
META-EVALUATION AS A TOOL FOR
PROGRAM UNDERSTANDING

Robert Balzer, Neil Goldman and David Wile
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina Del Rey, California 90291

ABSTRACT

Formal program specifications are difficult to write.
They are always constructed from an informal precursor. We
are explor ing the technology required to aid in the
construct ion of the formal specification from the informal
version.

An informal specification differs from a formal one in
that much information which the writer believes the reader can
infer f rom the context has been supressed from the
specif ication. Resolution of the supressed information
depends upon information contained in other parts of the
specif icat ion and upon Knowledge of what makes a
specif icat ion wel l - formed and the ability to model the parts of
the specif ication interacting with one another.

This paper describes the technology used in a running
system which embodies theories of program well-formedness
and informali ty resolution within the context established by
symbolically executing the program to systematically discover
the intended meaning of each informal construct within an
informal specification.

KEYWORDS: Meta-Evaluation, Symbolic Execution, Informal
Specif ication, Program Specification, Understanding Systems,
Informality Resolution, Program Well-Formedness

INTRODUCTION

Producing a good specification has been recognized as a
cri t ical precursor to producing an acceptable software
implementation. Considerable effort has been expended to
produce better formalisms for software specification. We
bel ieve, however, that the difficulty lies in the formalisms
themselves and that an aid in creating such formalisms, rather
than a bet ter formalism, is required.

Since software specifications are always first created in
an informal language and then converted, external to any
computer system, to some formalism, a system which aided this
conversion process, from informal to formal, would significantly
aid the specifier.

NOTE: This research was supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract
No. DAHC15 72 C 0308, ARPA Order No. 2223, Program
Codes 3D30 and 3P10.

ACKNOWLEDGEMENT: We are deeDly indebted to Professor
Herbert Simon for his comments on this work which have
deepened our understanding and sharpened our perception
of its relation to his pioneering work with Professor Newell
in understanding i l l-formed problems.

We are constructing such a system, called SAFE [1] ,
which accepts an informal software specification as input and
produces a formal operational equivalent (see [1] for example).
Most of the transformation is accomplished automatically via
the techniques described in this paper, but some interaction
w i th the specifier is also required to resolve particular
informal constructs for which insufficient context exists.

This system consists of three phases: (D a Linguistic
Phase which acquires a model of the domain [2] and identifies
the individual actions to be performed, (2) the Planning Phase
which creates a control structure for these actions, and (3) the
Meta-Evaluation Phase which is the focus of this paper.

The purpose of the Meta-Evaluation process is to
simulate the run-t ime environment of a program to provide the
context for disambiguating informal constructs contained in the
program description. It thus must provide three separate
capabil i t ies: (1) the ability to simulate the state of a program
as it is being executed, (2) the ability to form an ordered set
of hypotheses for the intended meaning of an informal
construct, and (3) the ability to test these hypotheses against
some cr i ter ia. The second of these capabilities represents a
theory of informality resolution for program specification; the
th i rd , provides an operational theory of well-formed programs
which eliminates hypothesis which do not satisfy the rules of
this theory; while the first provides the data for testing these
wel l- formedness rules.

The combination of these three capabilities provides a
mechanism for effectively applying our theories of informality
resolut ion of program specifications and of program
wel l- formedness to the task of understanding informal program
specif ications. The following sections describe the major
features of each of these capabilities and is followed by an
example i l lustrating the interaction between them as an
informal program specification is Meta-Evaluated.

However, before describing the capabilities, we must
f i rs t consider the language in which the program to be
disambiguated is expressed and the types of informality which
are allowed.

THE PROGRAM MODEL

As we mentioned, the Meta-Evaluation process is the
th i rd and final phase of a larger system [1] which deals with a
wide range of informal constructs in program specifications
and starts from a parsed version of a natural language
program specification. This system acquires (or augments) a
descr ipt ion of the relevant domain in which the specified
program wil l operate. In this regard, it is very similar to
Simon's UNDERSTAND [3] system as it determines what objects
exist in the domain, how they relate to other objects, what
constraints they must satisfy, and how they are to be
manipulated by the program being specified.

