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new t a s k s . 

This paper d e s c r i b e s a v e r s a t i l e machine 
v i s i o n system t h a t can recognize a v a r i e t y o f com­
p l e x i n d u s t r i a l p a r t s based o n the p r e v i o u s l y l e a ­
rned models of them. It proposes a model guided 
approach f o r r e c o g n i t i o n i n which models o f o b j e c t s 
d i r e c t r e c o g n i t i o n process b y s u g g e s t i n g the f e a ­
t u r e s to be examined next and t h e i r p r e d i c t e d 
l o c a t i o n s . For the system to be r e a d i l y a p p l i e d 
t o new t a s k s , i t can a u t o m a t i c a l l y generate the 
models of o b j e c t s w h i l e a human o p e r a t o r showing 
example p a r t s and t e a c h i n g i m p o r t a n t f e a t u r e s of 
them i n t e r a c t i v e l y on d i s p l a y s . The system has 
been a p p l i e d to v a r i o u s s e t s o f p a r t s o f s m a l l 
i n d u s t r i a l g a s o l i n e engines and t h e r e s u l t was 
s a t i s f a c t o r y . 

I n t r o d u c t i o n 

A machine v i s i o n f o r simple o b j e c t s has been 
s t u d i e d by many people and is a l r e a d y p e r f o r m i n g 
a v a r i e t y of simple t a s k s in l a b o r a t o r y s e t t i n g s 
( 1 , 2 , 3 ) . T o apply these systems f o r r e a l i n d u s ­
t r i a l uses of such as assembly and i n s p e c t i o n , a 
machine v i s i o n system t h a t can r e c o g n i z e complex 
r e a l o b j e c t s should b e developed. 

R e c o g n i t i o n o f r e a l i n d u s t r i a l p a r t s i s a 
new f i e l d . E j i r i e t a l . proposed a v i s i o n system 
which could b e used t o c l a s s i f y s i m p l e i n d u s t r i a l 
p a r t s ( A ) . O l s z t y n e t a l . made a good e x p e r i m e n t a l 
system which l o c a t e d studs on hubs and s t u d holes 
in wheels and mounted wheels onto automobile hubs 
( 5 ) . A l t h o u g h i t demonstrated the f e a s i b i l i t y 
and u s e f u l n e s s of the machine v i s i o n f o r an i n d u s ­
t r i a l a p p l i c a t i o n , the system was r e s t r i c t e d t o 
the s p e c i f i c t a s k and e x t e n s i v e reprogramming was 
necessary to p e r f o r m o t h e r t a s k s . R e c e n t l y , as a 
r e l a t e d p r o j e c t , Chien e t a l . are s t u d y i n g o n 
automatic i n s p e c t i o n o f h y b r i d c i r c u i t s ( 6 ) . 

To g i v e a machine v i s i o n the v e r s a t i l i t y to 
perform a v a r i e t y of t a s k s , the v i s i o n system 
should b e i n c o r p o r a t e d w i t h a b i l i t i e s o f : 

1 . E f f e c t i v e method f o r e x t r a c t i n g u s e f u l 
i n f o r m a t i o n from scene d a t a f o r complex i n d u s t r i a l 
p a r t s w i t h heavy n o i s e . 

2. F l e x i b i l i t y of the system chat can e a s i l y 
be adapted to p e r f o r m new t a s k s . 

T h i s paper d e s c r i b e s a v e r s a t i l e machine 
v i s i o n system t h a t can r e c o g n i z e a v a r i e t y of com­
p l e x I n d u s t r i a l p a r t s based o n the p r e v i o u s l y 
l e a r n e d models of them. We use a model guided 
approach f o r r e c o g n i t i o n i n which models o f o b j e c t s 
d i r e c t the r e c o g n i t i o n process by s u g g e s t i n g which 
f e a t u r e s t o examine next and t h e i r p r e d i c t e d l o ­
c a t i o n s . These models can be a u t o m a t i c a l l y gener­
a t e d by the system w i t h a i d s of a human o p e r a t o r 
showing example p a r t s and t e a c h i n g i m p o r t a n t 
f e a t u r e s o f them o n d i s p l a y s i n a n i n t e r a c t i v e 
way so t h a t the system can be r e a d i l y a p p l i e d to 

