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Abstract questions which would aid in reducing the

Hw can computer vision systems be de- searcrll for appropriate ?lObfal framesl
signed to handle unfamiliar or unexpected (lﬂwégiiyon[r?]i] )h't b?n 'Ie/i(raempt%eoream%enera
scenes? Many of the current systems cope d ah d : h o % |
quite well with [imted visual worlds, By getrrvglgs ta efdgi]erssltnbzlsies Sfcg?e'discjilmsing??og
making use of specialized knowl edge about bet ween "natural’ and "man-nede” scenes
these worlds- But if we want to expand he knowl ed : Licit | hi A
these systems to handle a wide range of The knowledge 1 mplicit In this question
visual domains, i t will not be enough t o is a reasonable generalization that can
simply employ a large number of speciali- be made on the basis Qfl |exper|ence with a
zed models. | t will also be important t o ://vzlrlietnyw%fi cshcggel\?l’s agdan' beuusste[jaitrissggﬁe
make use of what might be called "gener- y

al -purpose models." Such models can be
used to suggest reasonable descriptions
for a given scene, e.g., in terms of

features or regions or groups of these,

in the absence of specific context.
1, The Need for GPMs

~ Inrecent years, mny computer

vision systems have been constructed,.

|l i mited visual

These cope quite well with
(Shirai

worlds such as the blocks world

[1]) or office scenes (Garvey and Tenen-
baum [2]). They do this by making use of
specialized know edge about the worlds in
which they operate. An important goal of
future computer vision systems is to ex-
pand this capability to cover a wider
range of visual domains. But can this be
done by simply employing larger numbers
of specialized models? The contention of
this paper i s that i t will also be impor-
tant t o make use of what we have called
"general -purpose models" (GPMs). By
definition, these are models which are
applicable even when we have [ittle or no
a priori know edge about the class of
scenes that is to be analyzed. They in-
clude models for general classes of local
features (edges, lines, angles, etc.)
that occur i n many different types of
scenes, as well as models that describe
how such features can be grouped into
aggregates. (These aggregates my in
fact not correspond to objects but they
can serve as useful first guesses t o
guide [ater steps in the analysis.)
Before describing GPMs i nany de-
tail, we can illustrate the need for them
by a few examples. | magine a computer
vision system attemFting to deal with
scenes chosen randomy from a highly
varied collection —pictures of rooms,
buildings, faces, scenery, etc. It would
seem a poor strategy for the vision sys-
temto start by asking specific questions
such as "Is there a chair i n the scene?"

or "Is there a tree?". By analogy with
the game of 20 questions, a more reason-
able strategy would be to ask general
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analysis.

Because t he types of pictures nmen-
ned above are familiar to us, it is
ficult to separate the effects of
cial purpose knowl edge from those
eral purpose knowl edge. However,
ere are many types of pictures that are
unfamiliar except to specialists --
electron mcrographs, for example.

in spite of their unfamiliarity, if
asks people to sketch the significant
regions in such a picture, the resulting
sketches wi [ | usually be highly consis-
tent. This abilityto impose structure
on unfamiliar scenes reflects another
possiblerole of GPMs i n scene analysis.

tio
di f
spe 0f
gen

th
Yet
one

The model, or class of models, implicit
in this example can be motivated by
observing that most scenes contain
objects that differ physically from their
surroundings, and this physical differ-
ence usually results in a visual diff-
erence. Thus, we find it reasonable, in
sketching an unfamiliar scene, to attempt
to divide it into regions that are more
or less homogeneous in brightness, color,
or texture.