This work has been described elsewhere [4 } Here we
are concerned wi th how the acquired domain is represented,
how the specif ied program is expressed, and what informal
constructs remain unresolved.

We begin wi th our model of what a program should be,
which we feel is central to the success of our system. This
model is derived from the desire to minimize the translation
f rom the informal natural language specification, to avoid
issues of representation and optimization (which have colored

A u t o . P r o * . - 2 :
3 9 8

Bal 7(*r

many other program models), and to keep the semantics of the
programs as simple as possible so that programs could be
understood and composed by our system.

Although our program model was largely derived from
concerns of simplifying our system's task of resolving informal
program specifications, we strongly believe that this program
model (wi th suitable syntactic sugar) is also appropriate for
people to express formal unambiguous operational program
specif ications.

To avoid issues of data representation, the most uniform
representat ion known, and one which closely mirrors the
original parsed natural language specification, was selected.
This representat ion is a fully associative relational data base
and is used to hold all data manipulated by the program. An
object in this data base can be thought of as a named point in
space whose meaning is defined totally by the other objects
(points) and it is connected to by relations (lines).

The only actions (changes) allowed in this data base are
the creat ion and destruction of named objects and the making
and breaking of relations between them. In addition,
information can be extracted from the data base in a
s ide-ef fect free manner (i.e., the extraction mechanism does
not change the data base) via a pattern-match language. This
language enables the full associativity of the data base to be
used to access any object connected to a named object via the
appropr iate relation. Any object so accessed may be bound
to a placemarker which may then be used to access further
objects, and so on. Placemarkers once bound by a
pat tern-match are never rebound. They are merely an
indirect reference to the named object to which they are
bound.

Placemarkers have completely replaced variables in our
programming model (which contains neither variables nor
assignment statements) and their semantics are particularly
simple. They are bound only via a pattern-match to a named
object in the data base, and once bound, they are not rebound.
Thus, they provide the means for focusing attention on some
por t ion of the data base and of accessing further information
associated wi th the referenced named object.

There is one exception to the rebinding rule. Inside of
a loop (which takes the form of TOR ALL <pattern> DO
<statement>) all placemarkers bound in the iteration pattern
are rebound on each successive iteration so that a different
named object (or named objects if more than one unbound
placemarker appears in the iteration pattern) can be accessed
and manipulated by the loop body.

The only data manipulated by the programming model
are patterns composed of relations and the operations AND,
OR, and NOT. Each relation has arguments which must be a
named object, a function which evaluates to a named object, or
a placemarker. The placemarker must either be bound to a
named object or be unbound. If an unbound placemarker
occurs in a pattern being retrieved from the data base, then if
the pat tern is successfully matched with some portion of the
data base, the placemarker is bound to the corresponding
named object. If the match is unsuccessful, then the
placemarker remains unbound.

The control statements available are a subroutine call, a
sequence of statements, a conditional statement, an iterative
statement, and a demonic statement. The conditional

statement OF <pattern> THEN statement-1 ELSE statement-2")
causes statement-1 to be executed if the pattern is matched
and statement-2 to be executed otherwise. The iterative
statement (TOR ALL <pattern> DO statement-1") causes
statement-1 to be repeatedly executed for each portion of the
data base which matches the pattern with the placemarkers in
the pattern bound to the named objects in the matched portion
of the data base. The demonic statement ("WHENEVER
<PATTERN> DO s ta temen t -D causes statement-1 to be
executed whenever a relation is added to the data base which
enables the patten to be matched.

Finally, to prevent the intrusion of representation
considerations, the associative relational data base supports
inference so that the distinction between explicit and implicit
(computed) data can be ignored.

