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Abstract

e of the most interesting questions in the

study of human problem solving is the nature of

the Interaction between a problems intrinsic
structure and a problem solver's strategies or
behaviors. The present paper suggests the use of
techniques developed in research in mechanical
problem solving to assist in formulating and
illuminating this question, The authors also seek
t o develop a relationship between artificial

intelligence mthods and 'structuralist® theories
of cognition by relating groups of symmetry trans-
formations and 'conservation' operations.

Section |: Introduction

e of the most interesting questions in the
psychol ogy of problem solving is the nature of the
interaction between a problems intrinsic struc-
ture and the strategies or behaviors employed in
attempting to solve the problem Several studies
have recently appeared addressing this subject:

1) the learning of mathematical structures such as
the Klein group or the cyclic group of order four,
Branca & Kl I patrick [13, 2) the study of analogy
and transfer in related problem solving situations.
Reed, Ernst, & Banerji [23, Egan & Greno in (3],

3) the development of mechanical theorem provers
both in equation solving, Bundy [4], and in ele-
mentary geometry, Gelernter [5] and Goldstein [63.

This research,
shares a common interest: understanding t he
effects of problem structure for instance, a
problem s possible subproblem and symmetry decom
positions on efficient problem solving.

This paper suggests techniques that my
further aid in formulating and illuminating this
question. Mre ambitiously, the authors seek to
develop a relationship between artificial intelli-
gence methods and Piagetianor "structuralist'

theories of cognition,

Nilsson [7) has defined the state space rep-
resentation of a problem as the set of distingulsh-
able problem configurations or situations together

with the permtted moves or steps from one problem
situation to another. Thus the state space of a
problem consists of an initial state, together with
all the states that may be reached from the initial
state by successive legal moves in the problem

e or more of these successor states are class-
ified as goal states. The state space of a prob-
lem represented as a non-directed graph, will be
unique only if the problems description clearly
delinlates its initial and goal state(s) andits
set of legal nmoves Egan & Greno [33. Finally,
the concept of the state space of a problem can be
generalized to the analogous structure for an
N-player game, i.e., the game tree or graph.

al though from diverse points of view,
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Banerji [8], Banerji a Ernst (3 and other

researchers have of fered mathematical descriptions
to characterize state spaces. This 'state space
al gebra* allows such concepts as problem conpar-
ison, decomposition, and extension to he well de-
fined and also allows problem solving studies in
the areas of problem analogy, transfer, and gen-
eralization to be extremely precise.

Inearlyartificial intelligenceresearch
both Gelernter's Geometry Theorem Prover [53 with
i ts use of the symmetries within the syntax of a
problem s description, as well as Newell, Shaw
and Simon's General Problem Solver [103, with its
utilisation of a problems possible subproblem
decompositions, af firmthe need for as complete as
possible exploitation of a problems structure for
effective problem solving. Again, in plan
formation, Sacerdot!| [113 uses ABSTRIPS to focus on
the important features of a problems structure
and to ignore the unnecessary detail that [eads
STRIPSto combi natorial problems.

Newel | and Simon's |ater work [123 permits
inprinciple a very detailed interpretation of an

individual's problem solving 'protocol' as steps
ininformation processing. However, as the
"problem space’ for this research varies from

subject to subject for each individual problemit

also lends to their model a definite post hoc

character. Since no final commtment concerning
the structure of the 'problem space' is nmade until
after the problem solving is observed, the poten-

tial for predicting the effects of a problems
structure on a subject's problem solving behavior
seens to be lacking.

In the next section two ideas are introduced.
First, we assert a fundamental correspondence bhe-
tween conservation operations and symmetry trans-

formations. In the sense of Piaget, a conserv-
ation operation is the ability of a problem solver
to respond that two different states of the en-

vironment are equivalent when they are function-
ally the same, that is when they both possess the
same value for some perceptual or cognitive vari-
able. For example, 17 is said to be equivalent
to 32 modulo 3, since both have the same remainder
on division hy 3. In general, a symmetry trans-
formation is a mapping which carries one problem
state into another in such a way as to leave un-
changed i mportant observable features. In the
everyday sense of the word symmetry these features
are geometric, for example, the transformation
whi ch changes a particular configuration of objects
into its "mrror image my leave the appearance
of the configuration unchanged. We are interest-
ed, however, in a more general notion of symmetry,
for example, symmetry within a problems descrip-
tion and underlying problem structure, as well as
in the mre readily apparent geometric symmetries.




