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Abstract*

A model for learning systems is presented,
and representative Al, pattern recognition, and
control systems are discussed in terms of its
framework. The model details the functional
components felt to be essential for any learning
system, independent of the techniques used for its
construction, and the specific environment in
which it operates. These components are
erformance element, instance selector, critic,
Pearning element, blackboard, and world model.
Consideration of learning system design leads
naturally to the concept of a layered system, each
layer operating at a different level of
abstraction.

Descriptive Terms: adaptation, learning,
formatlon, induction, performance element,
instance selector, critic, learning element,
blackboard, world model, multi-layered systems.

concept-

1 Introduction

Learning systems have been the
wide research interest for a number of
terms adaptation, learning,
induction, self-organization,
all been used in the context
Learning system (LS) research has
within many different scientific communities,
however, and these terms have come to have a
variety of meanings* It is therefore often
difficult for members of these communities to
recognize that problems which appear unrelated as

subject of
years. The

concept-formation,
and self-repair have
of this study.
been conducted

a result of variations in terminology may in fact
be identical. Learning system models as well are
often tuned to the requirements of a particular

discipline and are not suitable for application in
related disciplines. We have therefore synthesized

a new LS model which provides a common language
for unified characterization of systems
constructed from a number of different
perspectives. This model encourages examination
of the strengths and weaknesses of the individual
functional components necessary for any learning
system. Because the model enables a designer to
isolate these functional components and specify
the information which must be available to them",
it is particularly useful as a paradigm for new
learning systems.

In the context of this paper, a learning
system is considered to be any system which uses

interaction with
performance during
definition is
include man/machine
on active roles as

information obtained during one
its environment to improve its
future interactions. This
intentionally broad and may
systems in which humans take
required functional componentse
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9405.

will summarize
construction of
learn. The first
of an adaptive

In the following sections we
two different approaches to the
systems that can be said to
approach centers on the concept
system and is primarily associated with research
in pattern recognition and control theory: the
second is that of artificial intelligence (Al).

2 Adaptive System Approach to Learning

In the control literature, learning is
generally assumed to be synonymous with
adaptation, and is often viewed as estimation or
successive approximat ion of the unknown parameters
of a mathematical structure which is chosen by the
LS designer to represent- the system under study
[6] [10]. Once this has been done, control
techniques known to be suitable for the particular

chosen structure can be applied. Thus the emphasis

has been on parameter learning, and the
achievement of stable, reliable performance [25].
Problems are commonly formulated in stochastic
terms, and the use of statistical procedures to

achieve optimal performance with
performance criterion such as the

respect to some
probability of

correct pattern <classification, or mean square
error, is standard [33].

There are many overlapping and sometimes
contradictory definitions of the terms related to
adaptive systems. The following set, formulated by
Glorioso 111] serves to illustrate the main
features. An adaptive system is defined as a
system which responds acceptably with respect to

some performance criterion in the face
in the environment or its own internal
A learning system is an adaptive system that
responds acceptably within some time interval
following a change in its environment, and a self-
repairing system is one that responds acceptably
within some time interval following a change in
its internal structure. Finally, a self-
organizing system is an adaptive or learning
systeminwhich the initial state is unknown,
random, or unimportant.

Other
systems in

of changes
structure,

terms often used to describe learning
the pattern recognition and control
literature are "supervised" and "unsupervised"
learning [51 [10J. Supervised learning, or
"learning with teacher", assumes the existence of
an external entity (usually a human) which
presents the system with a set of training
instances, evaluates the performance of the system
for those instances, and provides the correct
responses. Unsupervised learning, or "learning
without teacher”, assumes that the environment
provides all instances, but does not provide the
correct responses. Performance is to be evaluated
by the system itself. Tsypkin [28] has pointed
out that unsupervised learning is somewhat of an
illusion in the sense that a teacher/designer
defines the standards which determine the quality
of operation of the LS at the outset, whether or
not he is present during the actual operation of
the system.