Thus, to first order our programming model represents
the integration of the data handling of a fully associative
relational data base and the control aspects of a conventional
programming language. We believe that this combination
provides a particularly simple basis for stating and analyzing
unoptimized operational program specifications, and hence,
provides a solid foundation for our work on informality
resolution.

PROGRAM SIMULATOR

The purpose of the program simulator is to simulate the
run-t ime environment which will exist at each step in the
execution of a program to provide the data to resolve
informalities in the program. The complexity of this capability
arises from our desire to simulate the run-time environment
for a " typical" execution rather than for some particular set of
input data. In essence, we wish to represent the run-time
environment as a function of some prototypal state.

The technique of Symbolic Execution [5-12] was
developed to symbolically express the output as a function of
the inputs. This technique has generally been applied to
numeric problems where well known simplifications and
theorems exist which prevent the resulting expression from
becoming overly complex. However, even with these
simplifications the complexity of the output expression is such
that individual paths through the program are normally
explored one at a time.

In non-numeric problems the simplification techniques
are much less developed and the expressions describing the
state of the computation become very complex. Particularly
diff icult are loops and conditional statements. Loops require
the use of universal quantification over the loop predicate as
the condition which controls application of the loop body.
Conditional statements require a splitting of the computation
state into cases controlling which branch of the conditional will
be executed.

The alternatives for dealing with this complexity are
quite clear; either it must be mastered, or it must be avoided.
The major i ty of researchers in the field have pursued the first
alternative and are working on theorem provers and
simplif ication systems better able to cope with these
complexities. Compiler writers, on the other hand, have
avoided this complexity in such techniques as data flow
analysis by recognizing that for their purposes, it is not
important to know the exact circumstances under which some
particular data will be accessed, but only that there exist some

A u t o . P r o p . - 2 : R a l z e r
399

(unknown) circumstances under which it can be accessed.
Their particular needs allow a much weaker form of analysis
than symbolic execution to be applied to the program, avoiding
the complexity.

In a similar way, our use of the "analysis" of the
program is not to describe the outputs as a function of the
input, but rather to resolve informalities in the program itself.
For this reason, a weaker form of program interpretation,
which we call Meta-Evaluation, is adequate. This technique
avoids complexity by only executing each loop once (the
informalit ies within the loop must make sense during the first
execution) and by picking an arbitrary branch of conditional
statements for execution (informalities following a conditional
statement must make sense no matter which branch was
executed).

In addition, rather than representing the state of the
computation as a simple compound expression, we represent it
as the running program (in our program model) would, as a set
of relations in the associative data base. As Meta-Evaluation
proceeds and control passes from statement to statement in
the program, this data base is altered to reflect the additions
and deletions specified in the program. Thus, the data base
wi l l ref lect the state of the run-time data base for the program
as control reaches each statement in the program. This
simulation of the run-time data base enables each statement to
be Meta-Evaluated in an appropriate environment which
provides the context to resolve any informalities in the
statement and to test the program for well-formedness.

Simulating this data base as execution proceeds through
the program would be quite simple if some particular set of
input data were selected. However, this data base must
represent the program's behavior on arbitrary input data.
Therefore , symbolic data must be created and the data base
expressed in terms of this symbolic data.

Once we recognize that the input data to any program
expressed in our program model consists of those relations in
the data base which it accesses without having previously
created, the representation of symbolic data in the data base
becomes quite simple. A program simulation is started with an
empty data base. Whenever the program attempts to access
the data base (except in the predicate of a conditional
statement) the following rules are applied. If the accessed
pat te rn already matches data existing in the data base, then
the pat tern match proceeds normally binding any placemarkers
in the pat tern to the corresponding named objects in the data
base. Ift on the other hand, the pattern does not match
exist ing data, then new symbolic data is created (and assumed
to be part of the input data to the program) so that the
pat te rn match can succeed.