I n p u t P i c t u r e s and Model Guided Approach 

F i g . 1 shows examples of i n d u s t r i a l p a r t s 
used in our experiment. The task of the system 
i s t o recognize o r c l a s s i f y each o b j e c t i n a 
scene when machine p a r t s are c a r r i e d on a b e l t 
conveyor. Images are taken from a n e a r l y v e r t i c a l 
d i r e c t i o n by a T.V. camera and d i g i t i z e d i n t o 6 
b i t s of gray l e v e l . There are two sampling modes; 
one f o r sampling a q u a r t e r r e g i o n of the T.V. 
frame in a h i g h r e s o l u t i o n and the o t h e r f o r 
sampling the e n t i r e frame in a low r e s o l u t i o n . 
I n b o t h modes, a 128x128 digitized p i c t u r e la s e n t 
t o and s t o r e d i n a b u f f e r memory. I n t h i s paper 
we assume t h a t each p a r t in a scene is i s o l a t e d 
and n o t occluded by o t h e r o b j e c t s . This assumption 
, however, does not r e s t r i c t the system's per­
formance s i n c e p a r t s on a conveyor b e l t are u s u a l l y 
i s o l a t e d when they are seen from the v e r t i c a l d i ­
r e c t i o n . Even when t h e r e were o v e r l a p p i n g o b j e c t s 
i n a scene, the v i s i o n p a r t could t e l l t h e i r l o ­
c a t i o n and the m a n i p u l a t o r could crack and i s o l a t e 
them. Objects are not m o d i f i e d in any way to 
s i m p l i f y the t a s k o f r e c o g n i t i o n a l g o r i t h m , and 
are very n o i s y w i t h d i r t s , grease and h i g h l i g h t s . 
Examples of d i g i t i z e d Images and t h i e r d i f f e r e n t i ­
ated images are shown in F i g s . 2 and 3. In the 
f i g u r e s i t w i l l be noted t h a t each i n d u s t r i a l 
p a r t has a few s t a b l e s t a t e s and each face o f i t 
has d i f f e r e n t p a t t e r n from the o t h e r ones. Since 
we a l s o want to know in which s t a b l e s t a t e s each 
i n d u s t r i a l p a r t i s , w e c a l l each face o f the p a r t 
as an o b j e c t . 

Most p r e v i o u s works on p a t t e r n r e c o g n i t i o n 
employed a s e r i a l approach of p r e p r o c e s s i n g , 
f e a t u r e e x t r a c t i o n and then r e c o g n i t i o n . T h i s 
approach i s , however, d i f f i c u l t t o apply f o r i n ­
d u s t r i a l p a r t s s i n c e i t i s d i f f i c u l t t o e x t r a c t 
complete f e a t u r e s at the stage of f e a t u r e ex­
t r a c t i o n because o f complexity o f s t r u c t u r e s o f 
o b j e c t s and heavy noise caused by d i r t s , grease 
and h i g h l i g h t s . We use the model guided approach 
i n which models o f o b j e c t s guide the r e c o g n i t i o n 
procedure. A model is a d e s c r i p t i o n on the 
s t r u c t u r e of each o b j e c t and d i r e c t s the procedure 
to search and i d e n t i f y a p a r t i c u l a r o b j e c t in a 
scene. I t proposes which f e a t u r e s t o examine 
next and t h e i r p r e d i c t e d l o c a t i o n s . This makes 
the task o f f e a t u r e e x t r a c t i o n easy s i n c e i t i s 
much e a s i e r t o v e r i f y the e x i s t e n c e of the p r e ­
d i c t e d f e a t u r e s r a t h e r than f i n d i n g them w i t h o u t 
any knowledge. These models are g i v e n f o r each 
s t a b l e s t a t e o f the i n d u s t r i a l p a r t s and a c o l ­
l e c t i o n of models r e p r e s e n t the system's knowledge 
o n the o b j e c t s i n c l u d e d i n the system's r e p e r t o i r e . 

