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ABSTRACT 

Formal program specifications are difficult to write. 
They are always constructed from an informal precursor. We 
are explor ing the technology required to aid in the 
construct ion of the formal specification from the informal 
version. 

An informal specification differs from a formal one in 
that much information which the writer believes the reader can 
infer f rom the context has been supressed from the 
specif ication. Resolution of the supressed information 
depends upon information contained in other parts of the 
specif icat ion and upon Knowledge of what makes a 
specif icat ion wel l - formed and the ability to model the parts of 
the specif ication interacting with one another. 

This paper describes the technology used in a running 
system which embodies theories of program well-formedness 
and informali ty resolution within the context established by 
symbolically executing the program to systematically discover 
the intended meaning of each informal construct within an 
informal specification. 

KEYWORDS: Meta-Evaluation, Symbolic Execution, Informal 
Specif ication, Program Specification, Understanding Systems, 
Informality Resolution, Program Well-Formedness 

INTRODUCTION 

Producing a good specification has been recognized as a 
cri t ical precursor to producing an acceptable software 
implementation. Considerable effort has been expended to 
produce better formalisms for software specification. We 
bel ieve, however, that the difficulty lies in the formalisms 
themselves and that an aid in creating such formalisms, rather 
than a bet ter formalism, is required. 

Since software specifications are always first created in 
an informal language and then converted, external to any 
computer system, to some formalism, a system which aided this 
conversion process, from informal to formal, would significantly 
aid the specifier. 
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We are constructing such a system, called SAFE [1] , 
which accepts an informal software specification as input and 
produces a formal operational equivalent (see [1 ] for example). 
Most of the transformation is accomplished automatically via 
the techniques described in this paper, but some interaction 
w i th the specifier is also required to resolve particular 
informal constructs for which insufficient context exists. 

This system consists of three phases: ( D a Linguistic 
Phase which acquires a model of the domain [2 ] and identifies 
the individual actions to be performed, (2) the Planning Phase 
which creates a control structure for these actions, and (3) the 
Meta-Evaluation Phase which is the focus of this paper. 

The purpose of the Meta-Evaluation process is to 
simulate the run-t ime environment of a program to provide the 
context for disambiguating informal constructs contained in the 
program description. It thus must provide three separate 
capabil i t ies: (1) the ability to simulate the state of a program 
as it is being executed, (2) the ability to form an ordered set 
of hypotheses for the intended meaning of an informal 
construct, and (3) the ability to test these hypotheses against 
some cr i ter ia. The second of these capabilities represents a 
theory of informality resolution for program specification; the 
th i rd , provides an operational theory of well-formed programs 
which eliminates hypothesis which do not satisfy the rules of 
this theory; while the first provides the data for testing these 
wel l- formedness rules. 

The combination of these three capabilities provides a 
mechanism for effectively applying our theories of informality 
resolut ion of program specifications and of program 
wel l- formedness to the task of understanding informal program 
specif ications. The following sections describe the major 
features of each of these capabilities and is followed by an 
example i l lustrating the interaction between them as an 
informal program specification is Meta-Evaluated. 

However, before describing the capabilities, we must 
f i rs t consider the language in which the program to be 
disambiguated is expressed and the types of informality which 
are allowed. 

THE PROGRAM MODEL 

As we mentioned, the Meta-Evaluation process is the 
th i rd and final phase of a larger system [1 ] which deals with a 
wide range of informal constructs in program specifications 
and starts from a parsed version of a natural language 
program specification. This system acquires (or augments) a 
descr ipt ion of the relevant domain in which the specified 
program wil l operate. In this regard, it is very similar to 
Simon's UNDERSTAND [3 ] system as it determines what objects 
exist in the domain, how they relate to other objects, what 
constraints they must satisfy, and how they are to be 
manipulated by the program being specified. 

This work has been described elsewhere [ 4 } Here we 
are concerned wi th how the acquired domain is represented, 
how the specif ied program is expressed, and what informal 
constructs remain unresolved. 

We begin wi th our model of what a program should be, 
which we feel is central to the success of our system. This 
model is derived from the desire to minimize the translation 
f rom the informal natural language specification, to avoid 
issues of representation and optimization (which have colored 
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many other program models), and to keep the semantics of the 
programs as simple as possible so that programs could be 
understood and composed by our system. 

