
INFORMALITY IN PROGRAM SPECIFICATIONS

Robert Balzer, Neil Goldman and David Wile
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina Del Rey, California 90291

ABSTRACT
This paper is concerned primarily with (1) the procedure

by which process-oriented specifications are obtained from
goal-or iented requirement specifications and (2)
computer-based tools for their construction. It first
determines some attributes of a suitable process-oriented
specif ication language, then examines the reasons why
specifications would still be difficult to write in such a
language. The key to overcoming these difficulties seems to
be the careful introduction of informality based on partial,
rather than complete, descriptions and the use of a
computer-based tool that uses context extensively to complete
these descriptions during the process of constructing a
wel l - formed specification. Some results obtained by a running
p ro to type of such a computer-based tool on a few informal
example specifications are presented and, finally, some of the
techniques used by this phototype system are discussed.

/. INTRODUCTION

A crit ical step in the development of a software system
occurs when its goal-oriented requirements specification is
t ransformed into a process-oriented form that specifies how
the requirements are to be achieved. Only after this
t ransformation has occurred can the feasibility of the system
be analyzed and the consistency of the process specification
w i th the requirements be verified. The key to this
t ransformation is expressing the process-oriented specification
abstract ly so that its functionality is completely determined
while the class of possible implementations remains broad.

We believe that such abstract process-oriented
specifications are the key to rationalizing the software
development process. Such specifications are, in reality,
programs wr i t ten in a very high level abstract programming
language. As such, they could provide an effective interface
between the two major software concerns: functionality and
eff ic iency. These concerns should be decoupled so that the
funct ional i ty of a system can be addressed before its
eff ic iency has been considered. Once functionality has been
accepted, it can be preserved while the system is optimized.
Thus, since the abstract process-oriented specification is a
program, its consistency with the requirements could be
formally ver i f ied, informally argued, or tested by actually
executing the specification. Furthermore, the end user could
be given hands-on experience exercising the specification to
see if it behaved as intended. Deviations and/or
inconsistencies could be corrected in the specification before
any implementation occurred.

Once the system's functionality has been accepted by the
user, the efficiency of the system in meeting its performance
requirements remains an issue. Such efficiency must be
gained without altering the system's accepted functionality.
We have argued elsewhere [1] that a computer-based tool can

NOTE: This research was supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract No.
DAHC15 72 C 0308, ARPA Order No. 2223, Program Codes
3D30 and 3P10.

A u t o . Pror : .
38

be built which guarantees maintenance of functionality while a
program is optimized without sacrificing the programmer's
ingenuity or initiative in determining how best to achieve
eff iciency.

In this paper we are concerned primarily with the
procedure by which such process-oriented specifications are
obtained and with computer-based tools for their construction.
We will begin by determining some attributes of a suitable
process-oriented specification language, then examine why
specifications would still be difficult to write in such a
language. We will argue that the key to overcoming these
diff icult ies is the careful introduction of informality based on
part ial , rather than complete, descriptions and the use of a
computer-based tool which utilizes context extensively to
complete these descriptions during the process of constructing
a well formed specification. We will then present some results
obtained by a prototype of such a computer-based tool on a
few informal example specifications. Finally, we will discuss
some of the techniques used by this prototype system.

2. ATTRIBUTES OF SUITABLE PROCESS-ORIENTED
SPECIFICATION LANGUAGES

As stated above, a suitable process-oriented specification
must completely define functionality, represent a broad class
of possible implementations, and be executable.

How can we obtain such a language? We begin by noting
that a suitably abstract programming language is a
specification language. Several recent languages almost meet
the above requirements for an executable specification
language. They have arisen from two separate disciplines:

1. Specification Languages. Languages, such as
RSL[2], PSL[3], etc., designed specifically for specification,
describe a system in terms of data flows and processing
units but do not functionally define the processing. Such
languages can provide a simulation of the described system
down to some level of detail, but cannot describe or
simulate its full functionality.

2. Abstract programming Languages. Spawned by
Dijkstra's notions of structuring, a generation of
programming languages (CLU[4], Alphard[5], Euclid[6],
Pearl[7]) has bloomed which isolate the definition of data
objects, and the operations allowed on them, from their use
and manipulation in the program. The result is the ability
to use abstract program entities which model those that
occur in the application being programmed. These entities
are defined in terms of more computer-science-oriented
enti t ies, which are, in turn, defined in terms of more
primit ive ones, until the primitive objects and operations of
the language are reached. Without the successive
refinements of the abstract objects and operations, these
languages would be suitable for specification, except that
they would then lose their property of executability.
Their executabil ity has been gained at the expense of
complete specification of implementation (down to the base
level of the language).

What is clearly needed, then, is a language which can fully
specify a system functionally without fully specifying its
implementation. What are the required properties of such a
language?

First, it must be able to define and manipulate
appl icat ion-oriented objects (as is done by the abstract
programming languages). Second, the description of these
objects and operations must be in terms of some formalism
that does not require successive refinement to gain
functionali ty and that does not overly constrain the

- 2 :
9

R a l z e r

implementation. This is the Key issue that would enable
specif ication and programming languages to be unified.

Three formalisms have been proposed for this role: sets,
axiomatic specification, and relational data bases.