An o u t l i n e of the r e c o g n i t i o n process is as 
f o l l o w s . The system f i r s t e x t r a c t s the most 
r e l i a b l e o r e a s y - t o - e x t r a c t i n f o r m a t i o n such a s 
s i z e and shape of the o u t l i n e of an o b j e c t in a 
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scene to get candidate models f o r the input 
object. Based on the f i r s t stage i n f o r m a t i o n , an 
analyzer examines differences between the input 
object and the models and proposes the moat 
promising one in a h e u r i s t i c way to d i r e c t the 
r e c o g n i t i o n process. The selected model then comes 
in c o n t r o l of r e c o g n i t i o n process and suggests 
which features to examine next and t h e i r assumed 
locations as long as the observed information 
agrees w i t h the expected one. When they contra­
d i c t the predicted one (which means the proposed 
model was a f a l s e one), the other promising model 
is selected by the analyzer based on the I n f o r ­
mation c o l l e c t e d up to now. 

Next we consider the problem: how much and 
what kind of i n f o r m a t i o n should be given to the 
models since it determines the e f f i c i e n c y of the 
r e c o g n i t i o n process. Let us see some examples 
in Fig. 2. Size or shape of the o u t l i n e of the 
object 1 i s enough t o d i s t i n g u i s h i t from the 
other objects. The o u t l i n e information is not 
enough, however, f o r the object 3 and the l i n e A 
is necessary to d i s t i n g u i s h it from the object 2. 
When objects as shown i n Fig. 3 are added to the 
system's r e p e r t o i r e , then a s t i l l other feature 
such as the hole B should be used to d i s t i n g u i s h 
the object 3 from the objects 4 and 5. As we can 
see f/om the above example, complete d e s c r i p t i o n s 
of each object are not necessary and a few Im­
portant features are enough t o d i s c r i m i n a t e i t 
from the other objects. Therefore we give the 
models j u s t enough information to d i s t i n g u i s h 
each object from the other o b j e c t s , in the order 
of more d i s t i n g u i s h i n g features to more d e t a i l s . 
Although the models thus organized makes the 
rec o g n i t i o n process e f f i c i e n t , they should be 
modified so as to give enough d e s c r i p t i o n to d i s ­
t i n g u i s h each model from the other models when a 
new object is Included in the system's r e p e r t o i r e . 

The generation or m o d i f i c a t i o n of models 
should be done e a s i l y so that the system can be 
r e a d i l y applied to new tasks without extensive 
reptogramming. I n our system, i t i s done auto­
m a t i c a l l y by the system while a human operator is 
showing example objects and teaching important 
features of them on displays w i t h a cursor In an 
I n t e r a c t i v e way. Described below is a general 
strategy f o r l e a r n i n g a new o b j e c t , where a model 
of the c u r r e n t l y learning object and models of 
previously learned objects are c a l l e d a new model 
and previous models respec t i v e l y . Since the f i r s t 
features described in models are always the easy-
t o - e x t r a c t ones such as size and shape of the 
o u t l i n e , they are extracted f i r s t from the example 
object and stored in the new model when the example 
object i s shown by the operator. Then a d i f f e r ­
ence analyzer examines differences between the 
new model and the previous models and determines 
s i m i l a r models. Display routines then show model 
structures and images of the example object and 
the s i m i l a r ones, therefore i t I s easy f o r the 
human operator t o t e l l which features are the 
most useful to d i s t i n g u i s h the example from the 
s i m i l a r ones. He can teach it by s p e c i f y i n g a 
s u i t a b l e feature e x t r a c t o r and d i s i g n a t i n g t h e i r 
locations on the displayed image. A f t e r the 
i n s t r u c t e d features are extracted and the models 
are updated, the d i f f e r e n c e analyzer decides the 
s i m i l a r models based on the updated models and 
the operator i n s t r u c t s more d e t a i l s u n t i l the 

example object is s u f f i c i e n t l y discriminated from 
the previous models. 

The idea of teaching the machine i n t e r a c t i v e l y 
in i t s e l f is not a new one and was proposed by 
Tennebaum et a l . r e c e n t l y f o r developing s t r a t e g i e s 
to f i n d a s p e c i f i e d object in an o f f i c e scene(7). 
The major d i f f e r e n c e of our l e a r n i n g system from 
t h e i r s is t h a t ours always t r i e s to recognize the 
example object and displays s i m i l a r objects at 
each time the operator i n s t r u c t s new features as 
described above. This allows the f o l l o w i n g ad­
vantages : 
1) The operator can t e l l the d i s t i n g u i s h i n g 
features of the example object e a s i l y since they 
can be found only by comparison w i t h the p r e v i ­
ously learned o b j e c t s . 
2) He can not i c e when s u f f i c i e n t features have 
been i n s t r u c t e d , thus the models are given j u s t 
enough Information. 