Although our program model was largely derived from 
concerns of simplifying our system's task of resolving informal 
program specifications, we strongly believe that this program 
model (wi th suitable syntactic sugar) is also appropriate for 
people to express formal unambiguous operational program 
specif ications. 

To avoid issues of data representation, the most uniform 
representat ion known, and one which closely mirrors the 
original parsed natural language specification, was selected. 
This representat ion is a fully associative relational data base 
and is used to hold all data manipulated by the program. An 
object in this data base can be thought of as a named point in 
space whose meaning is defined totally by the other objects 
(points) and it is connected to by relations (lines). 

The only actions (changes) allowed in this data base are 
the creat ion and destruction of named objects and the making 
and breaking of relations between them. In addition, 
information can be extracted from the data base in a 
s ide-ef fect free manner (i.e., the extraction mechanism does 
not change the data base) via a pattern-match language. This 
language enables the full associativity of the data base to be 
used to access any object connected to a named object via the 
appropr iate relation. Any object so accessed may be bound 
to a placemarker which may then be used to access further 
objects, and so on. Placemarkers once bound by a 
pat tern-match are never rebound. They are merely an 
indirect reference to the named object to which they are 
bound. 

Placemarkers have completely replaced variables in our 
programming model (which contains neither variables nor 
assignment statements) and their semantics are particularly 
simple. They are bound only via a pattern-match to a named 
object in the data base, and once bound, they are not rebound. 
Thus, they provide the means for focusing attention on some 
por t ion of the data base and of accessing further information 
associated wi th the referenced named object. 

There is one exception to the rebinding rule. Inside of 
a loop (which takes the form of TOR ALL <pattern> DO 
<statement>) all placemarkers bound in the iteration pattern 
are rebound on each successive iteration so that a different 
named object (or named objects if more than one unbound 
placemarker appears in the iteration pattern) can be accessed 
and manipulated by the loop body. 

The only data manipulated by the programming model 
are patterns composed of relations and the operations AND, 
OR, and NOT. Each relation has arguments which must be a 
named object, a function which evaluates to a named object, or 
a placemarker. The placemarker must either be bound to a 
named object or be unbound. If an unbound placemarker 
occurs in a pattern being retrieved from the data base, then if 
the pat tern is successfully matched with some portion of the 
data base, the placemarker is bound to the corresponding 
named object. If the match is unsuccessful, then the 
placemarker remains unbound. 

The control statements available are a subroutine call, a 
sequence of statements, a conditional statement, an iterative 
statement, and a demonic statement. The conditional 

statement OF <pattern> THEN statement-1 ELSE statement-2") 
causes statement-1 to be executed if the pattern is matched 
and statement-2 to be executed otherwise. The iterative 
statement (TOR ALL <pattern> DO statement-1") causes 
statement-1 to be repeatedly executed for each portion of the 
data base which matches the pattern with the placemarkers in 
the pattern bound to the named objects in the matched portion 
of the data base. The demonic statement ("WHENEVER 
<PATTERN> DO s ta temen t -D causes statement-1 to be 
executed whenever a relation is added to the data base which 
enables the patten to be matched. 

Finally, to prevent the intrusion of representation 
considerations, the associative relational data base supports 
inference so that the distinction between explicit and implicit 
(computed) data can be ignored. 

Thus, to first order our programming model represents 
the integration of the data handling of a fully associative 
relational data base and the control aspects of a conventional 
programming language. We believe that this combination 
provides a particularly simple basis for stating and analyzing 
unoptimized operational program specifications, and hence, 
provides a solid foundation for our work on informality 
resolution. 

PROGRAM SIMULATOR 

The purpose of the program simulator is to simulate the 
run-t ime environment which will exist at each step in the 
execution of a program to provide the data to resolve 
informalities in the program. The complexity of this capability 
arises from our desire to simulate the run-time environment 
for a " typical" execution rather than for some particular set of 
input data. In essence, we wish to represent the run-time 
environment as a function of some prototypal state. 

The technique of Symbolic Execution [5-12] was 
developed to symbolically express the output as a function of 
the inputs. This technique has generally been applied to 
numeric problems where well known simplifications and 
theorems exist which prevent the resulting expression from 
becoming overly complex. However, even with these 
simplifications the complexity of the output expression is such 
that individual paths through the program are normally 
explored one at a time. 

