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Abstract

The data structure that drives the General
Problem Solver is the Connection Table. This pa-
per describes the theoretical basis for the auto-
matic construction of this table by computer pro-
grams. The programs for this purpose have been
developed at the Case Western Reserve University.
They basically isolate certain attributes of the
problem states which are invariant under certain
moves and then put those attributes together to
"triangularize" the Connection Table.
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1. Introduction

According to our view of mechanical problem
solving, there are a number of different problem
solving methods each of which has problem depen-
dent parameters. For each method there is a con-
dition which specifies the properties the parame-
ters should have in order for the method to
"work". Hence, we view problem solving as the
two phase process shown in Figure 1. In the first
phase, the method's condition is used to generate
"good" parameters for the method. The input to
this phase is the problem specification, since the
parameters are usually problem dependent. The
output is either good parameters or an indication
that this method should not be used on the given
problem. The second phase attempts to solve the
problem (as specified at the input to the first
phase) using the method with the parameters gener-
ated in the first phase. Of course, there is a
Dicture like Figure 1 for each method, and if the

first method is not applicable, we merely move on
to the next method and attempt to use it.

So far, all the methods studied this way [Co-
ray (1970), Ernst(1969), Banerj1(1971)] seem to
depend on the recognition of certain attributes of
the problem states which remain invariant under
some of the moves. We have previously published
two reports on the design and implementation of a
program which would isolate some of these attri-
butes on the basis of the problem description
[Ernst efa_I1(1974), >Oyen(1975)].

Our present effort deals with the combination
of the invariant properties to yield the Connec-
tion Table of GPS [Newell & Simon(1963), Ernst &
Newell(1969)]. Our efforts in using our previous
theory [Ernst(1969)] for the purpose of mechaniz-
ing the heuristic were not successful, because a
difference (good or bad) was a binary relation
between states and sets of states, i.e., a subset
of S x 2s where S is the set of problem states,
which is a complicated concept.

In an attempt to simplify matters we said,
"What if a difference were just a set of states?"
In this case, a state s possesses difference D, if
s i D. With this simple view we can visualize
GPS's strategy as follows (Figure 2).

S is the set of all states. W is the set of
goal states: W e D' <D < 38, and g 18 the initial

state. GPS would artempt to solve the problem as
follows:
1. Find a path from SO to some state s D.

2. Find a path from s to some state s, °© D’
but the path must be entirely inside D.

3. Find a path from s, ' °°™° state s e W
but the path must be entirely inside D'.

In step 1 GPS is removing the most difficult dif-
ference D. In step 2 the second most difficult
difference is being removed without reintroducing
D. The easiest difference W is being removed in
step 3 without reintroducing either D or D'.

A point ought to be made here about the orig-
inal GPS which was a somewhat more general device
than the one we are describing here in that,
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while removing an easier difference, a more dif-
ficult difference could get reintroduced. The
only search pruning involved in this general case
was that involved in the relevance of moves to
differences (vide ultra). The extra constraint
we have introduced here (and one which also char-
acterizes our previous work [Ernst(1969)]) con-
strains the search for greater efficiency, while
at the same time it neglects a certain class of
solutions. Our present analysis follows the same
line.

It is probably somewhat counterintuitive that
the most difficult difference contains all of the
other differences as subsets. One would normally
think that the larger the set of states, the eas-
ier it would be to "get" inside of it. Also, one
does not normally think of W as a difference.

But this somewhat unintuitive picture works quite
well.

Consider, for example the Fool's Disk problem.
Figure 3 gives the initial state of the Fool's
Disk problem, in which there are 4 concentric
disks each containing 8 numbers. These numbers
line up so as to form 8 columns radiating from
the center of the disks. A move consists of ro-
tating one of the disks independently of the oth-
ers. The desired state is one in which each of
the 8 radial columns sums to 12.

Figure 3
in the Fool's Disk problem

The initial state

*

This problem fits the above picture exactly.
is the set of states in which each diameter
sums to 24, while D is the set of states in which
the sum of the N, E, S, and W radii is 48. To
keep the path from s\ to s, in D, GPS only consid-
ers moves which rotate disks 90°. To get from s
to s;, GPS rotates disks by 180° only.