The second idea pursued in this sectionis
that in problemsolving, a subgoal and aubproblem
decomposition of a problem my govern a problem
solver's behavior even when he or she is not
consciously seeking to arrive at that particular
subgoal, and despite the fact that the infra-
structure of subproblenmts within the main ﬁroblem
my not on the surface be apparent. Furthermore,
given a aubproblem decomposition, one kind of
symetry whose effect my be explored is the pres-
ence in the problemof aubproblems of |dentical
(I'somorphic) structure.

Inthethirdsectionadditional concepts con-
cerning a problems state space are rigorously
defined, and several hypotheses of fered concerning
effects of problemstructure onsubject's paths
through the state space, such as a predom nance of
?Qal and subgoal directed paths, and an increased

Il kelihood of congruent paths through isomorphic
aubprobl ens.

Inthe fourth section, the Tower of Hanoi
problem (Nilsson [YJ) and the Tea Ceremony problem
(Hayes & Sinon in t3l) are used to illustrate the
main ideas devel oped. Finally, sone suggestions
for further experimental investigation are pro-
posed.

Sectionl | : (A Conservation Operations and

Symetry Transformations

(B)

(A In Tic-Tac-Toe a player, say X, is said to
“fork' his OEponent en he places his X in such a
position on the board that 1) there are as a resul
two possible "winning mves* for X, and 2) O is
able, in the next nove, to block only one of these
"winning moves'. There are several different
«forking" positions possibleonthe Tic-Tac-Toe
board and these relationships are conserved or in-
variant over all rotations and reflections of the
gane board. Thus i t can be said that thereis a
conservation or functional equivalence among the
different "forking' situations. It is also poss-
i ble toconstruct symmetry transformations of one
"forking' situationontoany other. The authors
would |ike to establish a logical equivalence be-
tween conservation operations and groups of sym
metry transformationsfor characterizingthisand
other problemsolving situations (Goldin & Luger
[13} Luger [14]).

Subprobl em Decompositions

The group is the paradigm in mathematics of
the methodol ogy which has bheen termed 'structur-
alist' (Piaget [15]). This methodol ogy has been
appliedto fields of study as diverse as anthro-
pology, linguistics, andpsychology, aswell asto
mat hematics ?15]. According to Piaget a struct-
ure in the mst general sense is a systemor set
withinwhichcertainrelationsor operations have
been defined, embodying the concepts of wholeness,
transformation, andself-regulation. For exanple
a systemof kinshipconstitutes astructurein

anthropol ogy as does a group in mathematics. I n
Plaget!an devel opmental psychology, the conser-
vation operations - conservation of number, volume

quantity, etc. - aretransformations whichrepre-
sent the cognitive structures assumed to underlie
certainpatternsof behavior. Acquisitionof

these conservation operations by children defines

t
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sequential stages inthier cognitive development.

Inviewof the parallel fundamental roles
played by group structures in mathematics and
cognitivestructures indevelopmental psychology,
it is natural to try to look at the acquisition
of Plagetlan conservation operations as equival ent
to the acquisitionof agroup of symmetry trans-
formations.

For an observable (such as number, quantity,
etc.) to be conserved neans in fact that when a
given state i s someKow transformed into an altered
state, the value of the observable is unchanged
fromlts initial value. O course, for the second
state to he regarded as different fromthe first
state at al | , there nust be at | east one other ob-
servable which does change in value under the
transformation, and which is not conserved by the
transformation. A symetry transformation nay be
defined, then, as a one-to-one mapping from the set
of statesontoitsel f whichleavesinvariantthe
specifiedrelationships amng the states. Any
collectionof such symetry transformations gener-
ates a symetry group.

Let us say that a certain sYrTmetry group G
conserves a given set of observablea when for each
state S is the system al | states which may be ob-
tained from£ by applying symetry transformations
from G have exactly the same values of the spec-
ified observables. The maxi mal symetry ?roup
possessing this property for a given set of observ-
ables is the group containing every symetry trans-
formation which preserves the values of the spec-

i fied observables.