The rationale for creating new data to match the
accessed pat tern is that the program has assumed that this
data already exists because it is unconditionally accessing it.
Hence, unless that data does exist, the program will not
operate correct ly. Therefore, to enable the program
simulation to proceed, suitable data is created to satisfy the
accessed pattern. However, only the existence of named
objects rather than their particular identity can be inferred for
arguments in the pattern specified by unbound placemarkers.
Therefore , new "symbolic" instances of the appropriate type of
object are created as part of the assumed relation.

As Meta-Evaluation proceeds, more and more of the
input data for the program is created because it is accessed
by the program and does not already exist. Although the
named objects in this data base are "symbolic" in that their
ident i ty is unknown, they are manipulated by the program just
like actual data. As data is accessed by the program,
placemarkers are bound to these "symbolic" data, and the
program creates new relations involving these objects and/or
deletes old ones.

Occasionally constraints on the data base, such as a
part icular relation being single-valued, will enable the identity
of a "symbolic" object or the equivalence of two different
"symbol ic" objects to be determined. When this occurs, the
Meta-Evaluation process and the state of the data base are
res tored to the point at which the "symbolic" object was first
used and the process is resumed using the discovered identity.

With these rules for data base access during
Meta-Evaluation and the update of the data base caused by
ASSERT and DELETE statements, the remainder of the
Meta-Evaluation process pertains to individual types of
program statements:

A. Subroutine call. The actual parameters are
subst i tuted for the formals and the subroutine is
simulated. If it is a routine in the informal
specification then the Meta-Evaluation process is
recursively applied to it. Otherwise, the routine is
simulated by assuming all of its pre-conditions and
by asserting its post-conditions. Pre- and
post-condit ions provide a way of summarizing the
requirements and results of a routine without
actually executing it (and must be provided for the
l ibrary routines which the program invokes so that
they can be simulated during Meta-Evaluation).

B. Sequence of statements. Each statement in the
sequence is Meta-Evaluated in turn.

C. Loops. If the loop predicate matches existing
relations in the Meta-Evaluation data base, then the
loop body is Meta-Evaluated for each such match
wi th the placemarkers bound to the matched named
objects. If no match exists, then symbolic data is
created so that a single match of the loop predicate
wil l succeed, and then the loop body is
Meta-Evaluated for the (newly created) matched
pat tern. Thus, whether or not the pattern is initially
matched (and normally it won't be, so that a single
new symbolic relation satisfying the pattern will be
created), the loop body will be executed for each
known relation satisfying the loop predicate. Thus,
even though we have no way of representing
universal quantification, such quantification has been
operationally applied to the data base so that the
result ing state is consistent with universal
quantif ication.

D. Conditional statement. The predicate of the IF
statement is assumed to be false (i.e., is deleted from
the data base) and the ELSE clause is
Meta-Evaluated. Then the data base is restored to
its state before Meta-Evaluating the IF statement,
the predicate is assumed to be true (i.e., is asserted
in the data base), and the THEN clause is

A u t o . P r o f t . - 2 : R a l z e r
U00

Meta-Evaluated.. Our present implementation is
incapable of simultaneously representing the effects
of the THEN and ELSE clauses as separate
alternatives, and one branch—the THEN clause—is
chosen as the one whose effects will be reflected in
the data base for Meta-Evaluation of succeeding
statements. This choice is based on the fact that
the THEN clause is usually more fully developed than
the ELSE clause and because it is normally the
expected case—the normal path through the
program.

THEORY OF INFORMALITY RESOLUTION

The previous section described how a program's
behavior could be simulated statement by statement on
symbolic data. The purpose of this simulation is to provide
the context for resolving informalities in the program. This
resolut ion is composed of two parts: (1) The hypothesizing of
one particular interpretation for the informality from a set of
possible interpretations and (2) the testing of hypotheses.

There are many types of informalities which can occur in
a program specification (See [13]). These informalities
correspond in one way or another to the suppression of
explicit information. Each informality is expressed by use of a
part ial construct in place of some intended complete construct.
For each partial construct we have algorithms which generate
an ordered set of possible completions. The alternatives are
tested by the well-formedness criteria explained in the next
section. The generation algorithms represents our theory of
informal i ty resolution.