3 Artificial Intelligence Approach to Learning

Although early Al research was
to pattern recognition and the
approach, (see, for example [23]

closely tied
adaptive systems
and [29];, the
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two fiel_ds_diver%d in the 1960's, and are now 5-1
quite distinct. Whereas the pattern recognition
and control research emphasizes adjustment of

The Model

- Overview

The proposed LS model
ELEMENT

parameters, Al research emphasizes construction of The
symbolic structures, based on conceptual generating
relations. For example, Feigenbaum's EPAM program instance.. The

t[7] used a discrimination net (i

required to recall nonsense syllables in a rote elemen
Iegrning experiment (see [91, )1/26], and [32] for _?_h%mint
further  examples). system

.e., a tree of ini
eSts and branches) to store the relations E{&'T”K';”g

analyzes
in terms of some standard

EARNING ELEMENT makes specific changes to the

instances
the output of the

is shown in
is responsible
an oufput In™ response to A
INSTANCE SELECTOR selects suitable

a training

rom e environment.

ommunication amon

in response to the analysis of

performance
of performance.

the critic.
the functional components

In Al, it is commonly believed that a shown via a to ensure that
learning system should have’ sufficient internal functional component has access to _all required
structure to develop a "stron theory" of its system information, such as the emerging knowled
environment [8] [16]. Much = emphasis has base. F|na||]y, the LS operates within
therefore been laced ™ on building "knowledge- constraints of a WORD MODE. which contains the
based" or "expert' systems that not only have the general, assumptions_ and methods that define the
capacity for high “performance, but can also omain of activity of the system.

explain® their performance in symbolic terms [U],

~ Winston [32] describes various levels of entities which specify functions that must
sophistication 'in learning systems: learning by performed to effect learning. The simplify the
being programmed, learning by "being told, learning characterization of existing oysters, and will

from a series of examples, and finally learning by assist designers in the construction of

discovery. We see in this categorization a gradual systems. ~ Although the functional decomposition
shift in"responsibility from e designer/teacher su?gested by “he model s not necessarily
to the learning system/student. At “the highest reflected in the physical decomposition of many

level, the system” is able to find its  own existing systems, we do advocate such
examples, and carry on autonomously. correspondence in future learning system designs.
~In the following sections, we present
detailed discussions of the LS model components

' Effects of the Environment shown in Figure In addition,  Appendix
] ] ] contains _ detailed characterizations
The environment in which an LS operates may representative  Al, pattern recognition,
have a profound effect wupon its design, and control systems in terms of the model.
therefore =it is of interest to consider a few may find ‘it helpful to refer occasionally
major environment classes. LS environments can be appendix while reading the following sections.

divided into two major categories: those that

The components of the model are conceptual

The reader

?rovide the correct response for each training
fnstance (supervised learning) and those that do

not (unsupervised learning). = Supervised learning world
systems operate within a stimulus-response model

environment  in which the desired LS output is
supplied with® each training instance. Examples
include Samuel's "book move" checkers program [21]
[22], and grammatical inference programs [12].

.~ Unsupervised LS's operate within an
environment of instances for which the correct

performance learning

element £lement

N/

response is not directly available. The version of
Samuel's program which ‘learns b){h_playlng checkers
i

against an opponent falls into thjs category [21].
Learning systems operating within this ‘type of

instance

selector

blackboard

eritie

environment~ must themselves infer the correct
response to each training instance by observation
of system performance for a series ©of instances.

As "a result, assignment of credit or blame for
overall performance to individual responses can be
a problem for these systems .

~ Environments can be further categorized as
"noise-free" or "noisy". Noise-free environments,
such as that of Winston's structural description 5.2
learning program [32] provide instances paired
with correct  responses in which the data are

Performance Element

The performance element uses

Figure 1. The Components of a Learning System

the learned

ask.

information is
information

assumed to be perfectly reliable. Noisy information to perform the stated t
environments, on the other " hand, do not provide been included ~the LS model because
such perfect information, as is usually the case intimate relationship between what
when real data are involved s attern recognition to be learned and how this learned
and control systems frequently operate “within to be used.
noisy environments [1] [5] [6]).

Performance

more to the

. elements are usually tailored
requirements of the task

to the architecture of the LS. In

5 The Proposed LS Model erformance element
= rEr)1ode without learning, independent of

Samuel s checker Flayingb_pilj?gratm
ability to

We are concerned with the functional

the L
description of LS's and their interaction with the [21] [ any LS, however, the
environments in which they oEerate. Many of the improve = performance presupposes ~a  method
functional components of an S are essential to communicating learned information to
intelligent systems in general, as noted also by performance element. Since its architecture must
Simon and Lea [2*0. allow learned information to affect its decisions,
additional constraints ~ are placed on
performance element within an LS. The performance
element should be constructed so that information
about its internal machinations is readily

S

available to
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domain than
) general,
can be run in a stand-alone
the rest of

the other system components.
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information can be used to make possible detailed
criticism of  performance, and intelligent
selection of further instances to be examined by
the system.