To say that a subject 'conserves number', for
exanple, neans that no matter how a given state of
the environment is transformed into analtered
state by simply moving the objects within the en-
vironment around, the value of the observable
'‘nunber' - according to the subject's report -
mai ns unchanged.  Thus, a group of one-to-one
surjective mappings froma region of R onto itself,
maps the set of states onto itself in such a way
that a state specified by n_points continues to be
specified by n points after it is transformed, and
so has the sane val ue of the observable' nunber' .
| 't is not difficult to see that this set of mappings
fits the definition of a syrmetr?/ group conserving
that observable. Thus, theabilitytoconserve
number may be seen to be logically equivalent to
the acquisition of the structure of a symetry
group, that is, the ability to undo (invert) any
rearrangement transformation and to catenate any
two such transformations.

re-

It my be hypothesized that stages in the
acquisition of such a sKmretry group structure
actually correspond to the acquisition of partic-
ul ar subgroups of this symetry group. For
exanple, a child mght at sone time respond con-
sistently that the number of objects is unchanged
when a configurationis merely translated a cer-
taindistance in space, without i ts having been
spread out or otherw se rearranged. If this were
to occur we would say that the subgroup of K con-
tainingall translations had beenacquiredas a
symetry structure. Verificationofthis hypo-
thesis would further demonstrate the usefulness of
the conservation operation/symmetry group corres-




pondence.

Inarguingfor thereformulationof conserva-
tionoperations interms of symmetry groups, it
seens natural to cite exanples of systems i n which
the symmetries are familiar, but the identification
of conserved quantities may be cunbersone. Many
exanpl es drawn fromproblemsolving turn out to be
easier to describe in terms of symmetry groups than
interms of quantities conserved by the transform
ations in those groups. For example, in Tic-Tac-
Toe, thereareninedistinguishablestates which
can be reached by the first move of the first play-
er. However, modulotherotationorreflection
symmetry, only three distinguishable states exist.
Inconstructingthestatespacerepresentationfor
Tic-Tac-Toe, one coul d choose to represent al | the
distinguishablestates of the system and soobtain
a very large state space; or one could use the
mich smal | er state space obtained by regarding
those states conjugate by symetry as equival ent.
This |l atex choice corresponds to reduction of the
state space representationnoduloi ts symetry
transformations.

In studying human problemsolving, we must
take into account the possibility that the sub-
ject's behavior does not initially reflect all the
symetry which is actually present. Therefore,
to mp the subject's behavior faithfully, we
shoul d begin with the expanded st ate space repre-
sentation,i.e.,thestatespacecontainingal |
possible legal states of the problem  This ex-
panded state space (and it s formal properties)
wi |l be constant across al | subjects solving this
problem and thus mke possible mre than a post
noc analysis (p.2).

Tic-Tac-Toe al so provides an exanple of a
gane i n which the rotation and reflection symetry
I's easilyrecognized, but the corresponding con-
served quantities are cunbersone to define. (e
such quantity m ght be the nunber of Xs in corner
squares, a nunmber unchanged by the rotationor re-
flectionoperations. MNunber Scrabble [12], a
gane isomorphic to Tic-Tac-Toe, my be described
as follows. The integers 1, 2, 3, ..., 9 are
written on a pad, and the two opposing players
take turns selectingsinglenumbers. Neither
player my select a nunber already taken.  The
goal is to obtain any three nunbers which add up
to exactly fifteen, The i somorphism between this
gane and Tic-Tac-Toe can be illustrated by placing
the integers 1 to 9 in the Tic-Tac-Toe grid in
such a way that each row, colum, and diagonal add

to 15 A player trying to

| earn Nunber Scrabble would 413 e

not have available the geo- |
metric symmetry presented 915

by the Tic-Tac-Toe grid. 217 |6

Vintt PAor familiarity , , "
with the 'magic square',

a player would have to seek rules such as, "I f the
first player chooses £, then the second player has
to pick an even nunber to avoid [ osing'. Unbe-

knownst to the player, therelevant 'observables’

are just those which are conserved by the Tic-Tac-
Toe symmetry - 'even nunmbers sel ected', 'odd num

bers excluding 5, and so on.