Although there are many types of informality handled by
the SAFE system, we will consider only those which are
resolved during the Meta-Evaluation process.

These informalities arise because in natural
communication the first usage of an object is not labeled and
then reused for later references to that object. Instead,
references tend to include as little detail as required to
reference objects from the current context. This might simply
be a pronoun ("it" or "one"), a type name ("the message"), a
part ial descript ion ("the red one"), or a completely omitted
reference when the desired object is already part of the
context. Otherwise, either a full reference sufficient to
unambiguously select the desired object from the data base, or
simply a type name if the desired object is associated with an
object already in context, must be used. Any references in a
descr ipt ion may themselves be incomplete. All these
ambiguities are resolved in the context established by the
running program rather than the context of the input
descr ipt ion. This context is the set of objects already bound
and accessible in the program block. This includes the
parameters of the program, embedding iteration placemarkers
and placemarkers bound in preceding statements.

Descriptive references are resolved by pattern matching
them wi th the simulated run-time data base. If the pattern
match succeeds then the reference placemarker is bound to
the matched object which must either be a literal in an
asserted relat ion previously produced by the program or a
previously created symbolic object (because those are the
only categories of objects which exist in the simulated data
base). If a l iteral was matched, then the placemarker is
replaced in the program by that literal. Otherwise (a
previously created symbolic object was matched), the

A u t o . P r o r . - ;
401

placemarker is replaced in the program by the placemarker
previously bound to the symbolic object thus equating the two
references in different parts of the program. If the pattern
match for the descriptive reference fails, then new symbolic
objects are created so that the match will succeed and the
reference placemarker is bound to the appropriate symbolic
object and is left unaltered in the program. It is treated as a
separate placemarker which must be bound to an actual named
object at run-time rather than as a reference to other
placemarkers or literals in the program.

Pronouns are replaced by a reference of the type
required for that argument. For both these typed references
and those which explicitly occur in the input, (e.g. "the
message") an ordered set of possibilities is constructed.
These possibilities are all drawn from the current context by
their degree of closeness to the typed reference according to
the fol lowing categories relating the type (X) of the reference
to the type (Y) of a placemarker in the context: X equals Y, X
is a subtype of Y, X is a part of Y, Y is a part of X, X is
connected via a path of single valued relations to Y, and X is a
super type of Y. Within a category the placemarkers are
ordered by their use in the program as: scope placemarkers
(placemarkers bound in an IF statement predicate or a loop
predicate), parame\erst and the remaining previously bound
placemarkers.

Completely omitted references are treated exactly like
the pronoun case except that literal instances of the required
type are added as possibilities before any supertype ones.
Furthermore, if a literal instance is selected as the accepted
binding, and all other literal instances are also acceptable, then
the omitted reference is treated as a don't-care situation.

One remaining kind of informal reference remains--a
reference of inappropriate type. Either a descriptive
reference or explicit type reference was specified but its type
was not compatible with the type required by the action or
relat ion in which the reference occurred. This difficulty is
resolved by creating a new placemarker of the required type
and determining an ordered set of possible conversions from
the specified type (X) to the required type (Y) from the
fol lowing list: X is a subtype of Y, X is a part of Y, Y is a part
of X, X is connected via a path of single valued relations to Y,
Y is a subtype of X.

Thus, for each kind of informality, an explicit ordered set
of possible interpretations has been created. These
possibil it ies are explored by a simple backtracking search
process integrated with the Meta-Evaluation of the program so
that whenever an informal construct is encountered during
Meta-Evaluation the first possible interpretation is selected
and Meta-Evaluation continues until the program has been
completely Meta-Evaluated or the program is found to be
i l l - formed (as described in the next section). In the latter
case, the Meta-Evaluation process and the state of the
simulated program is restored to its state at the point of the
most recent informality interpretation selection for which
remaining, untried possibilities exist. The next untried
possible interpretat ion for that informal construct is selected
and the Meta-Evaluation process resumed.