The line drawing shown below

Illustrates our point at a somewhat diff-

erent level. Here, thesignificant re-
gions are already well defined, but GPMs
can play a role in grouping these regions
into rather schematic objects, and in

perceiving the relations between these

objects (e.g., behind, next to). This
process is independent of the interpre-
tation of the objects in any specifie
domai n.
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2. The Nature of GPM s

It is widelﬁ accepted that any scene
analysis system should utilize whatever
specific knowedge is available about the
class of scenes that it is to "under-
stand" (see, e.g., Mmnsky and Papert
} 41). One of the fundamental problems

acing the designer of a scene analysis
system is the representation and effec-
tive use of such knowl edge. Several
powerful paradigms have been offered to
?uide the designer in solving this prob-
em — e.g., those of Wnograd [5] fpro-
cedures) and Hewitt et al . L (actor
formalisms). (See also Pylys yn [7] for
a review and critique of such representa-
tion schemes.) An important feature of
these paradigms is the structuring of
knowl edge into models. For example, a
model of a chair might specify that the
chair has a seat, legs and a back, while
a model for gravity could 5£e0|f that
any object must be supporte The con-
ditions required by a model can bhe ex-
pressed as goals that a computer vision
system can attempt to satisfy. Program
mng |languages such as PLANNER [ 8] and
CONNI VER J9] were specifically designed
to accommodate such goal-directed pro-
cessing

Intuitively, there are many differ-
ent types of goals. For example, the
rather specific goal "Find a {able | eg
| think that the table top is at position
(x,y,z)" is different fromthe mre gen-
eral goal "Find a straight edge." Cor-
resFonding to these different types of
goals are different types of models.
Specific specialized models correspond
t othings I[ike cubes or chairs. These
are useful when a good deal is conjectur-
ed or known a priori, or has been found
In the course of previous analysis (cf.
Haber 110] for some i mportant ﬁsycholo-
gical parallels). GPMs, on the other
hand, are models that are applicable even
I f [ittle or nothing is known a priori
and analysis has not yet begun.

't should be stressed that there is

no sharp dividing line between specializ-
ed models and GPM's, nor isthere even a
simple linear ordering of models with
respect to their degree of generality.
One might at most hope for a partial
ordering: e.g., models for general
classes of features or objects could be
regarded as GPMs in comparison with
models for more specialized classes.
the term "CPM
simplicity.

Nevertheless, we have used
in this paper for the sake of

2.1 Feature Detectors

As already mentioned, an important
class of GPMs consists of models for
various types of local features — edges,
| ines, angles, etc. Such features occur
in a wide vari ety of scenes, so that de-

tectors for these features will be very
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?enerally applicable, Moreover, such
eatures are often relevant to the de-
scription of the given scene, because
they usually arise fromobjects that are
present in the scene. Indeed, since ob-
jects are distinct fromtheir environment,
there should be a discontinuity of sone
sort where an object ends and the back-
?round begins. In particular, there is

I kely to be a change in brightness or
[ so that visual edges will be
p Edges can also serve as a basis
f a simplified description of the
scene, since regions in the scene can
often be aﬁproximated by specifying their
edges and the colors, or textures, of
their interiors. (For evidence that the
human visual system may encode regions i n
this way see Cornsweet [11].) In
summary, models for edges are an i mpor-
tant class of GPMs because (a? they ar e
widelr applicable; (b) they often serve
to defineate physical objects; and (¢)
they provide a basis for giving a simpli-
fied description

|
eflectance,
resent.
or

Simlar remarks can be made about
for other types of local features.
for example, represent abrupt
changes in slope, just as edges represent
abrupt changes in gray level, color, or
texture. They are thus likelyt o be
significant features of the shape of a
region. At the sam time, as pointed out
many years ago by Attneave [12], angles
provide a hasis for giving si mpllfi ed de-

model s
Angles,

scription of shapes, since the shapes can
be approximated by polKgons whose ver -
tices are located at the angles. In the

light of these remarks it is not sur-
prising that detectors for local features
such as edges and angles have been found
I n many biological systems [13].

2.2 Grouping Rules

GPM's should also encompass mech-
anisms that can deal with the abundant
information obtained from feature detec-
tors and put this information into a more
useful form  Such mechanisms might, for
example, serve to group features into re-
gions, or to select salient features.

Jul esz [14] has proposed a clustering
scheme in which proximal points having
similar feature values group into
clusters. Such a clustering process is
simlar t o mny of the region growing

schemes proposed for scene ana|y3|s SYS-
tems (e.g., Muerle [15]). Rosenfeld [16]
has suggested a process of best feature
size determination and non-maximm
supression that can be used to select
locally salient features such as edges,
spots, and streaks.