Tic-Tac-Toe and Nunber Scrabble illustrate
(a) that symetries nay be more convenient than
the quantities conserved by those symmetries for

We have also seen how the presence of
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formulatingthe notion of equival ence among st ates,
(b) that symmetries and conserved quantities are,
however, logically interchangeable, and (c) that
the rules of a gane may be reformulated 1 n such a
fashion as to nmake identification of the conserved
quantities easier or nore convenient than the
characterizationof thesymmetries.

Finally, the formal correspondence between a
group of symmetry transformations and the observ-
able quantities conserved by these symmetry trans-
formations suggeststhat acquisitionof symmetries
my be as fundamental to cognitive devel opment as
s the acquisition of conservation operations.
symmetry may
be represented in the state space of a problemor
gamne.

(B) A second feature of a problemwhich is anen-
abletostudyutilizingthestatespaceisaprob-
lems Infrastructure of subproblems. It has been
coomonly hel d that aneffective problemsolving
technique is toestablish subproblems or subgoals
whose sol utionor attainment mght assi st inthe
conquest of the main problem Polya [17] suggests
such an approach in discussing his problemsolving
"heuristics', i t forms the basis of Newell, Shaw,

& Simon's General Problem Solver [10], and suggests
to Nilsson @, p 80] one way to reduce the state
space. But to establish rigorously the role of
such identification of subgoals in human problem
solving behaviour remains difficult and psychol-
ogists are divided even over the assumption of

'goal -directedness' (Kimble [17] sec. 13). Char-
acterization of subproblems as subspaces of the
problem s state space shouldassistininvestigat-
Ing the behavioral consequences of a subproblem
decomposition by the problem solver. (e nay
further discuss, independently, the group of sym
metry transformations of a subproblem, or explore
the effects of the presence in a problem of dif -
ferent subproblems havingl dentical (isomorphic)
structure,

The above considerations suggest the utility
of mapping the problemsolver's steps as paths
through the state space representationof the

problem  Baaed on the formal properties of the
specificproblens state space, suchas its sym
metry and decomposition into subproblems, hypo-

theses can be formulated which predict the effect
of this structure on the paths generated by the
problemsolver.  Then the door is open to the
devel opment and empirical test of general algorith-
mc or mechanical procedures that mght replicate
the Froperties of the paths generated by humn
Frob emsolvers. The decisiontorepresent prob-
emsolving behavior as paths through the state
space of the problemis further motivated by the
desire to make precise the data which needs to be
‘explained by a theory of human problemsol ving.

In practice it my not always be easy to rep-
resent behavior in this fashion, since the uniqu-
ness of a problem's state space representation
relies on the preciseness of the problems state-
ment.  Further, a problemsolver's production of
paths depends on his or her ability to discrimnate
among the perceptual or cognitivevariables which
characterize the states and legal moves of the
problem  The best experimental situationthen, is
a probl emwhose states correspondtodifferent
discrete situations of an actual physical device,



such as Tic-Tac-Toe, N-plle NNM or the Tower of
Hanoi and Tea Ceremony problems to be discussed
insectionfour. Other available neans for re-
cording a subject*s hehavior as a succession of

states entered my Include recordings of oral
coments, written notes, or even gestures and eye
movenments (Bartictt t193, Newell & Sinmon Cl2), and

Young C191).

Section | I | : (A Definitions and

(B) General Hypotheses

(A) Before proceeding with further discussion,
definitions are given for the concepts central to
the present approach. These definitions are
based on and expanded from those given by Nilsson
J?]. The state space of a problemis the set of
i stinguishable situaftions or states of the prob-
lem together with the permtted fransitions or
mves fromone state to another. The problem
nust specify an initial state and one or nore goal
states, and so the stafe space my be visualized
as a directed graph (Figure 2).

A eubspace of the state space is a subset of
the stafes, fogether with the permtted transitions
whi ch obtain between these states in the subset.