In non-numeric problems the simplification techniques 
are much less developed and the expressions describing the 
state of the computation become very complex. Particularly 
diff icult are loops and conditional statements. Loops require 
the use of universal quantification over the loop predicate as 
the condition which controls application of the loop body. 
Conditional statements require a splitting of the computation 
state into cases controlling which branch of the conditional will 
be executed. 

The alternatives for dealing with this complexity are 
quite clear; either it must be mastered, or it must be avoided. 
The major i ty of researchers in the field have pursued the first 
alternative and are working on theorem provers and 
simplif ication systems better able to cope with these 
complexities. Compiler writers, on the other hand, have 
avoided this complexity in such techniques as data flow 
analysis by recognizing that for their purposes, it is not 
important to know the exact circumstances under which some 
particular data will be accessed, but only that there exist some 
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(unknown) circumstances under which it can be accessed. 
Their particular needs allow a much weaker form of analysis 
than symbolic execution to be applied to the program, avoiding 
the complexity. 

In a similar way, our use of the "analysis" of the 
program is not to describe the outputs as a function of the 
input, but rather to resolve informalities in the program itself. 
For this reason, a weaker form of program interpretation, 
which we call Meta-Evaluation, is adequate. This technique 
avoids complexity by only executing each loop once (the 
informalit ies within the loop must make sense during the first 
execution) and by picking an arbitrary branch of conditional 
statements for execution (informalities following a conditional 
statement must make sense no matter which branch was 
executed). 

In addition, rather than representing the state of the 
computation as a simple compound expression, we represent it 
as the running program (in our program model) would, as a set 
of relations in the associative data base. As Meta-Evaluation 
proceeds and control passes from statement to statement in 
the program, this data base is altered to reflect the additions 
and deletions specified in the program. Thus, the data base 
wi l l ref lect the state of the run-time data base for the program 
as control reaches each statement in the program. This 
simulation of the run-time data base enables each statement to 
be Meta-Evaluated in an appropriate environment which 
provides the context to resolve any informalities in the 
statement and to test the program for well-formedness. 

Simulating this data base as execution proceeds through 
the program would be quite simple if some particular set of 
input data were selected. However, this data base must 
represent the program's behavior on arbitrary input data. 
Therefore , symbolic data must be created and the data base 
expressed in terms of this symbolic data. 

Once we recognize that the input data to any program 
expressed in our program model consists of those relations in 
the data base which it accesses without having previously 
created, the representation of symbolic data in the data base 
becomes quite simple. A program simulation is started with an 
empty data base. Whenever the program attempts to access 
the data base (except in the predicate of a conditional 
statement) the following rules are applied. If the accessed 
pat te rn already matches data existing in the data base, then 
the pat tern match proceeds normally binding any placemarkers 
in the pat tern to the corresponding named objects in the data 
base. Ift on the other hand, the pattern does not match 
exist ing data, then new symbolic data is created (and assumed 
to be part of the input data to the program) so that the 
pat te rn match can succeed. 

The rationale for creating new data to match the 
accessed pat tern is that the program has assumed that this 
data already exists because it is unconditionally accessing it. 
Hence, unless that data does exist, the program will not 
operate correct ly. Therefore, to enable the program 
simulation to proceed, suitable data is created to satisfy the 
accessed pattern. However, only the existence of named 
objects rather than their particular identity can be inferred for 
arguments in the pattern specified by unbound placemarkers. 
Therefore , new "symbolic" instances of the appropriate type of 
object are created as part of the assumed relation. 

As Meta-Evaluation proceeds, more and more of the 
input data for the program is created because it is accessed 
by the program and does not already exist. Although the 
named objects in this data base are "symbolic" in that their 
ident i ty is unknown, they are manipulated by the program just 
like actual data. As data is accessed by the program, 
placemarkers are bound to these "symbolic" data, and the 
program creates new relations involving these objects and/or 
deletes old ones. 

Occasionally constraints on the data base, such as a 
part icular relation being single-valued, will enable the identity 
of a "symbolic" object or the equivalence of two different 
"symbol ic" objects to be determined. When this occurs, the 
Meta-Evaluation process and the state of the data base are 
res tored to the point at which the "symbolic" object was first 
used and the process is resumed using the discovered identity. 