System Description 

Preprocessing and F i r s t Stage Processing 

For both of learning and r e c o g n i t i o n , the 
preprocessing and the f i r s t stage processing are 
performed to get coarse information on each 
object I n a scene. The preprocessor f i r s t inputs 
a scene data in low r e s o l u t i o n and detects out­
l i n e s of objects to locate them in the scene. 
Since the precise o u t l i n e is not necessary to 
locate each object in the scene, a simple pro­
cedure is used to f i n d them f o r speeding up the 
processing. As the background is assumed to be 
darker than o b j e c t s , those points having gray 
l e v e l greater than a c e r t a i n threshold are con­
sidered to be object p o i n t s . Therefore, a 
histogram of gray l e v e l s of the e n t i r e p i c t u r e 
points i s f i r s t computed t o determine the t h r e ­
shold as shown In Fig. 4. In the f i g u r e , it is 
decided as the gray l e v e l having the f i r s t deep 
v a l l e y a f t e r the highest peak. When the threshold 
i s determined, the p i c t u r e data i s scanned t i l l 
an point having gray l e v e l greater than the 
threshold i s found. A f t e r checking i f i t i s a 
noise p o i n t , the preprocessor traces along the 
o u t l i n e of the object in a clock wise d i r e c t i o n 
seeing the object on the r i g h t . When the o u t l i n e s 
of a l l objects in the scene have been found, the 
f i r s t stage processor i s c a l l e d and each object 
is separately analyzed. 

I t f i r s t inputs the p i c t u r e data o f the 
narrower region containing a c e r t a i n object in 
a high r e s o l u t i o n to obtain the f i n e r o u t l i n e of 
i t . The procedure i s s i m i l a r t o the one used i n 
the preprocessing except t h a t the histograms of 
l o c a l data containing a p o r t i o n of the o u t l i n e 
instead of the e n t i r e data is used to determine 
the threshold in t h i s case. The reason of using 
the l o c a l histogram is to detect the o u t l i n e 
p r e c i s e l y , adapting the threshold dynamically to 
variances of i n t e n s i t i e s of the background and 
the o b j e c t ( 8 ) . The sequence of applying l o c a l 
windows is shown in F i g . 5. The l o c a l window of 
the s i z e o f 11x11 points i s f i r s t set surrounding 
the s t a r t i n g point of the o u t l i n e obtained at the 
preprocessing. A f t e r computing the i n t e n s i t y 
histogram of t h i s region, a new threshold Is 
determined in the s i m i l a r way as the preprocessing. 
Then i t searches the p o i n t having gray l e v e l 
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s i m i l a r i f they have the same FTYPE, s i m i l a r 
PLIST and s i m i l a r ALIST. SCORE indicates r e l i a ­
b i l i t y of e x t r a c t i n g the component since some 
components can be r e l i a b l y extracted while some 
others are d i f f i c u l t . I t can take a d i s c r e t e 
value of 1 to 5. OUTLINE component is always 
given SCORE S as i t I s considered to be the most 
r e l i a b l e feature. 

associated w i t h C is subtracted from t h e i r score 
table which has been i n i t i a l l y set to a c e r t a i n 
score. Then the difference analyzer checks the 
score table and sends the s i m i l a r models having 
the score l a r g e r than TS to display r o u t i n e s . 

Our system is provided w i t h a storage type 
vector display (SDISP) and a r e f l e s h type c o l o r 
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greater than the threshold and traces along the 
o u t l i n e I n the l o c a l window. When I t touches the 
current window w a l l , It sets a new l o c a l window* 
computes a new threshold and continues to track 
along the o u t l i n e using the newly computed t h r e ­
shold. Fig-6 shows the o u t l i n e obtained from the 
object 5 of F i g . 3. 

The model M consists of a set of models M1, 
M ,... corresponding to each object class 0., 02, 
.... We u t i l i z e a tree s t r u c t u r e f o r d e s c r i p t i o n 
of a model Mi which has a set of ordered component 
nodes C1. C2. Associated w i t h each component 
Ci is a feature type (FTYPE), a score (SCORE), a 
parameter l i s t (PLIST) and an a t t r i b u t e l i s t 
(ALIST). We use several kind of features such as 
OUTLINE, HOLE, LINE and TEXTURE f o r d e s c r i p t i o n of 
objects and FTYPE s p e c i f i e s which type of features 
is used to e x t r a c t the component C . Each model 
has a corresponding example object Ei. which is 
stored in a disk. Values of PLIST and ALIST are 
those extracted from the example objects. 