The performance elements of existing systems
also vary In the ways in which they may be altered
by learning. For example, systems  whose operation
is determined by a set of production  rules [30]
[31] . have the potential to exhibit = richer
variations than systems whose operation is keyed
({)P% to the adjustment of parameter values [14

5.3 Insta,nce Selector
The instance selector selects trainin
instances from the environment that are to be use
b?/ the | It is a functional component, not
clearly isolated in earlier adaptive system
models.
In reviewing _existing LS's we have found
that methods for ~ instance selection vary mainly
along.  the dimensions of responsibility and
sophistication. ~ The responsibility for instance
selection varies between  the extremes of
completely external ("passive") selection, and
completely internal ("active") selection.
Instance selection in Samuel's book move checkers
program _[21 2] s externally controlled,
whereas Popplestone”s program [20].” which learns
the features that characterize a winning position
in tic-tac-toe, generates its own raining
instances. It forms alternate hypotheses, and then
generates instances to choose among them (relying
upon an_ external critic to evaluate these
instances).  In the adaptive systems literature,
Tse and " Bar-Shalom [27] use a form of active
instance selection known ‘as "dual-control". They
adjust the input to a system in such a way as to
simultaneously control "its output and” obtain
information about its internal structure.

. The degree
instance  selection
consideration. In

of sophistication wused for LS
is also an important
ide _ order to qualify as
sophjsticated, an instance selector ~must be
sensitive  to the current abilities and
deficiencies of the performance element and must
construct or select instances which are designed
to improve performance. Winston [32] has shown™ the

advantages to be accrued through presentin
carefully constructed examples and "near-misses
of the "concepts to be acquired by an | In
General: careful instance selection” can_ improve
he reliability and efficiency of an LS. We must
note, however, that this may not _alwa}/s be
permitted by the environment” in which the LS
operates, as’ s 8enera|ly the case for adaptive
control systems [0].

54  Critic

The critic analyses the current, abilities of

the performance element. It may pI@I_yp| three roles;
EVALUATOR. DIAGNOSTICIAN, and ERAPIST. The

critic_ always operates as an evaluator In that it
embodies a standard by which to _assess the
behaviour of the performance element. This is the
role that has been emphasized in earlier adaptive
system models [10] [11] [25].

. The  critic may . also operate as a
diagnostician, _and localize the reasons for poor
erformance.  This type of behavior is essential
or resolution of the credit assignment problem
described by Minsky . [18]. In “Its, role as
diagnostician, the critic. ‘is _exemplified bx the

t[)g%]classifier and summarizer in  Sussman's

Finally the critic = may operate as a
therapist, and make specific recommendations for
improvement or suggestions about future instances.
In° Waterman's poker player [30], the critic as
therapist suggests the bet that 'should have been
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made by the performance element for a particular
training instance.
Not all systems exhibit sufficiently complex

behavior to_warrant critics that fulfill all three
functions. The critic as therapist in particular
is not often seen in simple systems.

_The dividing line between  critic
learning element is difficult to distinguish,
it is certainly possible to view therap as a
function of the learning element, rather than one
of the critic. However, in mapping existing LS's
into our model® we have adopted the conventjon
that the critic s recommendations to the learning
element are at an abstract level removed from the
implementation considerations such as
rePresentatlon. ~ This clearly  separates
different functions of decidin what kind
change is needed and deciding ow to implement
that ~change.

and
and

the critic

the human who uses the system.
For ~example. MYCIN/TEIRESIAS [H] wuses  a human
critic, acting as evaluator, diagnostician, and
therapist to suggest alterations to its rule base.

In some LS's the functions of

have been left to

5.5 Learning Element

The learning element is an interface between
the critic ana the erformance element,
responsible for translating the abstract
recommendations  of the critic into specific
changes in the rules or parameters used by the
performance element.

information
for example
olynomials
tables

for learned

Representations
They include,

exhibit great varieta/. i
;I)_roduchon rules [30], parameterized
21], executable procédures [26], signature
[22]; stored facts . and graphs 32].. The
method of incorporating new learned information is
dependent upon this representation, and even among
systems which use similar representations,
competing methods are found (contrast, for
example,” [3] and [30]).