D'

One might be disturbed that each difference
contains all of the easier differences. This is
not a difficulty, because any set of differences
not possessing this property can be converted to
differences which have this property. (In fact,
our theory [Banerji &. Ernst(1977)] does not re-
quire this "nesting" of differences.) Consider,
for example, the 3 disk Tower of Hanoi in which we
are trying to move all disks to peg P3;. Let D. be
the set of states in which disk i is on P3 where
disk 3 is the largest disk. Then, one might think
of using D,, D,, and D; as differences for this
problem. These are essentially the differences
that were given to GPS for this problem. Certain-
ly these sets are not perfectly nested. However,
this set of differences can be converted to the
above picture by intersecting them together, i.

D»D,, D' =03, mDp,,and W p, n D, n D,.

e.,

A more disturbing feature of this set of dif-
ferences is that they are only useful when the set
of desired states is W. In the original GPS (as
well as In our previous work) the same set of dif-
ferences served to characterize all subgoals -
including "make such and such a move applicable."
This is not the case anymore. If, for example,
the set of desired states is the domain of the
operator which moves disk 3 from P, to Pj;, the D,
seems to be a useless set of differences. The
difficulty is that we have "built" W into the dif-
ferences. We did this on purpose to simplify the
differences to allow mechanization. Our original
theory had differences as binary relations bet-
ween states and sets of states. If we specify
the latter to be W, then we are left with a mo-
nadic relation on states which is just a set of
states. But how are we going to accommodate goals
other than W?

The key to answering this question is that not
only W but also the domains of operators can be
the goals of subproblems. Since the number of op-
erators is usually quite small, we will use a dif-
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ferent set of differences for the domain of each
operator being the goal of a subproblem.

These modifications were introduced in our
theory of GPS to make it easier for person or
machine to discover "good" differences. An added
advantage of the modified GPS is that it can eas-
ily handle problems in which the sets of differ-
ences for subproblems with different desired
states are truly different.

The above discussions will, we hope, serve as
a motivation for the changes we have introduced
in the theory. We do not plan to give a formal
counterpart to these motivations or exhibit a for-
mal connection between the old and the new
theories. Instead, we shall exhibit and motivate
the new theory ab initio so that readers unac-
quainted with our previous work will find the
discussion self-contained. We shall, of course,
assume that the reader has had former acquain-
tance with GPS [Ernst & Newell(1969)1.

In the next section we give a formal defini-
tion of good differences. This is followed by an
example of good differences and how they are used
by GPS. Section 4 characterizes the class of so-
lutions that GPS can find given the kind of dif-
ferences described in Section 2.

2+« Definition of Good Differences

Since GPS builds its solution to a problem by
setting up subproblems, we cannot build this theo-
ry by defining what a problem is but rather by de-
fining a larger structure in which a class of sub-
problems can be embedded. Also, this structure
should contain the concepts which reflect the idea
of differences and the connection table. We shall
call this structure the problem domain, "domain"
for short. As in the previous models, we start
with a set S of states and a subset W of S, con-
sisting of winning states. We also have a set C
of partial functions (mapping subsets of S into S)
which we shall call moves or operators. If f e G
is a move, we shall denote by Sf its domain of de-
finition, i.e., states where f is an applicable
move. Since subgoals in GPS have the form "make
move f applicable," these Sf, for various members
f of G, serve as winning sets for subproblems just
as W serves for a problem. The class of all these
sets (W and Sf for various f) we shall call X.

For each set in this class we also define the dif-
ferences which allow GPS to work on them. That
is, for each T e X (T being either W or S; for
some f e G) we define a class of sets Tj, T,, T3
.., Tn with the property that Tj n T n...T,"= T.
The actual number n of specified differences of
course depends on the set T chosen. So, instead
of writing n we shall write n(T) when there is
any doubt as to which subproblem we are talking
about. Also, for reasons of convenience of dis-
cussion we shall often give the name TQ to T and
call S itself, Tp(7)+1-

It may be appropriate at this point to point
out that the TA catches the idea of difference in
that when a state s i T;s a difference exists bet-
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ween s and T.
difference is.

The higher i is, the larger the

The next important concept in GPS, of course,
is that of relevance of a move to a difference.
The major assumption on which GPS theory is based
is that a solution can be obtained by removing
the higher ("more difficult") differences before
the lower differences and never reintroducing

higher differences once they are removed. A dif-
ference Is considered higher than others, if few-
er moves are available to remove it. Of course,

S or T,('T)+i%® the most difficult differences to
remove, since no move changes a state to a non-
state. Let H1 ¢ G be the set of moves which,
when applicable, affects the position of the
state with respect to T1. Instead of making the
very strong assumption that moves in H1 bring all
states outside T1 into T,, we shall make the more
realistic assumption that these moves remove the
states from Ti when applied. This assumption
seems "backward" to many, in spite of the fact
that in most real problems, relevance of moves
does appear that way and was used that way even
in the original GPS. In our difference-finding
program, a state is characterized by giving the
values of certain attributes for the state. A
winning state is characterized by specifying
that some of the attributes should have specific
unique values. To find mechanically that a cer-
tain move is relevant to a certain difference T.,
we test whether the move changes the values of
those attributes which characterize T..