The Gestalt psychologists, notably
Koffka [17] and Wertheimer [18], provided

demonstrations for the existence of GPMSs

of these general types in human vision,
although they did not offer adequate
mechanisms for these models Their



organizational laws of good continuation
similarity, closure, and proximity de-
scribe qualitatively how the human visual
system prefers to group features into
aggregates. The Julesz clustering pro-

cess mentioned above can be considered a
first step toward modeling similarity
grouping. Beck [19] has conducted
studies of the factors that determine
S m|Iari ty grouping and has related these
factors to the concept of peripheral dis-
criminability. These ideas can also be
incorporated into even more comprehensive
texture models (Zucker [20]).

The Gestalt notion of good continua-

tiondeals withintersectingcurves. [t

can be interpreted as a preference for

pairing off the curves at anintersection
In a way which minimzes the total curva-
ture. The importance of these more
global, yet stil | rather wunspecialized,
mechanisms for organizing even just a
brief "glance" at a scene has recently
been demonstrated by Weisstein and Harris
[21] .

The Gestalt laws, |ike the feature
detectors, can be rationalized as being
wel |l matched to certain aspects of
physical reality. Objects are often
physically homogeneous, and a similarity
grouping 1s thus likely toarise froma

singleobject or population of related

objects, so that it is sensible to per-
ceive the grouping as a unit. Physical
objects are normally compact, so that a
proximity grouping is likely to arlse
froma single object, and it is thu
reasonable to perceive it as a unlt
Discrete physical objects must have
closed boundaries, so that the law of

closure is also asensihle heuristic.

Thus, models whose effects are similar to
those of the Gestalt laws would be useful
as GPM's, since they would be widely
applicable, and would give rise to re-
gions that often correspond to objects,

or useful pieces of objects. the same
time these models would provide a basis

for further simplifying the scene de-
scrl ption, by determining aggregates of
features t hat can serve as proposed con-
stituents for attempting a more realisti
semantlc interpretation of the scene |
other words, these models serve to signi-
fic antI yreducethe combinatorics invol -
ved in determining the possible groupings

of the features in a scene, by making
onIY a few combinations easy to "see",
while the other combinations are "hidden
figures.”
2.3 Depth Cues

As another class of examples of
GPM's, we will briefly consider some of
the cues, and the associated processing,

which can be used to deduce depth rela-
tionships of obLects in a scene. These
GPMs ar e somewhat more specialized than
those discussed previously, since they
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are predicated upon having.deli mited ob-
jects of some sort. Our discussion of

the simplifying nature of Gestalt laws
and depth cues In Sections 2.2-3 is based
in part on Hochberg [22],

The wvisual field 1s two-dimensional
many different spatial arrangements of
objects can give rise to identical visua
| mages. Nevertheless, wunder normal cir -
cumstances one has |ittledifficulty i n

judging the three-dimensional positions

of objects, even froma single monocular
visual image. In making such judgments,
one uses a variety of cues which help to
structure the visual field in an un-

ambi guous way with respect to depth.
Familiarity is certainly important in de-
termining depth relationships —if we

can recognize an object, then we know its
actual size, and can calculate i ts depth

from i ts apparent size. hhnr depth cues,
however, do not depend on familiarity;
ther, they reflect generalized know-

| edge about objects. If two similarly
shaped objects have different aFParent
sizes, we tend to judge the smaller one

as farther away. This amounts to

assumng that the two objects are
actually identical, and are therefore the
same size. This first order default
option is useful in the absence of any
other information. Note also that this
assumption leads us to a "simpler" de-
scription of the scene as containing two
i dentical objects at different distances,
rather than two dissimilar objects.
Similar remarks apply if we have two re-
gions containing the sam type of tex-
ture, but with one more coarselK textured
than the other. In this case the simpli-
fying assumption is that both objects
have i dentical textures, but one is
farther away.