One of the earliest efforts is Jack Schwartz's SETL[8]
language. Sets are the single abstract type allowed for which
multiple implementations exist. All the operations on sets can
deal wi th any of the implementations. Thus, users need not be
concerned wi th any of these implementations while specifying
the manipulations to be performed on their sets. Because
funct ional i ty was completely captured by the SETL definitions
of sets, implementation did not have to be considered.
However, such implementation-free functionality existed only
for sets and was not extensible.

More recently, Guttag, Horowitz, and Musser [9] have
discussed an axiomatic specification technique in which the
functional behavior of new abstract objects are axiomatically
def ined by algebraic equations. These algebraic equations act
as functional requirements which any implementation of the
objects and operations upon them must satisfy. Furthermore,
they provide a way of executing programs using the
operations directly without providing any implementation.
Whenever an operation is performed on an object, the "state"
of that object is transformed by applying the algebraic
equation for that operation to the existing "state." The
result ing state is just another expression in the algebra. As
more and more operations are performed, these states become
more complex. However, the states can be simplified by
general rules of the algebra such as AND(A False)->False,
or by using the equations for the abstract objects as rewrite
rules, such as for a stack, POP(PUSH(A x))=>A. Such
equivalence rules are part of the functional definition of the
operations on the abstract objects. If the axiomatic functional
definit ions are complete, then specifications in this language
can be directly executed while no implementation need be
selected and the choice of possibilities has not been
constrained. These axiomatic functional definitions provide a
user the capability of adding arbitrary new abstract types to
the language that can be manipulated in an implementation
independent way. This extensible capability is exactly
analogous to SETL's built- in capability to manipulate sets in an
implementation-independent way.

Finally, we have languages in which the "state" is
represented by a series of assertions in a relational data base,
rather than by an expression, and in which the effects of an
action are expressed as a series of additions or deletions to
the data base rather than as an equation to be applied to the
"state." The big difference between these two approaches is
that in the axiomatic approach the functional definitions are
expressed as interactions between the operations on a data
type and hence do not rely on any more primitive notions. In
the relational approach, as in SETL, each operation is
functionally defined in terms of how it affects a built- in
pr imit ive notion, the relational data base.

The self-defining, or closed, property of axiomatic
definit ions would seem to favor that approach because each
abstract object and its operations can be considered in
isolation without relying on outside semantics and without
specifying any constraints on the implementation.
Unfortunately, this property comes at the expense of
expressing the behavior of objects entirely in terms of the
operations upon them and the need to express this behavior in
the form of algebraic equations so that the equivalence of
alternative sequences of operations can be formed (e.g., the
POP(PUSH(A x))->A equivalence cited earlier for stacks).

In the relational approach, rather than stressing a closely
knit set of types and operations on them, objects are
perceived ent irely in terms of their relationships with each
other and a set of primitive operations which allow these
relationships to be built and destroyed and to be extracted.
Non-pr imit ive operations exist on the objects, but they merely
alter the set of relationships that exist between the objects.
This view allows incremental elaboration of objects, their
relationships wi th each other, and operations upon them. Most
important ly, this approach enables objects and operations to
be modeled almost exactly as they are conceived by the user
in his application (as measured by how they are expressed in
our most unconstrained form of communication-natural
language).

This latter property is the reason we have selected the
relational approach: We feel it minimizes the difficulty that a
user would have in constructing an operational specification.

3. WHY OPERATIONAL SPECIFICATIONS ARE HARD TO
CONSTRUCT

Unfortunately, even when the user's difficulties in
construct ing operational specifications are minimized by the
use of the relational approach, the task remains burdensome
and e r ro r -p rone , primarily because although a suitable
language has been chosen, it is still formal. Each reference to
an object or action must be consistent and complete. The
large number of interacting objects, actions, and relationships
require the user to do a great deal of (error-prone) clerical
bookkeeping which impedes his attention to the specification
itself and reduces its reliability.

Suppose we constructed a computer aid which relieved the
user of these clerical chores. How would the specification
task be altered? We begin by considering how people specify
sof tware systems when unconstrained by computer formalisms.

4. SEMANTIC CONSTRUCTS IN NATURAL LANGUAGE
SPECIFICATION

We studied many actual natural language software
specifications. The main semantic difference between these
specifications and their formal equivalent is that partial
descript ions instead of complete descriptions are used. When
such partial descriptions are understood it is because they can
be completed from the surrounding context. The partial
descript ions focus both the writer's and the reader's attention
on the relevant issues and condense the specification.
Furthermore, the extensive use of context almost totally
eliminates bookkeeping operations from the natural language
specif ication. These are some of the properties we find so
useful in natural language specifications and which we so
sorely lack in formal specification languages.

We have evidence [see sections 5 and 6], in the form of a
running prototype system that these properties can be added
to a previously formal specification language and that a
computer tool can complete the partial description from the
exist ing context. Such a capability is not totally new; it
already exists in limited form.

Most programming languages use the context provided by
declarations to complete partial descriptions of the operations
to be performed on those objects (e.g., ADD becomes either
INTEGER-ADD or FLOATING-ADD, depending on the declared
at t r ibutes of its operands). The Codsyl DBDTG report [10]
goes fur ther in the use of context by completing partial
references to an item by use of the "current" instance of that
item as established by some other statement in the program.
Data base declarations are also used to determine how various

A u t o . P r o r , - 2 : B a l z e r
3 9 0

program variables are to be used in completing partial
descript ions of data base items.

