x>)]

The method of allowing all of KL to specify a KB is
thus to let

KB +a~KBu {fa/] for amy a ¢ KL,

Viewed more semantics Uy In terms of world descrip-
tions, we have that

M(KB) n {w|V{a,w,M(KB))=T} = M(KB u {/a/}).

Note that although the function RESOLVE is not
recursive, It is strictly proof-theoretic. More-
over, it can be shown that

Theorem: For any o ¢ KL, XB || o 1ff KB | /a/.
which defines a syntactic version of query evalua-
tion that is exactly equivalent to the semantic one
defined earlier. Of course, the proof theory is
not axiomatic but this is to be expected given that

{a ekl | [} a}

is not recursively enumerable. So, to summarise,

although the interaction with a first order KB
should allow the language KL to be used, this Inter-
action can be understood in first order terms when
the KB is finite.

7. CONCLUSION

In this paper, | have considered from a formal
standpoint the problem of interacting with an in-
complete KB. The motivation behind the research is
that, to effectively deal with partial knowledge,
a system must first be able to determine the exact
limits to what is known. This, In turn, places
certain requirements on the language used to inter-
act with a KB. In particular, the language has to
be able to refer to the state of the KB as well as
to the state of the application domain.

To this effect, | proposed a language KL for
interacting with a first order KB and presented a
proof theory and semantics which were direct exten-
sions of their FOL counterparts. KL was then
applied to query evaluation and | showed that this
required a non-monotonic operator. Semantic and
syntactic interpretations of this operator were
provided. Finally, KL was applied to KB definition
and | demonstrated why this required reducing KL
into the language of the KB, FOL. In fact, the net
result was that the KB remained first order, but
that interaction with it took place In a more
expressive language.

Apart from the more practical implications of
this work, there remain open questions even within
the formal framework. | have not mentioned, for
example, what impact the presence of an equality
relation or non-constant terms would have on KL.
Also, a method of handling defaults (and exceptions)
is a reasonable goal given that the framework allows
one to determine where their application is needed.
In summary, the framework provides not only a formal
standard against which to measure representation
languages, but also a basis for further exploration.

REFERENCES
[1] Reiter, R., "On Reasoning by Default", Proc.
second TINLAP conference, Urbana, lllinois,
1978.

[2] Collins, A., Warnock, E., Alello, N. and
Miller, M., "Reasoning from Incomplete
Knowledge", Representation and Understanding:
Studies in Cognitive Science, Collins, A. and
Bobrow, D. (eds.), Academic Press, 1975.

[3] Levesque, H., "A Formal Treatment of Incom-
plete Knowledge Bases", Ph.D. thesis, Dept. of
Computer Science, U. of Toronto, 1981.

[4] Hintikka, J., Knowledge and Belief; An Intro-
duction to the Logic of the Two Notions.
Cornell University Press, 1962.

[5] Moore, R., "Reasoning about Knowledge and
Action", Ph.D. thesis, Dept. of E.E. and
Computer Science, MIT, 1980.

[6] McCarthy, J., Sato, M., Hayashi, T. and
Igarashl, S., "On the Model Theory of Know-
ledge", Memo AIM-312, Dept. of Computer
Science, Stanford U., 1978.

[7] Vassiliou, Y., "A Formal Treatment of Im-
perfect Information in Database Management",
Ph.D. thesis, Dept. of Computer Science, U.
of Toronto, 1980.

[8] Lip8kl, V., "On Semantic Issues Connected
with Incomplete Information Data Bases",
Institute of Computer Science PAS Report 325,
Warsaw, Poland, 1978.

[9] McDermott, D. and Doyle, J., "Non-monotonic
Logic", Al memo 486, Al Lab., MIT, 1978.

[10] McDermott, D., "Non-monotonic Logic |Il: Non-
monotonic Modal Theories", Research Rep. No.
174, Dept. of Computer Science, Yale U., 1980.

[11] McCarthy, J., "Circumscription - A Form of
Non-monotonic Reasoning", Artificial Intelli-
gence 13, 1980.

[12] Reiter, R., "A Logic for Default Reasoning",
Artificial Intelligence 13. 1980.

[13] Gallaire, H. and Minker, J. (eds.), Logic
and Data Bases. Plenum Press, New York, 1978.

[14] Reiter, R., "On Closed World Data Bases",

Logkr and Dzith Bases, Gadlldaiee, H. and Minker,
J. (ebs),), RleemmorPress, 1978

ACKNOWLEDGEMENTS

| would like to thank John Mylopoulos and
Alex Borglda for contributing to the development
of this work. | am also grateful to Teresa Miao
for typing this manuscript.