It is this "property-changing" characteriza-
tion for moves which gives relevance the backward
appearance. Of the various values to which the
attribute can change, only one characterizes the
win states. Hence, it is not to be expected that
merely changing the value of a property yields a
win value. On the other hand, if it already has
a win value, changing it certainly changes it to
a non-win value.

Another important characteristic we demand of
the moves in W, (called triangularity of the dif-
ference table in the previous theory) is that Hi
does not affect the differences higher than Ti,
i.e., is irrelevant to Tj for j > |I. Thus, once
a state is in T;, as long as we use moves in Hj
with j < i, T. will not be reintroduced.

This effort shows up nicely in the difference
transformation tables of GPS. If we arrange the
Ti's from top to bottom in decreasing order of i
and the H. from left to right in decreasing order,
and mark the (i,j) cell with a 1 if moves in Hj
are relevant to Ty then the upper right half of
the table will be blank. Tables of this nature
we Call triangular tables, and differences which
give rise to triangular tables we call good dif-
ferences .

We define the maximum difference between T

and s, M(s, T), to be i if s 4 T, and s t Tj for
all j greater than i.
Banerjl
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Implicit in the above definitions is an or-
dering of the T. (and the Hi) which corresponds
to the difference ordering of GPS. The most dif-
ficult difference is T,, while the easiest dif-
ference is T+ GPS's basic problem solving
strategy is to work on hard differences first
and easy differences last. GPS accomplishes
this (as discussed in Section 4) by using the
following to guide its search:

51 To reduce the maximum difference T-j,
use only operators in HA.

52 Suppose a subproblem were generated to
reduce difference Ti; Then do not use
the operators in Hj, i <j < n to
solve the subproblem.

Rule S| was in our previous theory. Note that
there may be many other operators besides H. which
are relevant to T* because we have placed no con-
ditions on Hj for j > i. Sl causes GPS to ignore
such Hj even though some of its operators may be
relevant to Tj_.

The purpose of S2 is to require subproblems

to be easier than the problem for which they are
created. In our previous theory this was accom-
plished by requiring the differences of a problem
to be harder than the differences of its subprob-
lems. This is no longer possible, because we can-
not compare subproblem differences to problem dif-
ferences because they will have different goals
and hence different differences. However, S2 can
be used, because all differences are reduced by
the same operators. Note that S2 is applied re-
cursively. That is, suppose FlI and F2 are the
sets of operators according to S2 that cannot be
used on subproblems SP1 and SP2, respectively.
If SP2 is a subproblem of SP1, then GPS will not
use any operator in FI u F2 to solve SP2, because,
the restrictions on SPl are passed down to all of
its subproblems.

3. An Example of Good Differences

The definitions above appear quite formidable
and somewhat unlike GPS. A simple example will
clarify things. For our example we have chosen
that old chestnut about the monkey and the ba-
nanas, a formulation of which is given in Figure
4. We have chosen this example because it has
(non-trivial) good differences, subproblems are
created in solving it, and it is simple.

One way to formalize the differences above is
by positing that there is a separate table of
connections for each goal which is either W or the
domain of an operator. Figure 5 illustrates Mon-
key and Bananas this way. The I's indicate which
operators are relevant to which differences. The
O's indicate irrelevance. A move is neither rel-
evant nor irrelevant - we use a question mark.
Note that the bottom row heading of each table is
just the goal and that each row is a subset of
the row above it. Although our theory does not
require these properties, they make things easier
to visualize as discussed at the beginning of
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A state is a 3 place vector whose com-
ponents are the monkey's position, the
box's position, and the contents of the
monkey's hand.

A win is a state in which the bananas
are in the monkey's hand.
(Walk, Climb, Push, Grab)
Walk The monkey walks to someplace in the
room.
Climb The monkey climbs onto the box, i.e.,
the monkey's position becomes ONBOX.
Climb is applicable only when the mon-
key's position equals the box's position.

Push The monkey pushes the box to some

in the room. Push is applicable only
when the monkey's position equals the
box's position.