PLIST designates l o c a t i o n of a component in 
the r-6 coordinate system whose o r i g i n being the 
center of g r a v i t y of an object E±. PLIST of HOLE 
components, f o r example, has the r-6 coordinate 
of center of the hole (see Fig. 9). A LINE com-



display(RDISP) a* graphic oucput devices. The 
d l p l a y routines then show model s t r u c t u r e s of Mn 

.. on SDISP, and t h e i r images (E and 
on RDISP. F i g . 11 ( a ) , ( b ) showsnthem 
feature is obtained. Since the 

OUTLINE information i s not s u f f i c i e n t to d i s c r i m i ­
nate M from N .,..., one should i n s t r u c t more 
d e t a i l s . Seeing the displays, It is easy f o r the 
operator to t e l l which features are the most im­
portant to d i s t i n g u i s h E from E . .... In the 
f i g u r e , he w i l l n o tice t h a t the Role A i s the most 
d i s t i n g u i s h i n g one. He can teach t h i s idea to the 
machine in the f o l l o w i n g steps w h i l e answering the 
machine's i n q u i r y as shown i n F i g . 11 ( c ) - ( e ) . 

1) The system f i r s t asks FEATURE TYPE and, i n t h i s 
case, the operator types I n HOLE. 
2) I t then inquires WHICH OBJECT? to know from 
which object the s p e c i f i e d feature should be ex­
t r a c t e d since It is sometimes necessary to add 
more d e s c r i p t i o n to the s i m i l a r models. In t h i s 
case* the operator types in NEW as he wants to 
e x t r a c t the hole A of E . 
3) The system then c a l l s a hole f i n d e r to detect 
holes of E and displays them on SDISP ( F i g . d ) . 
Then the operator i n s t r u c t s the hole A by desig­
nating i t w i t h a cursor. 
4) Then he inputs 5 f o r SCORE since the hole A 
seems to be r e l i a b l y extracted although other 
holes may vary according to the l i g h t i n g c o n d i t i o n 
and noise. 

The hole f i n d e r uses s i m i l a r algorithm to the 
f i r s t stage processor and the a t t r i b u t e s of size 
and thinness r a t i o are stored i n ALIST of HOLE 
component. If the hole's shape is round, i t s 
radius is also added to ALIST. Then the s i m i l a r 
models are determined in the same procedure as 
described before. Fig. ( f ) shows images of E and 
Es1.. If the operator is not s a t i s f i e d w i t h the 
r e s u l t , he can cancell the l a s t i n s t r u c t i o n and 
can teach another feature. In t h i s case, he r e ­
gards that the l a s t i n s t r u c t i o n was s a t i s f a c t o r y 
since the number of the s i m i l a r models is decreased 
from three to one, and thus i n s t r u c t s more complex 
features. 

In Fig. ( f ) , we observe that the l i n e s w i t h 
the arrow (->) are d i s t i n g u i s h i n g E form E . 
Thus the operator responds LINE to the system's 
i n q u i r y ( g ) , and then the system c a l l s the gradient 
operator and displays the d i f f e r e n t i a t e d image of 
them ( h ) . Since he wants to I n s t r u c t the l i n e s 
of E , he Inputs NEW to WHICH OBJECT ( 1 ) . Then 
the 8 l f f e r e n t l a t e d image of E n is displayed on 
SDISP In a higher r e s o l u t i o n and the operator 
teaches those l i n e s by designating a few repre­
sentative points of them w i t h the cursor. Then 
the l i n e f i n d e r detects the l i n e s as f o l l o w s . It 
f i r s t sets the region as shown i n Fig. 12 where 
L is the predetermined length, and then searches 
an optimum curve in the region. The dynamic 
programming method proposed by Montanarl(lO) Is 
used to detect the optimum l i n e . Although t h i s 
method gives good r e s u l t s to detect l i n e s in a 
noisy scene, it has disadvantages of consuming too 
much computation time and memory space. In our 
case, however, the search space Is r e s t r i c t e d to 
the narrow region and thus the computation time 
and memory space can be considerably saved. When 
the l i n e s have been found, the l i n e f i n d e r approxi­
mates the curve i n t o several l i n e segments and 
stores r-6 coordinates of t h e i r end points in 