More generally, if an object is
asymmetrical, but can be regarded as a
three-dimensional rotation of a symmetri-
cal object, we tend to judge it that way;

for example, we can interpret a trapezoid
as a rectangle seen obliquely This
perspective |nterpretat|0n yields a

simpler description of the object, namely
symmetrical but rotated, rather than
asymmetrical. At the same time, the per-
spective assumption is a reasonable one
to make, since it would be an improbable
coincidence for an object to appear
symmetrical when rotated, if the object
were not actually symmetrical. Analog-
ously, if we have a region containing a
texture whose coarseness varies from one
side to the other, it is easy to see the
region as wuniformy textured, but tilted.
This gives the scene a simpler descrip-
tion, consistent with our knowl edge of
the physical world.

As a final example, suppose that an
object has an irregul ar shape, but that
it could be symmetrical, or congruent to
some other object, if we regarded it as



partral |y hidden by a neighboring obhect
then we wi'l | tend fo conclude that t

s actually t he case., This interpretation
in terms of rnterposrtron yields a simler
description, and it certainly represents a
situation that frequently arises in prac
tice. Interpositions aré often (hut
always) signalled by local cues such as
"T-junctions**: the obrect whose edge |ies
along the leg of the T disappears Dehind
the object whos e edge lies on the horizon-
tal bar of the T. "The drsappearance and
reappearance of one 0b] ect rom behind an-
other my bhe indicated by presence of
"matching T's"; T- junctrons vvhose | egs are
0od contrnuatrons of each other. I | S

clear how these cues generalrze our ex-
perience with real objects

2.4 @FMs in Human Vision

Anal ogs of (Ms can be found i n many
mdels of Vvisual perception devel oped b%
psychologrst Bruner l23] theorized t
early stages clue extrdaction and object
i solation direct later stages of process-
rng Prelimnary operations of this sort
on_the tr ul “that produce the objects
whi h| ter mechanrsns wi ll fill out and
interpret” have been called pre-attentive
p 0cesses b¥ I}Iersser [24].  "An important

0
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rta
unction hese processes is to "form
the units to which perception my then be
directed... Visual objects areidentified
only after they have been segmented, one
tro the other This permts t he perceiv-
er a|| most of his cognitiver
es to a tably chosen part of the

fi Id . Since’'the processes of focal
al

esourc-

i on cannot operate on the whole

field simultaneously, they can cone
pl yonly tter orellminary opera
have first segregated the “figural
rnvolved These prelrmrnary opera-

. correspond in part to what the
't psychol ogi sts called "autochthon-
rces Neisser [24], pp. 86, 88,
Of course it should be stressed
"objects" extracted by the pre-
ary operations may not be’the sane as
i nal objects obtained by subsequent
IS,

The belief is certainly widespread
sychologists that the early stages
ual information processing do not
on one's kn owl edg?e or expectations
eptual set” ) about the particular
uation. "The effects of perceptual
arning consist of changes in where you
ok, and of how you renenber what you
w, but not of what you see in any nonen-
ary glance... Mst of the attempts to de-
monstrate the effects of motrvatron and of
set on perception... were memorial rather
than perceptual"  (Hochberg [25] . 326)b
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Thus, sone of the operations p erformed
the human visual system can be hought o
as correspondrng to the use of CPIVIS at
the early stages of scene analysis.

| n t | rngsabout @M s rnlvis al

U
perceptio sometimes useful to
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i magine that they evolved as generaliza-
tions of more specific models for con-
crete physical situations by a process
which gradually relaxed the domain-depen-
dent context, so that serrantrc notions
?radually acqurred a syntactic flavor.

n other words, semantics becane "f0s5] -
|ized" and turned into syntax.