A subproblem is a subspace of the state space with
Its own Tnitial and subgoal state(s). For a sub-
problem i T Ts required that if the Initial state
s not the I'nitial state of the problem it can be
entered froma state outside the subspace; and if
a subgoal state is not a goal of the main problem,
it can be used to exit fromthe subspace - I.e.,
to enter a state of the problem outside of the
subproblem  There are often many ways to de-
conpose a particular probleminto subproblens,
which correspond to different choices of subspaces
within the state space.

Two problems (or subproblems) are said to be
Isomorphic if and only if there is a bijective
mapping from the state space of the first onto the
state space of the second and: 1) the initial
state of the first problem is mapped onto the
initial state of the second, 2 the set of goal
states of the first problem i s mapped surjectively
onto the goal states of the second, and 3) a trans-
Ition from one state to another is permtted in
one problem if and only if the corresponding trans-
i tion is permtted in the other.

An aut omorphism of a problemis an isomorphism
of the problemonto itself and is called a sym
metry transformation or symetry automorphism
The set of al I tThe automorphisms of a problemforms
a group under the binary operation of composition
or the successive application of two automorphisms.
This group is called the symmetry group or auto-
mor phism group of the problem

be distinguished

The states of a Froblem Yy
iscrete values for

by virtue of having ditferent

a set of variables called observabhles. These
observables, characterizing the probfem states,
my refer to color, position, or numer, etc. An

observable is said to be conserved by a group of
symetry transformations, Tf and only if for any
state, the value of that observable is unchanged
by any element of the group of transformations.
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Let S be a state of a problem and consider
the set of al | states which can be obtained by
applying automorphisns or symwetry transformations
froma group Gto S.  This set of states is called
the orbit of S under the automorphism group G.

Two states are said to be conjugate nodulo the
synmmetry group G | f they are in the same 0rbit
under G

The orbits within the state space form mutual-
ly disjoint equivalence classes of states. A new
and simpler state space my now be constructed
canonically by considering each equivalence class
as a state In itsow right, or alternatively, by
selecting one representative state from each orbit.
The state space thus obtained is said to have been
reduced with respect to its symetry group G, or
reduced modulo G G my be the full automorphism
gLoup ?T fthe original state space, or any subgroup
thereof.

A path in the state space of a problemis a
sequence of states 31,28_, ..,S such that for

n
-1 2 ,n-1 the pair S ,S represents a
permtted transition of the problem A solution
path for a problemis a path in which E. is the

s a goal state, with 82,...,
n
S . neither initial nor goal states of the prob-
| em Two paths within respective isomorphic prob-
lems are said to be congruent (modulo the isomor-
phism |f one path is the image of the other under
the isomorphism

We have seen above that one way to reduce the
size of the state sEace s with respect to a group
of symetry automorphisns of the problem A
second means of state space reductionis withre-
spect to the subproblem structure. The state
space may be described, albeit nonuniquely, as a
union of mutually disjoint subspaces, such that
for any ordered pair of subspaces, a transition
exists froma state in the first to a state In the
second. An entire subspace may thus be regarded
as a single state in the reduced state space, and
a transition is permtted from one subspace to
another whenever a transition does in fact exist
froma state in the one to a state in the other.
Each subspace, now a state in the reduced state
space, becones also a subproblemof the original
probl em whenever a particular entr( state |s des-
ignated as «initial*, and any or all of Its exit
states are designated as 'goals'. We then say
that the state space has been reduced modulo i t's
subprobl em decomposi tion.

Initial state and S

Finally, one my address the concept of a
non-random or a goal-directed path within a problem
or subproblem Roughlr speaking, a non-random
path would differ locally - perhaps in the nunber
of "turns* or 'loops' from random paths generated
through a problems state s[)ace representation. A
goal-directed path is a solution path which does
not 'double back' on itself within the state space,
moving consistently *towards' rather than 'away
from the goal state. Criteria for defining
"loops', or 'doubling back', or 'distance fromthe
goal state', etc., are for the present to be est-
ablished in the context of each specific problem
under consideration, Wile these criteria my




differ across problems of different structure,
they wi || remain constant across populations of
subjects solving a particular problem

(B)  In problemsolving it my be assuned that the
solveractssequentiallyuponproblemsituations
(states) to generate successor states, aprocess
which can be described, as discussed above, by
means of paths through a state space represent-
ation of the problem |t is nowhere suggested
that the problem solver 'perceives' the state
space as an entity during problemsolving. The
syoraetry properties which have been discussed are
formal properties of the state space, which may
(asinTic-Tac-Toe) or may not (as i n Nunber
Scrabble) correspond to geometrical or perceptual
properties of theproblemreadily apparent tothe
problemsol ver.