PLIST. ALIST of the LINE component is the average 
g r a d i e n t v a l u e . Then the d i f f e r e n c e a n a l y z e r 
again searches the s i m i l a r models. When no 
s i m i l a r models e x i s t , i t means t h a t j u s t enough 
i n f o r m a t i o n has been g i v e n to the models. F i g . 11 
(1) shows an o u t l i n e , a h o l e and l i n e s of E,, super­
imposed on the d i g i t i z e d image and Table 1 g i v e s 
the generated model. 

R e c o g n i t i o n 

A b l o c k diagram of the r e c o g n i t i o n process 
Is shown in F i g . 13. In the f i g u r e , the p r e ­
processor, the f i r s t stage processor and the 
d i f f e r e n c e a n a l y z e r use the same program modules 
a s the l e a r n i n g process. F i r s t o f a l l , t h e p r e ­
processor l o c a t e s each o b j e c t in a scene and sends 
one of them t o the f i r s t stage processor which 
e x t r a c t s the o u t l i n e i n f o r m a t i o n o f the i n p u t 
o b j e c t . The d i f f e r e n c e analyzer then examines 
d i f f e r e n c e s between the models and the observed 
I n f o r m a t i o n and s e l e c t s candidate models Mc1,Mc2, 
.... These candidate models are s e l e c t e d in the 
same way as the s i m i l a r models I n the l e a r n i n g 
process a l t h o u g h a d i f f e r e n t term is used. Those 
i n f o r m a t i o n such as the score and the matched 
angle computed by the d i f f e r e n c e a n a l y z e r are 
r e t a i n e d i n the score t a b l e and t h e matched angle 
t a b l e r e s p e c t i v e l y . 

Next the model proposer s e l e c t s the most 
p r o m i s i n g model Mp among t h e c a n d i d a t e models M c ] , 
M c 2 , . . . . t o d i r e c t the r e c o g n i t i o n process i n the 
f o l l o w i n g s t e p s . 
1) Examine the score t a b l e and s e l e c t the models 
having the best score among the c a n d i d a t e models. 
2) Check SCORE of the next node o f them and s e l e c t 
the models h a v i n g the l a r g e s t v a l u e If s t e p 1 
s e l e c t s m u l t i p l e models. 
3) Check FTYPE o f them, and s e l e c t the models 
having the c o m p u t a t i o n a l l y cheaper f e a t u r e I n the 
order of HOLE, LINE and TEXTURE. 
A) I f t h e r e s t i l l e x i s t more than one model f o r Mp, 
then go t o step 2 and check SCORE and FTYPE o f t h e 
lower nodes of them. 

Then the s e l e c t e d model M p d i r e c t s the r e c o g ­
n i t i o n process i n the f o l l o w i n g sequence: 
1) Take n e x t node of Mp to propose which f e a t u r e 
t o examine next and i t s assumed l o c a t i o n . FTYPE 
of the node s p e c i f i e s the f e a t u r e type to be used 
and PLIST p r e d i c t s the l o c a t i o n of the proposed 
f e a t u r e by checking the matched angle of Mp in 
the matched angle t a b l e . 
2) E x t r a c t the proposed f e a t u r e by c o r r e s p o n d i n g 
f e a t u r e e x t r a c t o r . 
3) Compare the observed parameters and p r o p e r t i e s 
to the values of PLIST and ALIST of the c u r r e n t 
node of Mp. 
4a) I f they are s i m i l a r ( I n a sence d e f i n e d a t t h e 
p r e v i o u s s e c t i o n ) , updates the matched angle t a b l e 
based on the measured parameter, then go to s t e p 1. 
I f n o t , g o t o s t e p 5 . 
5) The d i f f e r e n c e analyzer determines the c a n d i d a t e 
models based on the i n f o r m a t i o n c o l l e c t e d up to 
now and the model proposer s e l e c t s another p r o m i s ­
i n g model Mp. Then go to step 1. 