These uses of context in programming languages have
been accepted, and even championed, because for each use,
the context-providing mechanisms are well-defined, the
completion rules are simple and direct, and only a single
in terpretat ion is valid.

The context mechanisms we are proposing here are much
more complex, the context generated much more diffuse, and a
given part ial description may produce zero, one, or several
val id interpretat ions. Zero valid interpretations means that
the part ial description is inconsistent with the existing context.
A single valid interpretation means that the partial description
can be unambiguously completed through use of the existing
context. Multiple valid interpretations indicate that sufficient
context does not exist to complete the description and that
interact ion with the user is required to resolve the ambiguity.

Our work should be viewed as an effort to provide more
general context mechanisms to resolve the ambiguity
introduced in the specification by partial descriptions. If, as
we believe, such mechanisms can be provided, would they be a
beneficial addition to specification languages?

5. DESIRABILITY OF INFORMALITY

We recognize that our approach is controversial and
apparent ly opposes the current trend to make program
specifications more and more formal and to introduce such
formalisms earlier in the development cycle. We believe
closer examination will reveal that our approach is not only
compatible with the desire for increased formalism, but a
necessary adjunct to it.

At tent ion has been focused on formalisms for program
specif ication to the exclusion of concern with the difficulty and
rel iabi l i ty of creating such formal specifications and with
maintaining them during the program life-cycle. Our approach
specifically addresses these issues.

First, it should be recognized that informality will always
exist during the formulation of a specification. The issue is
whether the informal form is explicitly entered into the
computer and transformed, with the user's help, into the formal
specif ication, or whether it exists only outside the computer
system in someone's head or writ ten somewhere in
unanalyzable form. We should consider, then, the feasibility
and the desirabil i ty of a computer-based tool to aid in the
transformation of an informal specification into a formal one.

Let us begin with the question of feasibility. While the
results presented in the next section are preliminary and the
examples chosen far smaller and simpler than real
specif ications, we are optimistic about continued progress and
ultimate practicality of this approach. However, since these
results are far from conclusive, we invite the reader to reach
his own conclusions after considering the examples of the next
section and the description of the prototype system which
fol lows them.

Assuming for the moment that such a system is feasible,
we consider its desirability. Informal specifications have three
obvious advantages. First, they are more concise than formal
specifications and focus both the specifier's and the reader's
at tent ion. They are more concise because only part of the
specif ication is explicit; the rest is implicit and must be
extracted from context. Attention is focused on the explicit
information and, therefore, away from the implicit information,
which increases both the readability and the understandability
of the specification.

The second advantage is that informal specifications which
employ partial rather than complete descriptions are a familiar,
in fact normal, mode of communication. This reduces the
training requirements of users, permits a wider set of users,
and reduces dependence on the judgment and accuracy of
intermediaries.

The final advantage deals with the maintainability of the
system. Since about 707. of the total life cycle costs of large
systems are for maintenance, any improved capabilities in this
area are very significant. As we have argued elsewhere [1],
the main deterrent to maintainability is optimization.
Optimization spreads information throughout a program and
increases its complexity through increased interactions among
the parts. Both of these optimization effects greatly impede
the abil ity to alter the program. An obvious solution is to
alter an unoptimized specification and then reoptimize the
program. No cost-effective and reliable technology currently
exists for such reoptimization, though one has been proposed

en
A similar situation exists between the informal and formal

specifications. The creation of a formal specification involves
spreading implicitly specified information throughout the
specification and increasing the complexity by structuring the
specification into parts and establishing the necessary
interfaces between them. As before, both of these
formalization effects greatly impede the ability to modify the
specification. Again, a solution is obvious: modify the
informal specification and retransform it into a revised formal
specification. Under the assumed feasibility of our approach,
this solution would be possible and would greatly simplify
maintaining the formal specification of the system.

We now consider three possible disadvantages of a
computer-based tool to aid in transforming an informal
specification into a formal one. The first possible
disadvantage is that the informal constructs will be
misunderstood by the computer tool. This is entirely possible,
just as it is when a human intermediary interprets an informal
specification. While the computer tool cannot match human
performance in understanding the informal specification, it
operates much more methodically. It can question the user
when it detects that there are alternative interpretations of
some statement. It can record and make explicit all
assumptions it makes in transforming the formal specification.
It can paraphrase the informal specification to verify that its
interpretat ion is accurate (the current prototype system
records its assumptions and interacts with the user to
determine the correct interpretation of unresolved ambiguities,
but does not yet contain any paraphrase capabilities). Thus,
feedback and interaction with the user can eliminate the
problem of possible misinterpretation of the informal
specif ication.

The second possible disadvantage is that the
computer-based tool will decrease the reliability of the
transformation to a formal specification. If the informal
specif ication exists only outside the computer system, then we
must rely on the accuracy of the user or, more often, on some
trained intermediary to accurately transform it into a formal
specif ication. This transformation depends upon properly
understanding the informal specification (see previous
paragraph), then restating it in the required formalism. Once
the proper understanding has been obtained, the restatement
involves moving information from one place to another and
changing its form. History would indicate that such clerical
bookkeeping transformations are error-prone and can always
be done more reliably by a computer tool. Hence, once the

A u t o . P r o r . - 2 : B a l z e r
3 9 1

correct interpretat ion has been obtained through the use of
context and interaction with the user, the restatement of the
informal specification into the required formalism can be more
rel iably performed by the computer-based tool than by the
user or his intermediary. Therefore, reliability would be
improved rather than reduced by such a tool once
understanding was obtained.

