AN OVERVIEW OF A PROCEDURAL APPROACH
TO SEMANTIC NETWORKS

Hector J. Levesque
John Mylopoulos
Department of Computer Science
University of Toronto

The purpose of this short paper is to
summarize the salient features of a formal-
ism for the construction and use of a model
representing knowledge of some domain. For
a much more detailed exposition, including
examples and motivation, see [Levesque 77J

where, among other things, portions of the
formalism are represented using the formal-
ism itself.

Although the underlying ideas used
in the development of the formalism are
adaptations from diverse sources, our
starting point is the work on semantic net-
works. A major problem in many semantic
network proposals is the lack of a semantic
theory [Hayes 74] in terms of which one
can explain what a semantic network means.
We are attempting to deal with this problem
by using a "procedural semantics" approach
based on LAbrial 74] in contrast to the
more declarative approach of classical
Predicate Logic.

The most primitive construct provided

by the formalism is the object represent-
ing any single relevant conceptual unit.

A fundamental kind of object is the class
which is a collection of objects sharing
common properties. These objects arc said

to be instances of the class and may them-
selves be classes . A very important kind
of class is the binary relation represent-

ing a mapping from one class to another.
Instances of a relation represent assert-
ions made regarding two objects, one from
each class.

There are four basic operations
defined on classes: create or destroy an
instance of a class, test whether an
object is an instance of a class and
fetch all instances of a class. Similarly,
four"operations are defined for each rela-
tion: assert or deny that a relation holds
between two objects, test whether a rela-
tion holds and fetch all objects that are
mapped by a relation from a given object.
These basic operations can be combined and
parametrized to form programs which are
classes whose instances are called
processes. Programs can be decomposed
into a prerequisite, a main _body, an
effect and a complaint. A~program can
Tail if its prerequisite is not satisfied.
Otherwise, the main body is executed and
if this execution is successful, the
effect part is executed next, else the
complaint part of the program is executed.

To specify the semantics of a given

class (or relation), programs can be
attached to any or all of the operations
for the class and will be used instead of

default programs supplied by the formalism.
In addition, to refine or extend the beha-
viour of a class under its defined opera-
tions, only a part of a program (e.g. a
prerequisite) need be given and the rest
can default to the standard operation.

The objects constituting a model can
be organized in terms of two orthogonal
abstraction facilities called respectively
the ISA and PARTOF hierarchies.

Apart from the conceptual"” gains offer-
ed by having a taxonomy of classes, the
main purpose of the ISA hierarchy is the
inheritance of definitional properties
which is a generalization of the default
mechanism that capitalizes on the expected
similarity between a subclass and a super-
class. The PARTOF hierarchy, on the other
hand, involves the composition of groups
of objects into functional units. Such
units are called structures and the
objects that constitute them, their parts.
For classes, the parts are variables
(slots) which are bound to objects (slot
fi_llers) whenever the class is instantia-

ted The slots may have default values
and relations called dependencies attach-

ing them to other objects and having many
possible procedural interpretations such
as determining the acceptability of a slot
filler or inferring its value. Whereas
relations represent the assertional proper-
ties of a class, slots represent the
definitional properties. Consequently,
the PARTOF hierarchy determines the inher-
itable properties of a class while the ISA
hierarchy specifies the inheritance paths.

The metaclass "program" (the class
of all programs) can be thought of as a
structure having prerequisite,effect etc.
as slots and each program fills these
slots by providing particular prerequisites
etc. This allows programs to be integrated
into the two hierarchies and benefit from
the organization (e.g. inheritance) like
any other class. Similarly, the metaclass
"class" is a structure whose slots repre-
sent the four basic programs for classes
and the semantics of each class are defined
by filling these slots by specific programs.
The default values for these slots (and
the:four similar ones in "relation")
constitute the standard behaviour of
classes and relations providing the primi-
tives in terms of which everything else
can be defined and linking the formalism
to a physical implementation.

References

[Levesque 77] Levesque, H. "A procedural

approach to semantic networks", TR-105,
Dept. of Computer Science, U. of Toronto,
1977. [Hayes 74] Hayes, P.J. "Some pro-

blems and non-problems in representation
theory", Proc. AISB summer conference,1974.
[Abrial 74] Abrial, J.R. "Data semantics"
in Data Management Systems, Klimbie and
Koffeman (eds.), North-Holland, 1974.

Knowledge Repr.-5: Levesque
283