With these rules for data base access during 
Meta-Evaluation and the update of the data base caused by 
ASSERT and DELETE statements, the remainder of the 
Meta-Evaluation process pertains to individual types of 
program statements: 

A. Subroutine call. The actual parameters are 
subst i tuted for the formals and the subroutine is 
simulated. If it is a routine in the informal 
specification then the Meta-Evaluation process is 
recursively applied to it. Otherwise, the routine is 
simulated by assuming all of its pre-conditions and 
by asserting its post-conditions. Pre- and 
post-condit ions provide a way of summarizing the 
requirements and results of a routine without 
actually executing it (and must be provided for the 
l ibrary routines which the program invokes so that 
they can be simulated during Meta-Evaluation). 

B. Sequence of statements. Each statement in the 
sequence is Meta-Evaluated in turn. 

C. Loops. If the loop predicate matches existing 
relations in the Meta-Evaluation data base, then the 
loop body is Meta-Evaluated for each such match 
wi th the placemarkers bound to the matched named 
objects. If no match exists, then symbolic data is 
created so that a single match of the loop predicate 
wil l succeed, and then the loop body is 
Meta-Evaluated for the (newly created) matched 
pat tern. Thus, whether or not the pattern is initially 
matched (and normally it won't be, so that a single 
new symbolic relation satisfying the pattern will be 
created), the loop body will be executed for each 
known relation satisfying the loop predicate. Thus, 
even though we have no way of representing 
universal quantification, such quantification has been 
operationally applied to the data base so that the 
result ing state is consistent with universal 
quantif ication. 

D. Conditional statement. The predicate of the IF 
statement is assumed to be false (i.e., is deleted from 
the data base) and the ELSE clause is 
Meta-Evaluated. Then the data base is restored to 
its state before Meta-Evaluating the IF statement, 
the predicate is assumed to be true (i.e., is asserted 
in the data base), and the THEN clause is 
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Meta-Evaluated.. Our present implementation is 
incapable of simultaneously representing the effects 
of the THEN and ELSE clauses as separate 
alternatives, and one branch—the THEN clause—is 
chosen as the one whose effects will be reflected in 
the data base for Meta-Evaluation of succeeding 
statements. This choice is based on the fact that 
the THEN clause is usually more fully developed than 
the ELSE clause and because it is normally the 
expected case—the normal path through the 
program. 

THEORY OF INFORMALITY RESOLUTION 

The previous section described how a program's 
behavior could be simulated statement by statement on 
symbolic data. The purpose of this simulation is to provide 
the context for resolving informalities in the program. This 
resolut ion is composed of two parts: (1) The hypothesizing of 
one particular interpretation for the informality from a set of 
possible interpretations and (2) the testing of hypotheses. 

There are many types of informalities which can occur in 
a program specification (See [13]). These informalities 
correspond in one way or another to the suppression of 
explicit information. Each informality is expressed by use of a 
part ial construct in place of some intended complete construct. 
For each partial construct we have algorithms which generate 
an ordered set of possible completions. The alternatives are 
tested by the well-formedness criteria explained in the next 
section. The generation algorithms represents our theory of 
informal i ty resolution. 

Although there are many types of informality handled by 
the SAFE system, we will consider only those which are 
resolved during the Meta-Evaluation process. 

These informalities arise because in natural 
communication the first usage of an object is not labeled and 
then reused for later references to that object. Instead, 
references tend to include as little detail as required to 
reference objects from the current context. This might simply 
be a pronoun ("it" or "one"), a type name ("the message"), a 
part ial descript ion ("the red one"), or a completely omitted 
reference when the desired object is already part of the 
context. Otherwise, either a full reference sufficient to 
unambiguously select the desired object from the data base, or 
simply a type name if the desired object is associated with an 
object already in context, must be used. Any references in a 
descr ipt ion may themselves be incomplete. All these 
ambiguities are resolved in the context established by the 
running program rather than the context of the input 
descr ipt ion. This context is the set of objects already bound 
and accessible in the program block. This includes the 
parameters of the program, embedding iteration placemarkers 
and placemarkers bound in preceding statements. 