The above loop ends when some model Mp reaches 
t h e t e r m i n a l node, t h a t i s , n o t h i n g t o do I s l e f t 
in the model. Since the t h r e s h o l d ST I S i n i t i a l l y 
s e t t o a s t r i c t v a l u e t o make the t r e e search f a s t , 
i t sometimes happens t h a t n o candidate models 
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e x i s t even if any model have n o t reached the termi­
n a l node. Then the t h r e s h o l d ST is lowered u n t i l 
some model reaches the t e r m i n a l node. 

F i g . 14 shows an example of e x p e r i m e n t a l 
r e s u l t s where (a) i s a n d i f f e r e n t i a t e d image o f 
an i n p u t o b j e c t and (b) shows an o u t l i n e , a h o l e 
and a l i n e t h a t have been used to recognize the 
I n p u t o b j e c t . I t was s u c c e s s f u l l y recognized a s 
a top face of t h e i n d u s t r i a l p a r t no. 20 (see 
OBJECT 3 o f F i g . 2 ) , and i t s p o s i t i o n and o r i e n ­
t a t i o n were a l s o measured p r e c i s e l y . 

Conclusions 

This paper has d e s c r i b e d a v e r s a t i l e machine 
v i s i o n system t h a t can recognize a v a r i e t y of 
complex i n d u s t r i a l p a r t s based on the p r e v i o u s l y 
l earned models of them. The system has been im­
plemented i n a mini-computer DEC PDP-8/E w i t h a 
12 KW core memory and an a d d i t i o n a l b u f f e r memory 
(28 K b y t e s ) which is used f o r the data s t r u c t u r e 
of the d i g i t i z e d image and the models. 

To t e s t the proposed system, it has been 
a p p l i e d t o v a r i o u s sets o f p a r t s o f small i n d u s t r i ­
al g a s o l i n e engines each of which c o n s i s t i n g of 
twenty t o t h i r t y p a r t s . Models of them c o u l d be 
s u c c e s s f u l l y generated even by the persons who 
arc not f a m i l i a r w i t h computer programming. Then 
these learned models have been used to recognize 
randomly placed i n d u s t r i a l p a r t s and most of them 
have been c o r r e c t l y recognized. R e c o g n i t i o n time 
and i n s t r u c t i o n time f o r an o b j e c t were about 30 
seconds and 7 minutes r e s p e c t i v e l y . 

Chi en, R.T. et a l . , " V i s u a l u n d e r s t a n d i n g of 
h y b r i d c i r c u i t s v i a procedural models" (To b e 
presented a t t h i s symposium). 

Tenenbaum, J.M. et a l . , " ISIS: An i n t e r a c t i v e 
f a c i l i t y f o r scene a n a l y s i s r e s e a r c h " , Proc. 
of the Second I n t e r n a t i o n a l J o i n t Conf. on 
P a t t e r n R e c o g n i t i o n , pp. 123-125, 1974. 
Chow, C.K. & Kaneko T., " Boundary d e t e c t i o n 
of r a d i o g r a p h i c images by a t h r e s h o l d method", 
S. Watanabe ( E d . ) , F r o n t i e r s of P a t t e r n 
R e c o g n i t i o n , pp. 61-82, Academic Press, 1972. 

9) Duda, R.O. & H a r t , P.E., " P a t t e r n c l a s s i f i ­
c a t i o n and scene a n a l y s i s " , p. 350, A Wiley 
I n t e r s c i e n c e , 1973. 

M o n t a n a r l , U., " On the o p t i m a l d e t e c t i o n of 
curves i n n o i s y p i c t u r e s " , CACM, v o l . 14, 
no. 5, pp. 335-345, 1971. 

Computing time f o r r e c o g n i t i o n i s too long 
f o r p r a c t i c a l a p p l i c a t i o n s because n o attempt i s 
made to save i t , and we consider some programming 
e f f o r t could decrease i t c o n s i d e r a b l y . Color 
I n f o r m a t i o n i s not used i n the c u r r e n t system 
s i n c e most i n d u s t r i a l p a r t s used i n the experiment 
are gray. Color information,however, w i I l be 
u s e f u l f o r the f i r s t stage c l a s s i f i c a t i o n when 
o b j e c t s have d i f f e r e n t c o l o r . The most r e s t r i c t i v e 
assumption i n the present system i s assumption 
t h a t each o b j e c t in a scene is i s o l a t e d , and a 
f u t u r e study i s necessary t o recognize the occluded 
o b j e c t s . 
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