Understanding, rather than reliability, thus emerges as the
key feasibi l i ty issue. One way to improve understanding is to
increase the interaction with the user. This leads to the third
possible disadvantage: that the required volume of interaction
wil l abrogate the advantage of informality. We do not expect
this to be an issue with the current system or its successors,
since we feel that its current performance level, as evidenced
in the fol lowing section, indicates that the required interaction
rate would be sufficiently small to prevent annoying or
sidetracking the user.

Thus, we conclude that the availability of such a
computer-based tool would be highly desirable because it
would simplify the creation of a formal specification while
increasing the reliabil ity of the formulation process; improve
the maintainability of the formal specification; reduce special
t raining requirements; and expand the base of potential users.
The question of feasibility, which remains as the paramount
issue, rests clearly on the ability to correctly interpret an
informal specification. We therefore now present some
prel iminary results obtained by the prototype system and
describe its operation so that the reader can observe its
performance level and judge for himself the generality of its
context resolution mechanisms and therefore its feasibility.

6. RESULTS

This section presents two examples successfully handled
by the prototype system. The examples were extracted from
actual natural language specification manuals, and the results
i l lustrate the power of the system's context mechanisms.
However, our system is a prototype and, as such, it is far from
complete. New examples currently expose new problems
which are resolved by adding new capabilities to the system.
Therefore, until some measure of closure is obtained, it should
not be assumed that the prototype will correctly process new
examples of the same "complexity" as earlier examples. Our
goal is to add each new capability in as general a form as
possible so that when it is used in new examples it will
funct ion correct ly. In this way we expect to "grow" the
system as more complex and varied examples are tried.

For each of the examples, we present three figures: the
actual parenthesized version of the informal input currently
used by the system (to avoid syntactic parsing prob lems) [l l] ,
a manually marked version which indicates some of the
informalit ies to be resolved by the system, and a stylized
vers ion of the formal output program produced by the system.

The f irst example is a system which automatically
distr ibutes messages to offices on the basis of a keyword
search of the text of the message. Figure 1 gives the informal
natural language description. Figure 2 indicates some of the
imprecisions contained in this example which must be resolved
to obtain the system's formalization of this specification as an
operational program (Figure 3).

To give some measure of the amount of imprecision in this
example and, therefore, the amount of aid provided by the
system, we have compiled the following statistics:

Number of missing operands ■ 18
Number of incomplete references ■ 22
Number of implicit type conversions • 9
Number of terminology changes • 3
Number of refinements or elaborations - 2
Number of implicit sequencing decisions - 7

ACTUAL INPUT FOR MESSAGE
PROCESSING EXAMPLE

♦((MESSAGES ((RECEIVED) FROM (THE "AUTODIN-ASC"))) (ARE
PROCESSED) FOR (AUTOMATIC DISTRIBUTION ASSIGNMENT))

♦((THE MESSAGE) (IS DISTRIBUTED) TO (EACH ((ASSIGNED))
OFFICE))

♦((THE NUMBER OF (COPIES OF (A MESSAGE) ((DISTRIBUTED) TO
(AN OFFICE)))) (IS) (A FUNCTION OF (WHETHER ((THE OFFICE) (IS
ASSIGNED) FOR (("ACTION") OR ("INFORMATION"))))))

♦((THE RULES FOR ((EDITING) (MESSAGES))) (ARE) (: ((REPLACE)
(ALL LINE-FEEDS) WITH (SPACES)) ((SAVE) (ONLY
(ALPHANUMERIC CHARACTERS) AND (SPACES))) ((ELIMINATE)
(ALL REDUNDANT SPACES))))

♦(((TO EDIT) (THE
(NECESSARY))

TEXT PORTION OF (THE MESSAGE))) (IS)

♦(THEN (THE MESSAGE) (IS SEARCHED) FOR (ALL KEYS))

♦(WHEN ((A KEY) (IS LOCATED) IN (A MESSAGE)) ((PERFORM)
(THE ACTION ((ASSOCIATED) WITH (THAT TYPE OF (KEY))))))

♦((THE ACTION FOR (TYPE-0 KEYS)) (IS) (: (IF ((NO OFFICE) (HAS
BEEN ASSIGNED) TO (THE MESSAGE) FOR ("ACTION")) ((THE
"ACTION" OFFICE FROM (THE KEY)) (IS ASSIGNED) TO (THE
MESSAGE) FOR ("ACTION"))) (IF ((THERE IS) ALREADY (AN
"ACTION" OFFICE FOR (THE MESSAGE))) ((THE "ACTION" OFFICE
FROM (THE KEY)) (IS TREATED) AS (AN "INFORMATION"
OFFICE))) (((LABEL 0FFS1 (ALL "INFORMATION" OFFICES FROM
(THE KEY))) (ARE ASSIGNED) TO (THE MESSAGE)) IF ((REF 0FFS1
THEY) (HAVE (NOT) (ALREADY) BEEN ASSIGNED) FOR
(("ACTION") OR ("INFORMATION"))))))

♦((THE ACTION FOR (TYPE-1 KEYS)) (IS) (: (IF ((THE KEY) (IS)
(THE FIRST TYPE-1 KEY ((FOUND) IN (THE MESSAGE)))) THEN
((THE KEY) (IS USED) TO ((DETERMINE) (THE "ACTION" OFFICE))))
(OTHERWISE (THE KEY) (IS USED) TO ((DETERMINE) (ONLY
"INFORMATION" OFFICES)))))

Figure 1

To il lustrate how context is used to complete the partial
descript ions in the example, we consider a few cases:

1. Partial sequencing. Distribution is never explicitly
invoked in the informal specification. However, the first
sentence indicates that Assignment is performed to enable
the Distribution. Hence, Distribution should be explicitly
invoked after Assignment.