3. The Role of (PMs

As the universe in which conputer
ion systems operate becomes richer,
nitial expectations of the systems
h ve t o becone less specific. Thus
systems_will have to reldy nor e
Iy on GPM's, especially during the

al stages of scene anal ysis.

kng al ways begins Wrth suggestive
fect "plans and images; “these are
velr( replaced by better -- but
till imperfect "— ideas" (Mnsky

To further illustrate the use of

S, as weII as their rnteractronwrth
e specialized mdels, consider Shirai'
| scene analysis system This system
rates in the blocks world, and pre-
poses that any block will sharply con
st with the background. This know
ge is embodied in a @M of object-
round contrast whrch perform "a Kelly
e

n

Hég

[26] edge detection of the outer
oundary of the set of blocks. Next, it
s assumed that al | curvature mxim on
he outer horder of the set of blocks in-
jcate vertices of blocks.,  Each hypothe-
ized vertex 1s examned by procedures
at contain specialized know edge about
forms_of vertices in the blocks

d. . These specialists can, in turn,
est internal lines and vertices.

se uggestrons invoke GPMs for angles
in to discover the hypothesized,

et unverified, internal features.
mcs of this systens operation
trat ecIearIythernterpIay bet ween
|ized models and GPM s.

m‘<

ai'suse of (Ms is based on
rp ontrast of the blocks with the
surround d the fact that all angles
correspond to salient features in‘the
blocks world. ~ For exanmple, earIy in the
processing an "object" Interpretable as
the outer contour of the co||ectron of
blocks is found. In general, scenes are
not this simple, and fhe notion of what
constitutes "saljency” is rather elusive.
How mi ght specralrzed model s and GPMs
interact in nmore complicated situations?

The nore specialized the know edge
that we have about the scene to be
analyzed, the nore efficiently the
analysi s can be performed using speciali-
zed models. In an extreme case, if we
know what objects are supposed to be pr
sent and in wh posrtrons the analysrs
reduces to a simple verification of these
facts, perhaps by te pI ate matching.



This is an example of a situation where

GPM's woul d be unnecessar?é. Mor e
commonly, however, we may know the all ow-
able types of objects, but not their
positions, as in the blocks-world
situation — or, we my know only that

some sort of objects may be present, but
not what shapes (or textures) these ob-
jects will have, as i n the randomslide
showsituation of Section 1. As hae been
al ready mentioned, one could, in princi-
ple, runthroughrrany(gthousands?) of
specialized object models, applying each
one to the scene inturn. A more
efficient strategy would presumably be to
initially apply highly general models,
where the chance of success is greater.

By definition, GPMs should be use-

ful inarelatively wide variety of
cases. In fact, it my turn out that the
most efficient to start the analysis

wa
of a scene about wk/]i ch specialized know-
| edge is available i s still on a general
level . For example, in analyzing scenes
containingpolyhedra, itismore
efficient to begin by looking for edges,
as Shirai did, rather than for long
straight edges or corners. This is be-
causeitiscomputationallymrecostly
to detect corners (etc.) than edges, and
these detectors will have t o be applied
over large regions since we do not know

I n advance where the polyhedra are. Once
edges have been found, the mrespeciali -
zed knowl edge that is available can be
brought to bear by checking the edges for
straightness. Thus, GPM's, because of
their relative simplicity, are likely to
be useful even when we do have speci al
knowl edge about the situation.

't should be apparent from this
discussionthat the use of GPM s does not
presuppose any particular type of control
structure in the given scene analysis

system. A systemthat employs GPM s need
not be "bottom-up" or hierarchicalllé or -
ganized. GPMs ar e equally compatible

with heterarchically structured systems,
such as Shirai's. Furthermore, they are
not necessarily the lowest-level goals in
such a system, but may occur throughout.

4.  Concluding Remarks

Line drawings such as that shown at
the end of Section 1 constitute a
possible domain for the study of GPM s.
Here t he GPMs woul d structure t he draw-
ings into (unfamiliar) objects having a
limited set of properties (e.g., opaque/
transparent, Dblob-like/elongated) and
e

satisfying a limited number of relations
(e.g., in front of, inside, hole in,
etc.). A system for this type of line
drawing anal ysis has been proposed by one
of us ?27], and work on this systemis in
progress. It is hoped that the develop-

ment of such systems will facilitate our
understanding of GPMs and their role i n
SCLM O anal ysis.
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