This process will terminate either by finding a set of
interpretat ions which, within the documentation capabilities of
the system, yields a well-formed formal program, or by
determining that the informal specification was unintelligible
because no well- formed program could be discovered for it.

R a l z o r

PROGRAM WELL-FORMEDNESS RULES

In this section we describe some of the rules which
provide the basis for rejecting the current selected set of
interpretat ions as producing an ill-formed program. Programs
are highly constrained objects (one reason they are hard to
construct) and these constraints provide the means of
re ject ing interpretat ions of informality which don't make sense.

These rules are divided into two categories: (1) general
ones which are resolved by backtracking through the current
set of selected interpretations and (2) specific ones for which
part icular fixes to the program are known. The general ones
per ta in to incorrect interpretations of informalities which
expl ic i t ly appear in the program and for which a set of
al ternat ive interpretations has been generated as explained in
the previous section. The specific ones, on the other hand,
per ta in to implicit informalities in the program, which until the
specific well-formedness rule was violated, were not known to
exist and for which unknowingly one particular interpretation
was chosen without considering the other alternatives. The
chosen alternative caused the specific well formedness rule to
be violated and, hence, the other alternatives must now be
t r ied.

General Rules--resolved by backtracking through the
explicit informalities:

1. An error cannot occur during Meta-Evaluation~-in our
program model errors can only occur by violating
constraints on the data base. These constraints are
particular to a domain and are discovered during the
domain acquisition process. They may involve only
a single relation (such as requiring it to be single
valued) or combinations of relations (such as, "the
boss of a person must work for the same company
as that person").

2. The predicate of conditional statements must not be
determined during Meta-Evaluation—if it is, then the
predicate is independent of the input data and the
same branch of the conditional will always be
executed. Thus, the program is ill-formed.

3. Each demon and procedure specified must be invoked
somewhere -if not, why bother to describe it.

A. At least one placcmarkcr in the loop predicate mu^t
be referenced within the loop body--otherwr.e, the
loop' body is independent of the loop predicate (we
are explicit ly ruling out "counting loops" which
simply determine the number of objects which
satisfy some criteria).

5. An action should not be invoked which only produces
redundant results (i.e., doesn't chance the data
base)—the invocation produced no effect. Lither it
should not be invoked or invoked with different
arguments or some previous action should not have
been invoked or invoked with different arguments.

6. All produced relations in the data base mu.t be
consumed (read-accessed) either by the program or
as part of the output—otherwise, its existence in the
data base has no effect.

7. All expectations must be fulfilled. Informal
specifications normally include descriptions of why
certain actions are being performed to help create a
context for people to understand the process being
cJescribed. Such statements create an expectation
about how the process will behave and can be used
as a constraint on the process' behavior.

Specific Rules—uncovers an implicit informality and specifies
how to resolve it:

1. Each typed reference must have a non-empty set of
possible interpretations—if not, then the reference
cannot be resolved within the current context.
Solution: Assume (and veri fy) that it can be resolved
by the caller of the current routine. Make it a
parameter of the current routine and add it as an
omitted reference to all calls of this routine.

2. Parameters must be directly referenced within a
routine—if they are only indirectly referenced, then
those components of the parameter directly
referenced should replace the unreferenced object
as parameters of the routine.

3. Statements outside a conditional cannot
unconditionally consume results produced in one
branch of that conditional—either make the
consuming statement part of the producing branch,
or condition its execution with the predicate of the
conditional. This corresponds to informality in
natural language that the end of conditional
statement is normally not explicitly signaled.

4. Non-produced goal (this is a specialization of the
general expectation rule)--if a statement is invoked
and is expected to produce some result but only
produces a port ion of the goal and the goal does not
contain any unbound placemarkers outside of the
port ion produced, then assert the goal using the
produced portion. This corresponds to the
informality that a "passive" construct specifying the
desired effect of some action actually indicates that
the desired effect should be created from the results
of that action.