. The extent to which the learned information
is altered in response to each training instance
is an important LS design consideration. In some
systems [hi32]. the learning element incorporates
exactl the "Information supplied by the critic.
Were the same training instance to” occur later,
the response of the performance element would be
exactly as _the critic advised for the
occurrence. This type of learning is well
to environments which provide perfect data
systems with reliable critics. Under these
conditions the LS will converge rapidly to the
desired behavior. If such a system were provided
with an incorrect classification | the
environment or less than  reliable advice "by the
critic, however, it might commit itself to
incorrect assumptions from which it is difficult
to recover. ystems which make less drastic
chances to the learned knowledge on the basis of a
single training instance are less vulnerable to
imperfect _information, but conseqtuently require
more training instances to converge to the desired
behavior. any statistical S's fall into this
category  [19]. Other systems consider several
training instances at a time in_ order to minimize
the effect of occasional noisy instances

first
suited
and to

5.6 Blackboard

The blackboard of our model
base  which also functions as_  a system
communications mechanism. It is similar to the
concept introduced in the HEARSAY system [15]. The
blackboard holds two types of information: the
information usually associated with the "knowledge
base" in programs, and the temporary
Information used by the LS components. The
knowledge base often contains the set of rules,
parameter values, symbolic structures, and so on,

is a global data

Smith



currently being wused by the performance element.
Such = information can "be wused as_an aid to
sophisticated instance selection if it is readily
available. The temporary, system-oriented
information includes, for example the
intermediate decisions made by the performance
element in_ selecting a  particular response.
Detailed criticism by the critic is dependent upon
the availability of this information.

In many existing systems this
not so clearly seéeparated or
communication links between functional
especially, are often programmed directly.
the same ° information is required by many of the
individual functional components “of “any LS,
however, a blackboard is 'a more appropriate
communications mechanism.

information_is
defined. The
components,
Because

5.7 Worses Model

Whereas the blackboard contains information
that can be altered by the LS components, the
world model  contains the fixed = conceptual
framework within which the system operates. The
contents of the world model include definitions of
objects and relations in the task domain, the
syntax and semantics of the information LO be
learned, and the methods to be wused by the LS.
Among task domain definitions are, for example,
the “rules of a game and the representation or
inputs and outputs for the performance element.
This part of the worjd model simply defines the
task of the performance element, and” the standard
of performance (the evaluation function) to be
applied by the critic. Domain specific heuristics
are also commonly added to the world model of Al
systems to guide inferences made by the S (e.g.,
the blocks ~world heuristics of inston’'s program
132]). Definitions of the syntax and semantics of
information to be learned define the mode of
c?mmurpcanon between the learning and performance
elements.

and constraints from which
composed are of critical
g{n and characterization of
LS's. Although many of these assumptions are often
hidden in the various functional components, the
LS designer and user must both be aware of each of
them. We believe that, where possible, world model
constraints should be made ‘explicit in order to
allow for their modification during the design
process.

The assumptions
the world model is |
importance in the desi

6 Multi-Layer Learning Systems

Although the world model cannot be altered
by the LS that uses it. the designer can alter its
contents in order to improve LS ~performance. He
often changes parameters and procedures of the
basic . LS “after observm? and criticizing its
behavior for some carefully chosen training set.
These alterations result in a new version of the
LS, which is then tested on some training set, and
so on. The designer views the whole LS as a system
whose performance needs = improvement, an he
selects instances, criticizes performance, and
makes changes accordingly. In other words, the
designer's activities can ~ be modeled by a system
whose components are just those of Figure .\ "This
leads us to the concept of layere LS's, each
higher layer able to 'change the world model
(vocabular%, assumptions, etc.) of the next lower
layer on the basis of criticizing_ its performance
on a chosen set of instances. Thus, adjustments
can be made to the world modeJ of some learnin
system LS1 by another learning system, LS2, whic
has its own functional components (critic, world
model, etc.). In turn, it 'is conceivable that a
third 'system, LS3, could adjust the world model of

S2, and  so on. The designer constitutes the
final critic, of course, operating above of the
"top-level" LS. Each lower layer constitutes the

layer, and

performance element of the nexf higher
through the

inter-layer communication is effected

Knowledge
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blackboards of the various layers. The use of a
blackboard in the single layer LS model was partly
mot|tvatted by its attractiveness in the multi-layer
context.