The approach to this stage of research has
been to formul ate hypotheses respecting the paths
generated by problemsolvers in the state space of
a problem Such hypotheses 1) are motivated hy
the formal properties of the stafe space under
discussion, and 2) represent the anticipated
effects of theproblemstructureinshaping prob-
[emsolving behavior. The folTowi ng hypotheses
of a more-or-less general nature are suggested.

Hypothesis 1

(a) Tnsolving a problem (or subproblem the
subject generates non-random goal-directed Eaths
Inthe state space representation of the problem
(or subproblem, and (b) when sub-goal states are
attained, the path exits fromthe respective sub-
probl ems.

Hypot hesis 2

[dentifiable'episodes' occurduringproblem
solving corresponding to the solution of various
subproblems.  That 1 s, path segments occur during
certainepisodeswhichdonot constitutethe
(direct) solutionof aproblem but whichdo con-
stitute the solution of the isomorphic subproblens
of the problem

Hypot heel's 3
The problemsol ver's paths through isomorphic
subproblems tend to be congruent.

Hypot hesis 4

Given a symetry group G of automorphisns of
the state space of a problem there tend to occur
successive path segments congruent modulo G in the
state space.

It my be that the validity of hypotheses 1
and 2 depends on the particular way that the state
space of the problem is deconposed into subproblems
since such a decomposition is often not unique.
Hypot hesis 4 (szrrmetry acquisition) issuggestive
of the "insight' phenomenon which changes the
gestalt of the problemsolver (Wertheimer [20])
and often plays an important role in the eventual
problem solution,

These hypotheses are not to he regarded as a
definitive [1st, hbut rather as prelimnary and
Indicative of the kind of analysis possible of the

effects of problemstructureontheproblemsolver's

behavior. Ifvalid, these hypotheses wouldoffer
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fairly general constraints on the properties which
mechani cal models nust display to simulate humn
problemsol ving.

Section IV: Two Problem Solving Studies
and Suggestions for Further Research

Let us seek to make the foregoing ideas more
concrete by considering two problems that have
been used for empirical 1nvestigation (Luger Cl4],
[21]). The Tower of Hanoi problem has been
extensively discussed in the literature Q] and
| tsstate space consideredby Nilsoon|[7]. [Itis
a natural problemto consider both because i t s
wel | defined state space has a rich subproblem
structure and because i t s state space possesses
somewhat more symmetry than is immediately ap-
parent in the problemenvironment.

In the Tower of Hanoi problemfour concentric
rings (labelled 1,2,3,4 respectively) are placed
in order of size, the largest on the hottom on
the first of three pegs labelled A B C); the
aﬂparatus ispicturedinFigure 1. The object of
the problemis totransfer al |l therings frompeg
Ato peg Cin the mninmumnunber of moves. Only
one ring nay tlJe mved at a time, and no |arger

ring my be placed over a smaller one on any peg.

Figure 1 (1 tor) The 4-ring Tower of Hanoi a
fea Cerenmony problems in their 'start* states.

A BC1,2, 3,4 show the isomorphismrelationship.

The Tea Ceremony, see Figure 1, is an
i somorph of the Tower of Hanoi. Three people - a
host and an el der and younger ?uest - participate
in the ceremony.  There are four tasks they per-
form- listedinascending order of i mportance:
feeding the fire, serving cakes, serving tea, and
reading poetry. The host performs al | the tasks
at the start of the ceremny, and the tasks are
transferred back and forth among the Earticipants
until the eldest guest performs al | the tasks, at
which time the ceremony is completed. There are
two constraints on the one-at-a-time transfer of
tasks: 1) only the | east I mportant task a person
is performng my be taken fromhim and 2) no
person may accept a task unless it is less im
portant than any task he is performng at the
time. The object of the Tea Cerenony game i s to
transfer al | the four tasks fromthe host tothe
el der guest In the fewest number of moves. As
wi th the Tower of Hanoi, the subject attempts the
gane repeatedly, starting over again whenever he
or she wishes until the rings are noved (or tasks
transferred) inthe fewest possible nunber of
transitions.