2. Missing operand. Sentence two indicates that the
message should be distributed to certain offices—those
that are "assigned." But, as can be determined from other
usages in the informal specifications, offices can be
"assigned" to either messages or keys. This missing
operand can be resolved by remembering that Assignment

A u t o . P r o r . - 2 : R a l 7 ^ r
302

was performed to enable Distribution. Hence, Distribution
must use some result of the assignment process.
Assignment, from the last two input sentences, assigns
offices to the current message. Hence, Distribution must
consume offices assigned to that message.

Incomplete reference. Sentence four says to replace all
line feeds with spaces. First, replace requires a third
operand, some set in which the replacement will occur.
Context indicates that this missing operand should be the
text of the message parameter of Edit. Second, the use of
a plural in the operand of an action which expects a
singular operand, indicates an implicit loop. Hence, we
have, "for all line feeds, replace the line feed by a space in
the text of the message." Now, which line feeds are we
concerned with? Only those in the text of the message
because they are the only ones which can be replaced.
Hence, completing the partial reference, we have "for all
line feeds in the text of the message, replace the line feed
by a space in the text of the message."

It should be noted that of the approximately 61 decisions
which had to be made for this example, all but one were
resolved correct ly by the prototype system. The message it
d is t r ibuted is the edited one (with all punctuation removed)
rather than the original unedited one. The cause of the error
is that the system does not understand the difference between
an object being changed and its participating in relations with
other objects; therefore, it has no concept of the original state
of an object and hence does not consider this as a possible
completion of any partial reference.

PROGRAM CREATED BY PROTOTYPE SYSTEM

(WHENEVER (r e c e i v e message FROR a u t o d i n - a s c BY s a f e)

D 0 (o d i t t e x t OF message)
(s e a r c h t e x t OF message FOR (CREATE THE SET OF k e y s))
(d i s t r i b u t e - p r o c e s s f l message))

(d i s i r i b u t e - p r o c e s s # l (message)
(FOR ALL (o f f i c e s a s s i g n e d TO message FOR ANYTHING)

(d i s t r t b u t e - p r o c e s s # 2 message o f f i c e)))

(d i s t r i b u t e - p r o c e s s # 2 (message o f f i c e)
(00 (f u n c t i o n a l (BOOLEAN (a s s i g n e d o f f i c e TO message FOR a c t i o n))

(BOOLEAN (a s s i g n e d o f f i c e TO message FOR i n f o r m a t i o n)))
T i r iES (d i s t r i b u t e A copy UH1CH IS A copy OF messago AND l o c a t e d

AT s a f e FROM s a f e TO l o c a t i o n OF o f f i c e)))

(e d i t (t e x t)
(FOR ALL I i n e - f e e d s IN t e x t

(r e p l a c e l i n e - f e e d IN t e x t BY (CREATE SET OF s p a c e s)))
(k e e p (u n i o n (CREATE THE SET OF a l p h a n u m b e r l c c h a r a c t e r s IN t e x t)

(CREATE THE SET OF spaces IN t e x t))
FROM t e x t)

(FOR ALL s p a c e s IN t e x t ANO r e d u n d a n t IN t e x t
(r emove s p a c e FROM t e x t))

(WHENEVER (l o c a t e A key IN t e x t OF message AT POSITION ANYTHING)
DO (CASE (t y p e OF k e y)

(t y p e - 8 (t y p e - 8 - a c t i o n message k e y))
(t y p e - 1 (t y p e - 1 - a c t i o n message k e y))))

(t y p e - 0 - a c t i o n (message k e y)
(I F (NOT (EXISTS a c t i o n o f f i c e FOR message))

THEN (a s s i g n THE a c t i o n o f f i c e f l FOR key
TO message FOR a c t i o n)

ELSE (t r e a t a c t i o n o f f i c e # 2 FOR key
AS i n f o r m a t i o n o f f i c e # 2 FOR key

IN (I F (NOT (a s s i g n e d o f f i c e # 2 TO message
FOR a c t i o n OR i n f o r m a t i o n))

THEN (a s s i g n o f f i c e # 2 TO message FOR i n f o r m a t i o n))))
(FOR ALL (o f f t c e # 3 a s s i g n e d TO key FOR i n f o r m a t i o n)

(I F (NOT (a s s i g n e d o f f i c e # 3 TO message
FOR a c t i o n OR i n f o r m a t i o n)
THEN (a s s i g n o f f i c e # 3 TO message FOR i n f o r m a t i o n))))

(t y p e - 1 - a c t i o n (message k e y)
(I F k e y - (k e y # i UH1CH IS (SEARCH HISTORY FOR FIRST

(l o c a t e t y p e - 1 k e y # l IN t e x t OF message AT p o s i t i o n ANY)))
THEN (d e t e r m i n e THE a c t i o n o f f i c e FOR message
BY (t y p e - 0 - a c t i o n message k e y))