Grab The monkey grabs the bananas. Grab is
applicable only when the monkey is on
the box, and the box is under the ba-

nanas.

Figure 4

A Formulation of the Monkey and Bananas Problem

Section 2.

The row headings are the T in the defini-
tions of Section 2, and the column headings are
the Hi. The definitions of the Tn and the Hi re-
quire that the tables of connection are triangular
in the sense that the main diagonal and all en-
tires above it are 0. In addition, the subdiagon-
al (the diagonal immediately below the main diag-
onal) contains all I's.

Walk is a total function on S, hence its do-
main is S. We do not need a table of connections
for such an operator, because a subproblem of get-
ting into its domain will never be created. We
included the table of connection for Walk in Fig-
ure 4, because the degenerate case of a defini-
tion often helps one understand the definition.

If a column of an operator is all 0's, then
that operator will never remove a state from the
goal set and will never transform a state outside
the goal set into the goal set. An all 0 row in-
dicates that no operator will add or remove a
state to the T” which labels the row.

The above is an example of "difference in-
formation" which satisfies our definition of good
in Section 2. The most important feature of the
tables in Figure 5 is that the triangularity con-
straint orders the rows (and the columns). This
row ordering is the difference ordering - diffi-
cult differences are at the top of a table, and
easy differences are at the bottom. Of course,
there may be several different row orderings

Banerj?



(a) Table for the goal "“WIR"
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[ - 0
' 5 g 2 3 s 0 0 0
5 D 0
Box 1s under 1 0 0
] bananas
Monkey's hand 1 0 -
has bananas Box is under bananas 1 1 0
and monkey is on box

(h) Table for the dumain of Grab

t
| () Table for the domain of Push & Climb
: a {d) Table for the domain of Walk
xE L.o
N — nom
5 20 &8 ¢
: 5 0 0
fr s | o
Box's position
equals 1 0
‘monkey's position |
Figure 5
The Table of Connections for
each goal in Monkey and Bananas

which gives rise to a triangular table, in which
case any one of them will satisfy our formal de-
finition of good.

Now we can describe how GPS solves Monkey and
Bananas using the difference information in Fig-
ure 5. Suppose that in the initial state SO the
monkey's hand is empty and the box is not under
the bananas. Then the largest difference, M(SO0,W),
is that the monkey's hand is empty, hence GPS
attempts to apply Grab. But so /i Sgrab, hence GPS
sets up the subprobiem of transforming SO into
Sgrab, b“' Grab cannot be used in solving the sub-
problem because of rule S2.

To solve the subprobiem, GPS attempts to re-
duce the difference that the box is not under the
bananas since this is M(so, SG,t>)+ Hence, GPS
attempts to apply Push which is not applicable,
and the subprobiem of transforming SQ into Spysh
is generated, but S2 restricts the solution of
this subprobiem to the operators Walk & Climb.
The remaining part of solving this problem is
quite straightforward and similar to the way the
usual GPS works.

4. Totally-Ordered Solutions

The above discussion raises the question,
"Can GPS solve all problems which have a solu-
tion?" The answer is no (which can be shown
quite easily), because'the differences, together
with rules Sl and S2, prevent GPS from looking at
sequences of operators that may be necessary to
find a solution. Hence, the question becomes,
"Can we somehow characterize the class of problems

which GPS can solve?" The purpose of this section
is to show that GPS can golve any problem that has
a totally=-ordered solution which Is our character-
Ization of the class of prohlems that GPS can
solve. Intuitively a totally-ordered solution is
one in which one never introduces a difference
more difficuelt than the current differences at any
peint in solving the problem. This applies te all
subproblems at all levels, We will indicate in
Theorem 1 that using rules S1 and 52 with good
differences produces the class of totally-ordered
solutions.

Te exhibit this result we have to give de-
finitions of what a problem is and what a solution
is. Given a domain as defined im Sectiom 2, a
problem is defined by 2 state & « 5, a subget F of
G {the et of moves), and a goal T » X. A solu-
tion of a problem defined by the triple <s, F, T>
1s a sequence of moves (f1,...,fy), each f;

(1 =15 k) being an element of ¥, and such that
sf,...fy is defined for all 1 (1 £ 1 < k) and
sfy...fy ¢ T.