In the isomorphic relationship between the

Tea Ceremony and the Tower of Hanoi the people -
host, youth, and elder - correspond respectively
with pegs A, B, and C. The four tasks - feeding

the fire, serving cakes, serving tea, and reading
poetry - correspond respectively withrings 1, 2,
3, and 4. |t can be checkedthat the initial
state, goal state, and |egal moves of the two
games correspond.

Figure 2 is the complete state space repre-
sentation of the Tower of Hanoi/Tea Ceremony prob-
lem Bach circle stands for a possible position
or state of the games. The four letters label-
ling a state refer to the respective pegs (people)

on which the four rings (tasks) are located. For
exampl e, state GCBC means that ring 1 (fire), ring
2 (cakes), and ring 4 (poetry) are in their proper

order on peg C (performed by the Elder).
(tea) is on peg B (performed by the youth). A
legal nove by the problem solver always effects a
transition between states represented by neighbor-
ingcircles in Figure 2. The solution path con-
taining the mnimumnumber of nmoves consists of
the fifteen steps fromAAAA t o QOCC down t he
right side of the state space diagram

Ring 3

the
nmoves

Figure 2
Tower of Hanoi/Tea Cerenony problem.
effect transitions between adjacent states.
Exampl es of subspaces are given.

The State Space Representation of
Legal

The Tower of Hanoi/Tea Ceremony has a natural
decomposition into nested subproblems. For ex-
ample, to solve the 4-ring Tower of Hanoi problem,
| t i s necessary at some point t o nmove the [argest
ring fromits original position on peg A to peg C,
but before this can be done the three smaller

rfngs must be assembled in their proper order on

peg B. The problem of moving the three rings
from one peg to another my be termed a 3-ring
subproblem and constitutes a subset of the state

space of the 4-ring problem The 4-ring state

space contains three isomorphic 3-ring subspaces,
for which the physical problemsolving situations
are different by reason of the position of ring 4.
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Each subspace becomes a subprobl emwhen one of it s
entry states is designated as the initial state,
and it s exit states are designated as goal states.
Similarly, each 3-ring subspace contains three
i somorphic 2-ring subspaces for a total of nine
in the 4-ring state space; and each 2-ring sub-
space my be further deconposed into three 1-ring

subspaces, comprising only three states apiece.
Note the examples in Figure 2 or 1-, 2-, and 3-
ring subspaces.

Each n-ring subproblem as well as the main

problem, admits of a symmetry automorphism mapping a
goal state of the n-ring problemonto the conjugate
goal state which corresponds to transferring the
nrings to the other open peg. Wre the three
pegs of the Tower of Hanoi board to be arranged at
the corners of an equilateral triangle (as are the
people in the Tea Ceremony), the symmetry auto-

mor phi sm would represent the geometric operation

of reflection about the altitudes of an equilateral
triangle.

Criteriaare established tl43for 'non-random
ness' and 'goal-directedness' of subject's paths
through the Tower of Hanoi/Tea Ceremony state

space. The numoer of 'turns* and 'loops' of a
subject's path is compared with the 'turns' and
"loops' of a random path of the same [ength gen-
erated in the Tower of Hanoi/Tea Ceremony state
space. A "metric* is defined also, a function

of the numoer of states the subject's current
state is distant fromthe goal state. If this
function is non-increasing over the subject's
path, the path is said to be 'goal-directed".
This same metric is established to measure goal
dlrectedness within subproblems. When subgoal
states are attained the path that exits fromthe
subgoal s examned to see if it also exits from
t he subproblem  The first trial of Figure 3
decomposes the state space modulo its 2-ring sub-

probl ems each 2-ring subproblem is solved in
the mninmum number of steps, while the 3-ring
subproblem is not. This represents a 2-ring
"episode’ i nthe problems solution. This same
trial shows two congruent paths through isomorphic
3-ring subproblems.