Descriptive references are resolved by pattern matching 
them wi th the simulated run-time data base. If the pattern 
match succeeds then the reference placemarker is bound to 
the matched object which must either be a literal in an 
asserted relat ion previously produced by the program or a 
previously created symbolic object (because those are the 
only categories of objects which exist in the simulated data 
base). If a l iteral was matched, then the placemarker is 
replaced in the program by that literal. Otherwise (a 
previously created symbolic object was matched), the 
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placemarker is replaced in the program by the placemarker 
previously bound to the symbolic object thus equating the two 
references in different parts of the program. If the pattern 
match for the descriptive reference fails, then new symbolic 
objects are created so that the match will succeed and the 
reference placemarker is bound to the appropriate symbolic 
object and is left unaltered in the program. It is treated as a 
separate placemarker which must be bound to an actual named 
object at run-time rather than as a reference to other 
placemarkers or literals in the program. 

Pronouns are replaced by a reference of the type 
required for that argument. For both these typed references 
and those which explicitly occur in the input, (e.g. "the 
message") an ordered set of possibilities is constructed. 
These possibilities are all drawn from the current context by 
their degree of closeness to the typed reference according to 
the fol lowing categories relating the type (X) of the reference 
to the type (Y) of a placemarker in the context: X equals Y, X 
is a subtype of Y, X is a part of Y, Y is a part of X, X is 
connected via a path of single valued relations to Y, and X is a 
super type of Y. Within a category the placemarkers are 
ordered by their use in the program as: scope placemarkers 
(placemarkers bound in an IF statement predicate or a loop 
predicate), parame\erst and the remaining previously bound 
placemarkers. 

Completely omitted references are treated exactly like 
the pronoun case except that literal instances of the required 
type are added as possibilities before any supertype ones. 
Furthermore, if a literal instance is selected as the accepted 
binding, and all other literal instances are also acceptable, then 
the omitted reference is treated as a don't-care situation. 

One remaining kind of informal reference remains--a 
reference of inappropriate type. Either a descriptive 
reference or explicit type reference was specified but its type 
was not compatible with the type required by the action or 
relat ion in which the reference occurred. This difficulty is 
resolved by creating a new placemarker of the required type 
and determining an ordered set of possible conversions from 
the specified type (X) to the required type (Y) from the 
fol lowing list: X is a subtype of Y, X is a part of Y, Y is a part 
of X, X is connected via a path of single valued relations to Y, 
Y is a subtype of X. 

Thus, for each kind of informality, an explicit ordered set 
of possible interpretations has been created. These 
possibil it ies are explored by a simple backtracking search 
process integrated with the Meta-Evaluation of the program so 
that whenever an informal construct is encountered during 
Meta-Evaluation the first possible interpretation is selected 
and Meta-Evaluation continues until the program has been 
completely Meta-Evaluated or the program is found to be 
i l l - formed (as described in the next section). In the latter 
case, the Meta-Evaluation process and the state of the 
simulated program is restored to its state at the point of the 
most recent informality interpretation selection for which 
remaining, untried possibilities exist. The next untried 
possible interpretat ion for that informal construct is selected 
and the Meta-Evaluation process resumed. 

This process will terminate either by finding a set of 
interpretat ions which, within the documentation capabilities of 
the system, yields a well-formed formal program, or by 
determining that the informal specification was unintelligible 
because no well- formed program could be discovered for it. 
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PROGRAM WELL-FORMEDNESS RULES 

In this section we describe some of the rules which 
provide the basis for rejecting the current selected set of 
interpretat ions as producing an ill-formed program. Programs 
are highly constrained objects (one reason they are hard to 
construct) and these constraints provide the means of 
re ject ing interpretat ions of informality which don't make sense. 

These rules are divided into two categories: (1) general 
ones which are resolved by backtracking through the current 
set of selected interpretations and (2) specific ones for which 
part icular fixes to the program are known. The general ones 
per ta in to incorrect interpretations of informalities which 
expl ic i t ly appear in the program and for which a set of 
al ternat ive interpretations has been generated as explained in 
the previous section. The specific ones, on the other hand, 
per ta in to implicit informalities in the program, which until the 
specific well-formedness rule was violated, were not known to 
exist and for which unknowingly one particular interpretation 
was chosen without considering the other alternatives. The 
chosen alternative caused the specific well formedness rule to 
be violated and, hence, the other alternatives must now be 
t r ied. 