At this point we fnvoke the partition Hg(T),
Hy(T), ..., Hpery(T) and recall that each fi in the
above solution ig an element of some H,(T}. This
ylelds a sequence jp, 17,....Jy of intiigers such
that for each i, fy - Hji('r). Among them will now
occur an integer which is greater than all the in-
tegers before it and nc less than any element af-
ter it, i.,e., the “leftmost peak" below, where we
have plotted j; against 1.
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Figure 6

We will initfally show that the solution can
be interpreted to mean that, at this point, the
first effort was made to remove the highest dif-
ference buetween the goal and the initial state =,
The moves before this peak are attempts to make
it possible to apply the move used at the peak.
This seguence (from the start to the peak 1.) will
be called the solutfon to the subproblem, and the
sequence between it and the end will be called
the solution to the pseudoproblem. The rest af
the definitions follow from these considerations.

The triple “ff],...fii_l}, fil' (fii+],_,_
fk)> is called the parae of the soluticn fl,...fk.

1t is obvious that given a domain and a selution
of any problem <s, F, T», the parse cxists and 1s
unlque.

Given the parse as above, we define two problems.
The first, which is defined only in the case that
L= 1, is
1
n(T}
“om, FeUBpY, LR

peJ, w

and will be called the subproblem of <s, ¥, T>
corresponding to the solution (f1""fk)' The
second, which is defined only when 1] < k, is

esf,...fy , F, T>
1
and will be called the pscudo-problem of «s, F, T»

corresponding to the solution.

Once again, it Is obvious that f1""fi 1
ig a solution of the subproblem correspondin% to
the original sclutien.

Thus, one can say that any solution can be
interpreted, 1.c., parsed, to be one in which one
seeks to apply moves in B, (T) with "the highest
m," making such a move applicable by using moves
ocnly in H (T} with p < m. However, such an inter-
pretation’could be given with any crdered parti-
tion, having nothing to do with a difference or-
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dering, The reader will recall that in our orig-
inal definition of a domain the partitionm on F
was so done as to be in keeping with the differ-
ences.,

To bring our discuseicon back to the differ-
ence orderings rather than with the partitions on
the moves, we ilutreduce another definition. Given
a problem <s, F, T> and a solution (fy,...,f,) and
a parse, the solution fs called totally ordered,
if

ti) M(sfy...fq, T) 2 M(sfy... £, TO
for all i (1l =1 < k), and

tii) each subproblem and pseudoproblem has its
corresponding solution totally ordered.

Totally ordered solutions are of importance
In that they characterize the kind of solution
that can be found by the technigue used by GPS. So
far we have not formally defined this technique.
The statement of the following theorem formalizes
the techrnique as well as characterizes solutions
that can be found by it. However, the statement
of the theorem needs the following definition,

Given a problem <s, F, T» in a domain and a
solution £.,...,f for it, the problem—set for
this salution consists of the problem and the mem-
bers of the problem set for the sclutioms to the
sub- and pseudo-problem of the original problem,
if they exist.

We are now ready to state the major theorem
of this paper.

Theorem 1: Givenr a solutlon (fl, f ""fk) of
a problem <85, F, T> In a domain, the solution is
totally ordered, if and only if for each %
(1 <4 <k}, f; 1s the second element of the par-
se of the solution of some problem <s', F', T'> in
the problem set, and fi ¢ Hy(T'} implies
M(s', T') = m.

Intuitively, this theorem says that, if the
seluticn (fl""fk) were found by a search process
guided by rules 51 and $2, then it is totally or-
dered. Ip addition, such a search process is ca-
pable of finding any totally ordered solution.

We shall not include the proof, because it is
a long "walk alang the definitions" given above
and needs some more inessential pedentry like
transfinite induction (on a finite space at that!).

]
5. Conelusion

We now have a working pregram [Goldatein
(1977) ] which, using Invariant attributees of the
problem [Oyen(1975)], would construct a set of
properties T; and partitions H; as given in Sec-
tion 2. These would yileld what we have previously
¢called triangular connection tables.

It wiil be notilced thdt, as previously warn-
ed, Theorem 1 of Section 4 does not aesure us of

Ranerji



a solution whenever a triangular difference table
exists; one has to be blessed with a totally or-
dered solution - totally ordered by the ordering
mechanically or otherwise chosen in the connection
table. We have had various problems in which more
than one triangular connection table exist, and
yet one can prove that some of the connection ta-
bles would not yield a solution. This problem has
appeared in other, seemingly closely related,
garbs in planning programs for Robots, leading to
the work on Non Linear Plans [Sacerdoti(1975)]. The
analogous problem in our formalization would be
the detection of the nonexistence of totally or-
dered solutions. One approach, that of the detec-
tion of "factorable subproblems" [Goldstein 1977)]
will be reported on at a future date.
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