CONSTRAINED EXAMPLE GENERATION: A TESTBED FOR STUDYING
ISSUES IN LEARNING

Edwina L. Rissland*
Elliot M. Soloway**

University of Massachusetts
Amherst, MA 01003

ABSTRACT

In this paper we explore issues in learning such
as the role of agenda mechanisms, noticers,
history keepers, initial seed sets of knowledge,
and problem sequences in the context of our
Constrained Exampled Generation (CEG) system
working problems in the mini-domain of linear
functions.

1. INTRODUCTION

In past work, we
structure of knowledge
mathematics and computer science [3] CM][71 in
particular the important role played by examples
and the process of generating examples that meet
specified properties or constraints [2][5][6].
We have built a computational model of the
process of constrained example generation which
was motivated in part by our observations of
human subjects.

have investigated the
in complex domains like

The basic Idea behind the CEG system is as
follows: given the goal of producing an entity

with certain properties, instead of generating
the entity from first principles, find an
example in the data base which "most closely”
matches the desired constraints, and then apply

difference*reducing operators in order to modify

that example to fit the given constraints. The
architecture of the CEG system is given in Fig.
1.

*This work supported, in part, by the National
Science Foundation under grant IST-80-173"3.
*+This work was also supported, in part, by the
Army Research Institute for the Behavioral and
Social Sciences, under ARI Grant
No. MDA903-80-C-0508.

Any opinions, findings, conclusions or
recommendations expressed in this report are
those of the authors, and do not necessarily
reflect the views of the U.S. Government.

162

We have explored the robustness of this
model, and its LISP realization, in such domains
as: dgenerating specific atoms and lists in
LISP, generating simple recursive programs in
LISP, generating lines in algebra, generating
scenes in a simple blocks world, and generating
tactics in a game [5][11]. Effectively, the
same system was used in each domain; only the
domain specific knowledge was changed. The core
system operates in a GPS-like fashion, applying
a set of difference-detectors and a set of
difference-reducers in order to modify examples
to meet the desired constraints. Thus, in this
work, the system could wundertake remedial
modifications since it "knew what to do".

Currently, we are

investigating learning.

To learn, a system must acquire experience and
be able to review and summarize it C8 3C9 3. The
design of the CEG system has the necessary
modules to allow it to do so; in particular,
the JUDGE, AGENDAKEEPER, HISTORY-KEEPER, and
NOTICER/GENERALIZER can be wused to allow the
system to monitor its own performance, and

provide feedback, which as noted by Smith et al

[10] is critical to learning.
EXECUTIVE
RETRIEVER HODEFIER
TA BAS
EXNTPLE
ABENDA- KEEPER JUDGE !

' M woricees !
. T SEAERALIZER

HISTORY-KEEPER

Fig. 1

Architecture of the CEG System.
(Dashes indicate that module i3 not yet fully
perationsl.)

The specific task we have set for the
learning-CEG system is to learn under which
circumstances a particular reducer is
appropriate. Neves [1] explored a similar
problem. This task allows us to explore the

space of factors involved in learning:

1. The role of agenda mechanisms

2. The role of history-taking and -summarization
3. The role of initial "seed" sets of examples
i*. The role of posed problems, their content and
order.

The CEG system provides a vehicle in which to
empirically explore the tradeoffs and

interactions of these factors. The contribution
of each of these components is a "parameter" to
the current system. We are in the process of
systematically testing various settings of these
parameters.

For example, the

learning appropriateness

of an action implies learning something about
the order in which to apply it. This is
particularly important in the case of

interacting constraints where remediation of one
constraint deficiency might destroy satisfaction
of another constraint.

The agenda mechanism also affects the
exploration of sequences of actions and modified
examples. For instance, if a particular

modification routine has just made the candidate

example "better", e.g., closer to meeting a
constraint, should it be tried again, and if so,
for how many times? On the other hand, should

other routines be given an
demonstrate their effects?
would lead to discovering
mixed sequence of actions,
technique would lead to
composed of multiple copies

opportunity to
The latter technique
routines which are a
whereas the former
discovering routines
of the same actions.

2. AN EXAMPLE FROM THE LINES DOMAIN

The domain chosen for our investigations is
that of linear functions on the real numbers,
i.e., lines like y = 2x «m 1. A typical CEG
problem might be to generate a line such that:

1. it is steeper than a given line, and

2. it has a negative slope.

For a general line, ay = bx + c, steepness s
the absolute value of the slope, i.e., Ib/ai.
The sign of the slope is the sign of (b/a).

The CEG system has an initial data base of
example, i.e., an "Examples Space." An example
is a specific line, ay = bx + ¢, represented as
a frame, whose value slot contains the
three-tuple (a b c¢). Other slots include
"derived-from" pointers indicating from which
other example the example is constructed, and
scaring and history Information gathered during
attempted modifications.

163

The "goodness" of a modification is
measured by the JUDGE module and expressed in
terms of two scores: (1) the "global esc"
(constraint satisfaction count) which measures
the example's satisfaction of all posed
constraints; (2) the "local csc" which measures
its satisfaction of the constraint currently
being worked on. The scores are expressed
discretely as "success", "better", "no-change",
or "worse".

The system possesses five "primitive"
routines that modify the x-coeffielent:

1. make-steeperl
x-eoefficient;

(ms1) which adds 1 to the

2. make-steeper2 (ms2) which doubles the
x-coefficient;
3. make-steeper3 (ms3) which squares the

x-coefficient.