ELSE (d e t e r m i n e ONLY THE i n f o r m a t i o n o f f i c e FOR message
BY (I F (EXISTS a c t i o n o f f i c e FOR message)

THEN (t r e a t a c t i o n o f f i c e # l FOR key
AS i n f o r m a t i o n o f f i c e # l FOR key
IN (I F (NOT (a s s i g n e d o f f i c e #1 TO message

FOR a c t i o n OR i n f o r m a t i o n))
THEN (a s s i g n o f f i c e ' l TO message FOR i n f o r m a t i o n))))

(FOR ALL o f f i c e # 2 a s s i g n e d TO key FOR i n f o r m a t i o n)
(I F (NOT (a s s i g n e d o f f i c e # 2 TO message

FOR a c t i o n OR i n f o r m a t i o n))
THEN (a s s i g n o f f i c e # 2 TO message

FOR i n f o r m a t i o n))))))

Figure 3

This capability can clearly be added to the system, but the
important point is that interpretation errors will occur, just as
they do when human intermediaries are used to produce the
formal specification. It is therefore essential to provide
extensive feedback and assumption-testing facilities so that
such er rors , when made, can be discovered and corrected by
the user.

The second example is from a system for scheduling a
satell ite communication channel by multiplexing it among
several users (subscribers). It specifies the component of the
system which receives a schedule (SOL) from the controller of
the satellite channel and extracts from it the portions of the

A u t o . P r o * . - 2 : B a l z e r
303

next transmission cycle which have been reserved for a
particular subscriber and those portions available to any user
(RATS). This information is placed in a transmission schedule
used by another component to actually utilize the channel
dur ing the allowed periods. Figure 4 gives the informal
natural language description. Figure 5 indicates some of the
imprecisions contained in this example which must be resolved
to obtain the system's formalization of the specification as an
operat ional program (Figure 6). In addition to the process
descr ipt ion of Figure 4, we have assumed that the formulas
referenced and a structural description of the objects of the
domain have been separately specified.

The relevant portions of these specifications are that the
SOL is an ordered set of subscriber and RATS entries. Each
subscriber entry has subscriber identifier and transmission
length fields, while a RATS entry has only the latter. The
transmission schedule is a set of entries, each of which is
composed of an absolute transmission time and a transmission
length. One of these entries is the primary entry of the
transmission schedule. Finally, formulas 1 and 2 both take an
SOL ent ry as input and produce, respectively, a relative and an
absolute transmission time.

Using the same measures of imprecision as in the first
example, we find that this example has about half as many
imprecisions.

Number of missing operands " 7
Number of incomplete references - 12
Number of implicit type conversion ■ 3
Number of terminology charges = 0
Number of refinement or elaboration - 0
Number of implicit sequencing decisions = 4

The example is interesting as a test of the generality of
the mechanisms which worked on the first example, and
because of the new issues it raises. We will examine each of
these to il lustrate the range of capabilities added to the
pro to type to enable it to correctly understand this example
and produce the operational program of Figure 6.

(build-transmission-schedule (sol subscriber)
(CREATE transmission-schedule)
(search sol FOR A subscriber-entry SUCH THAT

sid OF subscriber EQUALS sid OF subscriber-entry)
(IF (locate A subscriber-entry SUCH THAT

sid OF subscriber EQUALS sid
OF subscriber-entry IN sol)

THEN
(MAKE (RESULT-OF (FORMULA-1 subscriber-entry))

BE THE relative-transmission-time OF subscriber)
(MAKE (RESULT-OF (FORMULA-2 subscriber-entry))

BE THE clock-transmission-time OF subscriber))
(FOR ALL rats WHICH ARE IN sol

DO (MAKE (RESULT-OF (formula-1 rats))
BE THE relative-transmission-time OF rats)

(MAKE (RESULT-OF (formula-2 rats))
BE THE clock-transmission-time OF rats))

(FOR ALL clock-transmission-time OF rats
DO (MAKE clock-transmission-time BE THE

transmission-time OF (CREATE transmission-entry))
(ADD transmission-entry TO transmission-schedule)))

(WHENEVER (MAKE time BE THE clock-transmission-time
OF subscriber)

DO (MAKE time BE THE transmission-time
OF (CREATE transmission-entry))

(ADD transmission-entry TO transmission-schedule)
(MAKE transmission-entry BE THE primary-entry

OF transmission-schedule))

Figure 6

Auto. Prog: . -2: Balzer
394

1. Scope of conditional. In natural language
communication the end of a conditional is almost never
explicit. Instead, context must be used to determine
whether subsequent statements are part of the conditional.
In sentence three of the example, the input to formula 2 is
the SOL entry found in the previous sentence. Thus,
sentence three is really part of the conditional statement.

2. Implicit formation of relations. In sentence two,
the relative transmission time produced by formula 1 is
supposed to be associated with the subscriber. Since that
association is not established elsewhere, it is implicitly
being established here. Hence this passive construct must
be treated as an active one.

3. Implicit creation of outputs. In a similar fashion,
various sentences establish associations with a
transmission schedule (the output of this example) but an
instance of one is never explicitly created. Such usage
indicated that an implicit creation of the output is required.