General Rules--resolved by backtracking through the 
explicit informalities: 

1. An error cannot occur during Meta-Evaluation~-in our 
program model errors can only occur by violating 
constraints on the data base. These constraints are 
particular to a domain and are discovered during the 
domain acquisition process. They may involve only 
a single relation (such as requiring it to be single 
valued) or combinations of relations (such as, "the 
boss of a person must work for the same company 
as that person"). 

2. The predicate of conditional statements must not be 
determined during Meta-Evaluation—if it is, then the 
predicate is independent of the input data and the 
same branch of the conditional will always be 
executed. Thus, the program is ill-formed. 

3. Each demon and procedure specified must be invoked 
somewhere -if not, why bother to describe it. 

A. At least one placcmarkcr in the loop predicate mu^t 
be referenced within the loop body--otherwr.e, the 
loop' body is independent of the loop predicate (we 
are explicit ly ruling out "counting loops" which 
simply determine the number of objects which 
satisfy some criteria). 

5. An action should not be invoked which only produces 
redundant results (i.e., doesn't chance the data 
base)—the invocation produced no effect. Lither it 
should not be invoked or invoked with different 
arguments or some previous action should not have 
been invoked or invoked with different arguments. 

6. All produced relations in the data base mu.t be 
consumed (read-accessed) either by the program or 
as part of the output—otherwise, its existence in the 
data base has no effect. 

7. All expectations must be fulfilled. Informal 
specifications normally include descriptions of why 
certain actions are being performed to help create a 
context for people to understand the process being 
cJescribed. Such statements create an expectation 
about how the process will behave and can be used 
as a constraint on the process' behavior. 

Specific Rules—uncovers an implicit informality and specifies 
how to resolve it: 

1. Each typed reference must have a non-empty set of 
possible interpretations—if not, then the reference 
cannot be resolved within the current context. 
Solution: Assume (and veri fy) that it can be resolved 
by the caller of the current routine. Make it a 
parameter of the current routine and add it as an 
omitted reference to all calls of this routine. 

2. Parameters must be directly referenced within a 
routine—if they are only indirectly referenced, then 
those components of the parameter directly 
referenced should replace the unreferenced object 
as parameters of the routine. 

3. Statements outside a conditional cannot 
unconditionally consume results produced in one 
branch of that conditional—either make the 
consuming statement part of the producing branch, 
or condition its execution with the predicate of the 
conditional. This corresponds to informality in 
natural language that the end of conditional 
statement is normally not explicitly signaled. 

4. Non-produced goal (this is a specialization of the 
general expectation rule)--if a statement is invoked 
and is expected to produce some result but only 
produces a port ion of the goal and the goal does not 
contain any unbound placemarkers outside of the 
port ion produced, then assert the goal using the 
produced portion. This corresponds to the 
informality that a "passive" construct specifying the 
desired effect of some action actually indicates that 
the desired effect should be created from the results 
of that action. 

CONCLUSION 

The techniques described in this paper are only the 
beginning of a technology for understanding informal program 
specifications based on theories of informality resolution and 
program well-formedness acting in the context established by 
Meta-Evaluation of the program. Each of these areas requires 
fur ther development and we have only started to experiment 
w i th their interactions and, yet, this prototype system has 
successfully transformed a few small (approximately one page) 
informal program specifications into their formal operational 
equivalents. These examples have been (carefully) extracted 
f rom actual functional specification manuals and the prototype 
system accommodated to the needs of the example by 
developing one or more of these areas. We expect that such 
example dr iven growth of the system will continue for some 
time until the theories and the Meta-Evaluation technology 
mature and become more complete. Unfortunately, we have 
been unable, so far, to represent the theories in other than a 
procedural manner so that growth and modification are ad-hoc 
and quite intertwined with the Meta-Evaluation process itself. 
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We do, however, believe that our approach is sound and 
the technology adequate. Composing a formal operational 
specif icat ion for a program is a difficult task and will remain so 
despite improvements in formal specification languages. The 
di f f icul ty lies m the formalism itself. Thus, some aid must be 
prov ided in the composition process and we believe this can 

best be achieved by creating an interactive computer system 
which transforms an informal specification into the required 
formalism. This transformation can be accomplished by using 
the requirements of the formalism and a Knowledge of its 
operational characteristics to select the appropriate 
interpretat ion from the set of possible ones. 
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