4. make-steeper® (ms4) which subtracts 1

from the x-coefficient;

5. make-negative (mn) which changes the
sign of the x-coefficient.

Thus, there are four routines that modify the
steepness and one that modifies the sign of the
slope. The system starts out "knowing" that
msl, ms2, ms3 and msl| affect the steepness and
thus, implicitly that steepness has something to
do with the x-coeffiecient of a line. It does
not know of the role of the y-coefficient.

Some specific "facts" we wish to have the
system acquire are:
1. ms2 (doubling) always works;
2. ms1 (add!) works for slopes > 0;
3. ms3 (squaring) works where islope! > 1.
4. ms3 is "faster" than ms2 which is "faster"

than ms1.
5. it is better to fix the steepness before the
sign.
3. EXPERIMENTS AND RESULTS

Thus far, our experiments have involved
variation of the following:

1. The agenda mechanism, in particular,

the search of sequences of

modifications;

2. the scoring of problems, in particular,

whleh sequences count as "successes",
"better", etc;
3. The initial seed set of examples

possessed by the system;

4. The order of posed to the

system,;

problems

5. The "remembering" and "forgetting" of
examples created by the system, e.g.,
the addition of successful solution
examples to the system's
"Examples-space".

A sample of the observations made on our

experiments are:

operators: Random
(which allows the system to
try the powerful ms3 routine more
often) does in fact perform better than
the regime that does not vary from the
initial choice of operator. However,
the sequences of operators obtained
under random selection are effectively
"impossible" to analyze, even by
humans. Thus the style of the
AGENDAKEEPER influences the credit
assignment task of the
NOTICER/GENERALIZER.

1. Selection of

selection

Initial Knowledge Base.
seed set of examples should
variety of examples, for
some likely-to-cause-trouble

2. Influence of
The initial
include a
instance,

examples like y=2, some nicely-behaved
examples like y=2X. The variety
affects what is accessible to
discovery; for instance, without lines
with !slope! < 1, the system would
never learn ms3's weakness, and without
lines with negative slopes, ms4's
strengths. There is a trade-off
between the variety of the knowledge

base and the complexity of the agenda
mechanism: the system didn't need a
highly tuned AGENDAKEEPER if the KB
contained variety. This is related to
mesa and false peak problems in
hill-climbing.

3. Tuning the data-base. The "goodness"
of certain examples (leading to
successes), like y=2X, and the
"troublesome-ness" of others (leading
to worse-es), like ys2, became readily
apparent.

4. Remembering/forgetting. To force
exercise and learning of abilities,
don't save answers.

5. Persistence. Don't give up evaluating
even if the situation looks locally
worse. For Instance, one agenda
mechanism stops the modification

attempts at the first encountered "local

worse*; it never led to evaluations
that might have showed that msll and ms4
tried in sequence lead to "global
no-change" which could lead to
discovery of their relation as
inverses.

164

4. CONCLUSIONS

In summary, we are using CEG to systematically
explore alternative work-loads, influences, and
contributions of modules in a learning system.

that an empirical testbed is
necessary for the understanding of Al systems
which evolve in complex ways. There is a
difference between making a system perform
better and learning how it can learn to perform
better. While expert system research often
emphasizes the former, we feel it can benefit
from study of the latter, which is our focus.

We feel strongly

REFERENCES
D. procedure that
by examining
problems in a
Conference of
Studies of

[1] Neves, M., "A computer
learns algebraic procedures
examples and by working test
texbook". In Proc. Second
Canadaln _Society for Computational
Intelligence. Toronto, May 1978.

Rissland, E. L., "Example
Proc. Third National Conference of the
Canadian Society for Computational Studies of
Intelligence. Victoria, B.C., May 1980.

Generation". In

(2]

of
Proc.
Learning
in press.

[3] "The Structure
Complex Domains". In
Conference on Thinking and
Pittsburgh, November 1980,

Knowledge in
NIE-LRDC
Skills.

Understanding
Vol. 2,

"Understanding
Cognitive Science,

)
Mathematics".
No. 4, 1978.

Soloway,
Data and
Workshop
France,

[563 E.L., and E. M.
"Generating Examples in LISP:
Programs". In Proc. International
on Program _Construction. Bonas,

September 1980.

Rissland,

"Overview of an Example Generation
In Proc. First National Conference
Intelligence. Stanford, August

6.______
System".
on Artificial
1980.

[7] "The Representation and Organization
of a Knowledge Base About LISP Programming
for an ICAl System". COINS Technical Report
80-08, Univ. of Mass, in preparation.

Selfridge. O.G., "Learning to Count: How A
Computer Might Do It". Bolt Beranek and
Newman, Inc, 1979.

(8]

(93 "Learning r Interpretation +
A Case Study in
Learning". COINS

78-13, University of

Soloway, E. M.,
Generalization:

Knowledge-Directed
Technical Report
Massachussetts, 1978.

T. M. Mitchell, R. A.
Buchanan, "A Model for

G.
In Proc IJCAI-77.

[103 Smith, R.G.,
Chestek and B.
Learning Systems".

Racketball by
In Proc.

[113 Wesley,
Constrained
IJCAI-81.

L.,
Example

"Learning
Generation".