. This multi-layer architecture ( be
differentiated from "a hierarchical architecture.
The latter involves only bottom-to-top propagation
of information, whereas the ~ former involves
bidirectional information passing; that is, the
effects of adjustments made in a layer may
propagate both 'to lower and higher level layers.

One exist_in%;
Iagered system is th
22]
or

can

LS which may be viewed as a
) e version of” Samuel 's program

which learns a polynomial evaluation function

selecting checkers moves (see Appendix 1
for details). The lower layer (L,S1§ in this
system adjusts the coefficients "of a given
game board features in order to improve
performance of the move selection program. The
second layer system (LS2) adjusts the set of board
features used in the evaluation function in order
to improve the performance of LS1 Since LS1 is
contained in LS2 as the performance element, all
the assumptions necessary for its operation also
belong to the LS2 world model. In addition, the
LS2 world model contains assumptions about the set
of allowable game board features and the standard
for evaluating LS1 performance.

A _single
outside its world model
to its way of viewing
"paradigm shift", .

owever, a shift in

set of

never move

layer LS, then, rr
revisions

to make radical |
the task to achieve a
as discussed by Kuhn [13].
the conceptual” framework of
LS1 could be made by a properly programmed LS2
2], We believe thai a layered approach such as
hat described above provides a  useful system
organization _for learning at various levels of
abstraction in complex domains. Although there
are examples ~of this kind of layering in the
literature [21] [29], no one has carried 1t as far
as our model suggests, and it appears that we are
just now reaching the point of wunderstanding
single layer learning systems well enough to
consider developing more sophisticated systems.

can

7 Summary

The proposed LS model provides .
Ian]guage for characterization and comparison of
different types of learning systems which operate
in a variety of task domains. We believe the
model is a useful conceptual guide for LS design,
because it isolates the essential functional
components, and the information that must be
available to these components.

We have alluded to a number
features for future learning system des;j
First, the design should be modular’ and individual
modules shoul _correspond  to the functional
components shown in the model. The knowledge used

the system should be made explicit and
collected,” as much as efficiency considerations
ermit, in a world model component. The parts of
he LS that are to be adjustable especially must
be explicitly exposed. e have emphasized the
importance of intelligent criticism, and suggested
that ~ active instance selection be further
examined. Finally, we have suggested a multi-layer
architecture for” learning at different levels™ of
abstraction.

a common

of desirable
designs.

Appendix i
Characterization of Existing Systems
In this appendix several existir;é; LS's are
characterized using the framework provided by the
model described in Section 5. The systems selected
are representative of several approaches to

machine learning. Because the blackboard contains
information_in a state of flux
not specified explicitly
characterized below.

contents are
the systems

its
for

Smith



Mgta-DENDRAL, Buchanan, et al. [3)

_[u_meg,: Learn to predict data points in the mass
spectra of molecules,

Set of all known molecule/datz-point
pairs.

Eigtgrggggg E;%mgugz Predicts peaks (data points)
n  mass-spectra of molecules using learned
production rules. Emplois a model of mass
spectrometry for trans atin% between mass-
apectral processes (predicted by the rules) and

data points in the apectrum.
t Accepts a set of known

molecule/spectrum pairs from the user,

tic: Evaluastion - determines the suitability of
ne  set of predictions pgenerated by a rule,
Magnosls - states whet her the rule is
acceptable, too specifie, or tob general.
Therapy - recommends adding or deleting leatures
to the left-hand sides of rules.
: Conducts a heuristic search
roug € space of plausible rules USinf a
predefined rule generator. At each step In the
search the potential rule’s performance 1is

reviewed by the eritic.

B Representation of molecules as
graphs, production rule model of mass
spectrometry, vocabular{ of rujes used to
represent learned information; heuristics used by

the eritic in directing the rule search.

Learning Structural Descriptions from Examples.

Winston {32}

Purpose: Learn to identify blocks world structures
(such as arches and towgrs).

Environment: Set of °  possible line
drawing/structure-classification pairs.
Performance Element: Decides class of structures
towhich the input structure belongs. Uses a
model of the structure class supplied by the
learning element.