CONCLUSION

The techniques described in this paper are only the
beginning of a technology for understanding informal program
specifications based on theories of informality resolution and
program well-formedness acting in the context established by
Meta-Evaluation of the program. Each of these areas requires
fur ther development and we have only started to experiment
w i th their interactions and, yet, this prototype system has
successfully transformed a few small (approximately one page)
informal program specifications into their formal operational
equivalents. These examples have been (carefully) extracted
f rom actual functional specification manuals and the prototype
system accommodated to the needs of the example by
developing one or more of these areas. We expect that such
example dr iven growth of the system will continue for some
time until the theories and the Meta-Evaluation technology
mature and become more complete. Unfortunately, we have
been unable, so far, to represent the theories in other than a
procedural manner so that growth and modification are ad-hoc
and quite intertwined with the Meta-Evaluation process itself.

A u t o . P r o r . - 2 : R a l z e r
U02

We do, however, believe that our approach is sound and
the technology adequate. Composing a formal operational
specif icat ion for a program is a difficult task and will remain so
despite improvements in formal specification languages. The
di f f icul ty lies m the formalism itself. Thus, some aid must be
prov ided in the composition process and we believe this can

best be achieved by creating an interactive computer system
which transforms an informal specification into the required
formalism. This transformation can be accomplished by using
the requirements of the formalism and a Knowledge of its
operational characteristics to select the appropriate
interpretat ion from the set of possible ones.

REFERENCES

Balzer, Robert, Neil Goldman and David Wile. Informality
in program specification. Fifth IJCAI Proceedings, 1977.
Also, USC Information Sciences Institute, ISI/RR-77-59,
Apri l 1977.

Goldman, Neil, Robert Balzer and David Wile. The use of
a domain model in understanding informal process
descriptions. Fifth IJCAI Proceedings, 1977.

Hayes, J. R. and Simon, H. Understanding written
problem instructions. In Gregg (Ed.), Knowledge and
Cognition, Lawerencc Erlbaum Associates, Potomac, Md.,
1974.

8. Boyer, Robert S., Bernard Elspas and Kan N. Levitt.
"Select-- a formal system for testing and debugging
programs by symbolic execution, "Proceedings of the
Interational Conference on Reliable Software, Los Angeles,
April 1975.

9. Clarke, Lori A. A system to generate test data and
symbolically execute programs. IEEE Transactions on
Software Engineering, September 1976.

10. Howden, William E. Experiments with a symbolic
evaluation system. University of California at San Diego,
La Jolla, California. National Computer Conference, 1976.

4. Goldman, Neil, Robert Balzer and David Wile. The
inference of domain structure from informal process
descriptions. Proceedings of Pattern Directed Inference
Workshop in SIC ART Newsletter, *63, 1977.

11. Yonczawa, Akinori. Symbolic-evaluation as an aid to
program synthesis. Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, Working
Paper 124, April 1976.

5. King, James C. "A new approach to program testing,"
Proceedings of the International Conference on
Reliable Software, Los Angeles, April 1975.

6. Deutsch, L. P. An interactive program verifier,
Ph.D. dissertation, University of California, Berkeley, May
1973.

7. Burstal l , R. M. "Proving correctness as hand simulation
wi th a litt le induction," Proceedings of IFIPS 74, North
Holland Publishing Company, 1974.

12. Beckman, Lennart, Anders Haraldson, Osten Oskarsson and
Erik Sandewall. A partial evaluator, and its use as a
programming tool. Artificial Intelligence, 1976,
pp. 319-357.

13. Balzer, Robert, Neil Goldman and David Wile. On the use
of programming knowledge to understand informal
process descriptions. Proceedings of Pattern Directed
Inference Workshop in SIC ART Newsletter, #63, 1977.

Auto. Pro r : . -2 : Ralzpr
403