The problem solving data of 45 adult subjects
solving the Tower of Hanoi and 21 adult subjects

solving the Tea Ceremony problems are reported in
[141 & C211. Except for Hypothesis 3 (the pro-
duction of congruent paths through isomorphic

subproblems), al |l the hypotheses are supported by
the data. Especially strong (near 100% is the
support of the special role played by subgoal
states within the problem (Hypothesis |b).

of all the subjects have at |east one problem
solving 'episode' with 60% showing two or nore of
the three theoretically possible '"episodes'
(Hypothesis 2). 52% of al | subjects in the
studies interrupted a path and immediately pro-
duced a path segment that was the symmetric con-
jugate of the interrupted path (Hypothesis 4).
This new path was often the mnimum step solution
path.

86%
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Figure 3
Z-ring Tower of Hanoi

The behavior of a subject solving the
problem

Figure 3pictures theactual paths through
the state space generated by one adult subject
solving the Tower of Hanoi problem  This sub-
ject's behavior happened to conformtoal | four
proposed hypotheses.  The paths are both goal -
and subgoal -dlrected, and exit fromthe subproblem
whenever a subgoal state i s entered. The first
two trials contain 7 instances (in 7 attempts) of
mnimumsol utionof the 2-ring subproblem while
the 3-ring subproblemhas not yet been solved by
the shortest path * a 2-ring 'episode'. Trial 1
|l lustrates two congruent non-mninmpaths

through 3-r|ng subprobl em*. Finally, trial 2 is
interruPted and trial 3, the shortest solution
path, follows as the Image of trial 2 under the

symmetry automorphism that exchanges pegs B and C.

The behavior of a subject solving the
Tea Ceremony problem.

Figure 4
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Figure 4 pictures the paths of an adult sub-
ject solving the Tea Ceremony problem  The paths
wi t hin each problemare goal-directed, and when-
ever a subproblents goal state is entered it is
| eft by the unique path that also [eaves the sub-
probl em space. From the beginning the problem
I's reduced modulo It s 2-task subproblems, since
during the problemsolving 12 of 14 of the 2-task
subproblems are solved in the mninum nunber of
steps. After the first 3-task subproblem there
s an "episode’ inwhich5of 6of all further 3-
task subproblems are solved in the mninum nunber
of steps but the entire problem (4-task) Is not,
reducing the problemby 1t s 3-task subproblens.
The first and second trials begin with con?ruent
paths (non-mnimum through 3-task subproblems.
The third trial is Interrupted, and its symmetric
conjugate - which solves the problem - is produced
in the fourth trial,

In sunmary, the present paper suggests one
natural way to make the strategy/structure
distinction. W let the structure of a problem
refer to the formal properties of Tts state space
representation, such as its symmetry automorphisns
and possible subproblemdecompositions. He con-
sider the subject's possible cognitive structures
toinclude the conservationoperations, symetry

and subﬁ)roblem decompositions that the subject
can apply to the problemsituation. An exanple
of this 1n the Tower of Hanoi is the ability of a

subject tosolveal | 2-ring subproblenms, nomatter
where they are in the context of the problem in
the mninum nunber of steps. These structures
determne the states that the subject treats as
distinctandthosetreatedasequivalent. These
may change during problemsolving, l[eading to an
effectivereductionof the state space. A sub-
ject's behavior my be faithfully mapped as |ong
as the state space representation that is utilised
by the researcher is sufficiently detailed, In
that it does not treat states as equival ent which
the subject treats as distinct,

We et the termstrategy refer to particular
rules or procedures for taking steps within the
state space. Different individuals my enploy
different strategies in solving the same problem,
and the same individual may enplog different
strategies in solving different but isomorphic
probl ens. The present paper does not explain
strategies per se, but hypothesizes that evenin
the context of different strategies, certain pat-
terns of behavior tend to occur as a consequence
of the structure of the problem

There are several obvious, very broaddirect-
ions for further experimental research including
broadening the domains both of problems and subject
popul ations considered. Another areaof investi -
gation is "transfer' effects in the behavior of a
subject solving different problems having related
structure. The second author has In fact a study
inprogressconsideringtransfer acrossisomorphic
problemsituations 1213 Egan and Greno [33 and
Reed, Ernst, and Banarji (8l have examned transfer
effects Inproblems of homomorphic structure.
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