Instance Selector: instances
supplied

Accepts training
J individually by the user. o .
Critic: Evaluation - compares the classification
made by the  Performance Element against the
correct * classification_ as supplied with each
training instance. = Diagnosjs generates a
comparison description pointin out differences
between the model and the structure description.
Learning Element: Constructs a model of the class
of structures under consideration. Examines the
comparison description supplied the critic,
and modifies the model to strengthen or weaken
the, correspondence between the model
training instance. ) .
World Model: Representation of scenes as line
drawings, method of translating line drawings to
?hraphlca descriptions, grammar for representing
e _ learned information, domain-specific
heuristics for resolving among possible changes
to each structure class model.

by
and the

(211 [22]

Checker Plaver. Samuel

Purpose: Learn to play good game of checkers (here
we discuss only tﬁe version of the program which
learns a_linear polynomial evaluation function b
examination of moves suggested by experts ("boo
moves").
Environment: Set of all

legal game boards.

LS1 (lowest layer):

Purpose: Learn a good set of
combining board _fegatures in a
evaluation function.
Performance Element: Uses the
function 1o rank plausible
board position. ) )
Instance _Selector: Reads instances from a list of
pre-defined game-board/recommended-move pairs.
Critic: Evaluation - examines the ranking given to
the book move by the performance  element.
Diagnosis - suggests that the book move should be
ranked above all other moves.

coefficients for
linear polynomial

learned evaluation
moves for a given
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of linear

Learning Element: Adjusts weights
correspond to

[)olynor_m_al to  make move selection
he critic's recommendation.

World Model: Syntax of game board,
features of linear pol(}/_nomlal
function, method for adjusting
function, and rules of checkers.

LS2:

Purﬁgose: Improve
selection of a g
Performance Element:
Instance Selecior:
training instances LS1 (via
the blackboard). . .
Critic: Evaluation - analyses the learning abl|l_t¥]
of [S1 (i.e., the LS2 performance .element{ wit
the current set of evaluation function features.
Diagnosis - singles out features which are not
useftul. The_ra{)y - selects new features from a
predefined list to replace useless features.
Learning Element: Redefines the current set of
features as recommended by the critic.

World Model: The LS1 world” model plus the set of
featureswhich may be considered, and the
performance standard” employed by the LS2 critic.

form and
evaluation
evaluation

the performance of LS1
ood set of board features.

LS1.
The

is

by

entire set of

. possible
simply passed to

Poker Plaver. Waterman [30]

Purpose: Learn a good strategy for making bets in
raw poker.

Environment: Set of all legal poker game states.

Performance Element: Applies  the, learned
production rules to generate actions in a poker

game, e.g.. bets.
Instance Selector:
by play against
instance.
Critic: Two ve
different critics.  In
performs the following
decides whether the i .
Performance Element was acceptable. Diagnosis -
gives important state variables for deciding the
correct bet. Therapy - provides the bet which the
Performance Element should  have made. In
"explicit" learning the critic is an expert poker
player . either human or  programmed. In
"implicit" learning, the evaluation ~and therapy
are deduced from the next action of the opponent
and a set of predefined axioms, while diagnosis
is read from a predefined "decision matrix".
Learning Element: Modifies and adds production
rules fo the system. Mistakes are corrected by
adding a new rule in front of the rule
responsible for the incorrect response.
World Model: Rules of poker, features used to
describe the game state, the language of
production rules, heuristics for updating the
rule base, the model of an opponent.

Selects each game state derived
an opponent as a training

the program
both cases
functions:
poker bet

use two
the critic
Evaluation -
made by the

versions of

Model Reference Adaptive Control.
Purpose:

Landau [14]

Construct a "controller"
Freprocesses inputs to an existing s%/stem |
he "plant") The behavior of’ he combined
controller-plant system is to mimic the behavior
of a third system gcalled the "reference model")

on the training data.
Environment: The plant to be controlled, and the
(including disturbances).

sef of possible 'inputs
Performance Element: The controller a system
plant.” Its

whose oufput is used as input to the

behavior Is a function of the input signal, past
/O behavior of the plant, and a set of
adjustable parameters. )
Instance Selector: Accepts data sequence (as input
to the controller) from the environment.

which
(called

Critic: Evaluation - applies a _ measure of
performance which is some function of the
arithmetic difference between the plant and
reference model outputs. In some cases the
reference model is mathematically defined, and
can therefore be considered part of the critic.

Smith



In other cases the reference model is an actual
system, and is considered part of the
environment.

Learning Element: Modifies the parameters of the

erformanceelement

(controller), depending on

Phe performance measure supplied by the critic.

World Model:
invariance,
the

(time
and
the

Control theory assumptions
linearity, etc.) and techniques,
“standard of performance embodied in

critic.

3.

10.

11.

15.

. T. S. Kuhn,
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