A. Expectation failure. In addition to process and
structural statements, a specification normally contains
expectations about the state of the computation at some
point which provide context for people to explain why
something is being done or some properties of its result.
They also provide some redundancy against which an
understanding of the specification can be checked. In the
example, one of these expectations (that all of the
components of the entries of the output have been
produced) fails, which indicates either a misunderstanding
of the specification or an inconsistency Or incompleteness.
In this case, both our example and the actual specification
from which it was drawn are incomplete; they fail to
describe how the length field of the entries of the
transmission schedule are calculated from the inputs.

7. DESCRIPTION OE THE PROTOTYPE SYSTEM

The prototype system is structurally quite simple. It has
three phases (Linguistic, Planning, and Meta-Evaluation) which
are sequentially invoked to process the informal specification.
Each phase uses the results of the previous phases, but no
capabil i ty current ly exists to reinvoke an earlier phase if a
di f f icul ty is encountered. Hence, either ambiguity must be
resolved within a phase or the possibilities passed forward to
the next phase for it to resolve.

We will describe the prototype system by working
backward from the goal through the phases (in reverse order)
toward the input to expose the system design and provide
context for understanding the operation of each phase.

The goal of the system is to create a formal operational
specif ication from the informal input, which means that it must
complete each of the partial descriptions in the input to
produce the output. In general, each partial description has
several di f ferent possible completions, and a separate decision
must be made for each partial description to select the proper
completion for it.

Based on the partial description and the context in which it
occurs, an a prior i ordered set of possible completions is
created for each partial description. But one decision cannot
be made in isolation from the others; decisions must be
consistent wi th one another and the resulting output
specif ication must make sense as a whole. Since the output is
a program in the formal specification language, it must meet all
the cr i ter ia for program well-formedness. Fortunately,
programs are highly constrained objects (one reason they are

A u t o . P r o * . -
305

so hard to write), so there are many well-formedness criteria
which must be satisfied.

This provides a classical backtracking situation [12], since
there are many interrelated individual decisions that in
combination can be either accepted or rejected by some
cri ter ia (the well-formedness rules). In such situations, the
decisions are made one at a time in some order. After each
decision the object (program) formed by the current set of
decisions is tested to see if it meets the criteria
(well-formedness rules). If it does, then the next decision is
made, and so on, until all the decisions have been made and
the result accepted. If at any stage the partially formed result
is rejected, then the next possibility at the most recent
decision point is chosen instead and a new result formed and
tested as before. If all possibilities have been tried and
rejected for the most recent decision point, then the state of
the decision-making process is backed up to that existing at
the previous decision point and a new possibility chosen. This
process will terminate either by finding an acceptable solution
(formal specification) or by determining that none can be
found. The resulting object (program) is an acceptable
solution (formal specification) for the problem (informal
specification).

The order in which decisions (rather than the order of
alternatives within a decision) are made should be chosen to
maximize early rejection of infeasible combinations of
decisions. This requires that the rejection criteria can be
applied to partially determined objects. The preferred
decision order is clearly dependent on the nature of the
acceptance/rejection criteria.

We now let the nature of the well-formedness criteria
determine the structure of the prototype system so that the
early rejection possibilities inherent in the criteria can be
uti l ized. The criteria fall into three categories: dynamic
state-of-computat ion criteria, global reference criteria, and
static flow criteria. Each of these categories must be handled
di f ferent ly.

The dynamic state-of-computation criteria are based only
on the current "state" of the program and its data base (e.g.,
"the constraints of a domain must not be violated" and "it must
be possible to execute both branches of a condition"). They
require that all decisions that affect the computation to that
point (but not beyond) must be made before the criteria can
be tested. Thus, if decisions could be made as they are
needed by the computation of the program and the program
"state" examined at each stage of the computation, then the
dynamic state-of-computation criteria could be used to obtain
early rejection of infeasible decisions.

This is exactly the strategy adopted in the design of the
proto type system. However, since no actual input data is
available for the program to be tested, and since the program
must be well- formed for a variety inputs, symbolic inputs
rather than actual inputs are used. Instead of actual
execution, the program is symbolically executed on the inputs,
which provides a much stronger test of well-formedness than
would execution on any particular set of inputs.

However, completely representing the state of the
computation as a program is symbolically executed is very
diff icult (e.g., determining the state after execution of a loop or
a conditional statement) and more detailed than necessary for
the well-formedness rules. Therefore, the prototype system
uses a weaker form of interpretation, called Meta-Evaluation,
which only partially determines the program's state as
computation proceeds (e.g., loops are executed only once for

2 : B a q l z e r

some "generic" element, and the effects of THEN and ELSE
clauses are marked as POSSIBLE, but are not conditioned by
the predicate of the If). This Meta-Evaluation process is much
easier to implement and still provides a wealth of run-time
context used by the acceptance/rejection criteria to determine
program well-formedness.

The global referencing criteria (such as "parameters must
be used in the body of a procedure") test the overall use of
names within the program and thus cannot be tested until all
decisions have been made. They are tested only after the
Meta-Evaluation is complete.

The final category of criteria, static flow (e.g., "items must
be produced before being consumed" and "outputs must be
produced somewhere"), are more complex. The
Meta-Evaluation process requires a program on which to
operate, which may contain partial descriptions that the
Meta-Evaluation process will attempt to complete by
backtracking. This program "outline" is created from the
informal input for the Meta-Evaluation process by the flow
analysis, or Planning, phase, which examines the individual
process descriptions and the elaborations, refinements, and
modifications of them in the input, then determines which
pieces belong together and how the refinements, elaborations,
and modifications interact. It performs a producer/consumer
analysis of these operations to determine their relative
sequencing and where in the sequence any unused and
unsequenced operations should occur. This analysis enables
the Planning phase to determine the overall operation
sequencing for the program outline from the partial sequencing
information contained in the input. It uses the data flow
wel l- formedness criteria and the heuristic that each described
operat ion must be invoked somewhere in the resulting program
(otherwise, why did the user bother to describe it?) to
complete the partial sequence descriptions.

If the criteria are not sufficiently strong to produce a
unique program outline, the ambiguity must be resolved either
by interacting with the user or by including the alternatives in
the program outline for the Meta-Evaluation phase to resolve
as part of its decisionmaking process. In the prototype
system, the Meta-Evaluation phase is prepared to deal with
only minor sequencing alternatives such as the scope of
conditional statements (If a statement following a conditional
assumes a particular value of the predicate, it must be made
part of one of the branches of the conditional.) and demons
(Are all situations which match the firing pattern of a demon
intended to invoke it or only those which arise in some
particular context, and if so what context?). Major sequencing
issues—such as whether one statement is a refinement of
another or not—that cannot be resolved by the Planning phase
must be resolved by the user before the Meta-Evaluation
phase.

Both the Planning and Meta-Evaluation phases use a
structural description of the application domain to provide
context for their program execution, and inference rules which
define relation inter-dependencies in the process domain.
This structural base is the application-specific foundation upon
which the Planning and Meta-Evaluation phases rest, and must
be provided before they are invoked. It contains all the
application-specific contextual knowledge. It augments the
system's bui l t- in knowledge of data flow and program
well-formedness and enables the system to be specialized to a
part icular application and to use this expertise in conjunction
w i th its bui l t - in program formation knowledge to formalize the
input specification.

The construction of a suitable application-specific
structural base is itself an arduous, error-prone task.
Furthermore, our study of actual program specifications
indicated that most of the structural information was already
informally contained in the program specification. We
therefore decided to allow partial descriptions in the
specif ication of the structural base and to permit such
descript ions to be intermixed with the program specification.

Since we are concerned only with the semantic issues
raised by using partial descriptions in the program
specif ication, the system uses a parenthesized version of the
natural language specification as its actual input to avoid any
syntactic parsing issues. This parenthesized input does not
affect the semantic issues we have discussed.

The first tasks, then, of the system are to separate the
process descriptions from the structural descriptions, to
convert both to internal form, and to complete any partial
structural descriptions. These tasks comprise the system's
Linguistic phase, which precedes the other two.

If a formal structural base already exists for some
application, then, of course, it is loaded first and is augmented
by and checked for consistency with any structural statements
contained within the program specification.

Thus, in chronological order (rather than the reverse
dependence order used above), the system's basic mode of
operat ion consists of reading an input specification, separating
it into structural and processing descriptions; completing the
structural descriptions and integrating the result into any
exist ing structural base; determining the gross program
structure by producer/consumer analysis during the Planning
phase; and, finally determining the final program structure
through Meta-Evaluation.

REFERENCES

1. Balzer, Robert, Neil Goldman, and David Wile,
"On the Transformational Implementation
Approach to Programming," 2nd International
Conference On Software Engineering, October
1976, p. 337.

2. Bell, Thomas E. and David Bixler, "An
Extendable Approach to Computer-Aided
Software Requirements Engineering," 2nd
International Conference on Software
Engineering, October 1976, p. 70.

3. Teichroew, Daniel and Ernest Allen Hershey, III,
"PSL/PSA A Computer-Aided Technique for
Structured Documentation and Analysis of
Information Processing Systems," 2nd
International Conference on Software
Engineering, October 1976, p. 2.

4. Jones, Anita K. and Barbara H. Liskov, "A
Language for Controlling Access to Shared
Data," SEC Supplement, 1976, p. 68.

5. Wulf, Wm. A. and Mary Shaw, "An Introduction
to the Construction and Verification of Alphard
Programs," 2nd International Conference On
Software Engineering, October 1976, p. 390.

A u t o . P r o < * . - 2 : B a l z e r
396

6. Lampson, B. W. and J. J. Horning,
R. L. London, J. G. Mitchell, and G. J. Popek,
"Report on the Programming Language Euclid,"
Xerox Research Center, Palo Alto, August 1976.

7. Snowdon, R. A. , PEARL: An interactive system
for the preparation and validation of structured
programs. Computing Laboratory, University of
Newcastle Upon Tyne, November 1971.

8. Schwartz, J. T., On Programming, An Interim
Report on the SETL Project, Computer Science
Department, Courant Inst. Math. Sci., New York
University, 1973.

9. Guttag, John V., Ellis Horowitz, and David
R. Musser, "The Design of Data Type
Specifications," 2nd International Conference
On Software Engineering, October 1976,
p. 414

10. CODASYL, Data Base Task Group, April 1971
Report, ACM, New York.

11. Elschlager, R., "Overview of a Natural Language
Programming System," Unpublished Report, CS
Department, Stanford University, February,
1977.

12. Gerhart, Susan L. and Lawrence Yelowitz,
"Control Structure Abstractions of the
Backtracking Programming Technique," 2nd
International Conference On Softu/ar*
Engineering, October 1976, p. 391.

A u t o . P r o r . - 2 : B a l z e r
397

