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Abstract

A solution to the problem of automatic location
of objects in digital pictures by computer is pre-
sented. A self-scaling local edge detector which
can be applied in parallel on a picture is de-
scribed. Clustering algorithms and boundary fol-
lowing algorithms which are sequential in nature
process the edge data to locate images of objects
and generate data structure which represents the
imaged objects.

|. Introduction

A substantial amount of research has been
done in developing techniques for locating objects
of interest automatically in digitized pictures.
Drawing the boundaries around objects is essen-
tial for pattern recognition, tracing of objects in
sequence of pictures for control systems, image
enhancement, data reduction, and various other
applications. References 1, Z, and 3 comprise a
good survey of research and applications in image
processing and picture analysis.

Most researchers of picture analysis assumed
that (1) the image of an object is more or less
uniform or smooth in its local properties (that is.
illumination, color, and local texture are
smoothly changing inside the image of an object)
and (2) there is detectable discontinuity in local
properties between images of two different ob-
jects. We will adopt these two assumptions in
this paper and assume no textural image (see
Ref. 4 for an example of texture image analysis
which does not make these assumptions).

The work on automatic location of objects in
digitized images has split into two approaches:
(1) edge detection and edge following vs (2) region
growing. Edge detection meant applying in dif-
ferent points over the picture local independent
operators to detect edges and then using algo-
rithms to trace the boundaries by following the
local edge detected. A recent survey of litera-
ture in this area is given in Ref. S. The region
growing approach was to use various clustering
algorithms to grow regions of almost uniform
local properties in the image. (See Refs. 6-9 for
typical applications. ) More detailed references
will be given later.

In this paper the two approaches are combined
to complement each other. The end result is a
more powerful mechanism to do the job of seg-
mentation pictures into objects. We developed a
new edge detector and combined it with new re-
gion growing techniques to locate objects and
thereby resolved the confusion that has resulted
for regular edge following when more than one
isolated object on a xmiform background is in the
scene (see Ref. 10).

695

California 91103

The contributions of this report are the
following:

(1) A new and "optimal" (given certain
assumptions) edge detector is presented.

(2) A simple one-pass region growing algo-
rithm which was implemented on a mini-computer.
It utilizes the edge detector output.

(3) The application of path generator algo-
rithms and "shortest path algorithms" to do the
boundary following so as to close open edge lines
into boundaries around regions.

(4) Special-purpose region growing intended
to close open edges (cracks).

(5) A special clustering algorithm which sim-
plifies the region structure resulting from appli-
cation of (1) through (4).

II. Definition of Terms

. The input is expected to be in matrix form
Vit,j)i=1,. .., Nj=1,., . .,M, where V is a
vector in RB®, n is a function of the sensory sys-
tem, usually ! {gray level picture), or 3 {color
or x, y, z coordinates of surface in the scanning
direction), or 6 (color and 3-D information). An
edge unit separates two adjacent matrix points;
that is, an edge unit is between (i, j) and (i + 1, j}
or between (i,j) and (i,j + 1) for some i, j, {aee
Fig. 1}.

An edge unit is usually adjacent on both ends to
other edge units, There are 64 combinations of
edge units continuing an edge unit since each of
the edge units e, ey, e3, e]-, ezl, e3) in Fig. |
may exist or not,

Two points on the grid {I,J) and {K, L) are said
to be in the same region if there is a path se-
quence (i1, j1},. + -, {in, jn) sBuch that i] = I,

J1 = J, ing = Kand jp = L, where (ij;,, im) is adja-
cent to {im4): Jmsllform=1,...n - | and
there is no edge unit between the two, A region
will be a maximum set of points satisfying that
property,

An edge-line (or an edge) between region R1
and region R2 is the maximal sequence of adja-
cent edge units such that each edge unit in the
sequence is between two matrix points, one be-
longing to R1 and the other to R2. It is possible
that an edge line is inside a region (R1 = R2).

An edge line which is between two different
regions is called a boundary. An edge line which
Is inside a region is called a crack. An open
crack is a crack in which at least one end termi-
nates without connecting to any edge line. A



closed crack is one which terminates at both ends
on another edge line. For instance, cracks will
appear when an object is smoothly disappearing
into the background on one side and has detec-
able discontinuity on the other side (Fig. 2).

Using the above definitions, this report pre-
sents an edge detector which detects edge units in
parallel locally on the whole image. Then a re-
gion grower which results in the grouping of
matrix points into regions and edge units into
boundaries and cracks is presented. A local re-
gion grower which tries to break a region with a
crack in it into two regions for which the crack is
part of the common boundary is then presented.
Alternatively, an open-crack-extending algorithm
IS suggested to connect the open edge unit of the
crack to another edge line.

HlI. The Local Edge Detector

The edge operator is a detector of local dis-
continuity in an image. When applied between two
adjacent points such as (i,j) and (i I I,j), it should
return a value which will measure the confidence
that there is an edge between (i,j) and (i +1,j).
Since we work with noisy input to achieve reliabil-
ity, the operator must look at two 2-dimensional
(2-D) neighborhoods N\ and N2 to obtainareliable
value. Neighborhood Nj will include (i,j) and a
few adjacent points; N2 includes (i + 1,j) and a few
adjacent points; and Nj (\\ N% 0. As a result
the value returned will measure the confidence
that the neighborhoods belong to images of differ-
ent objects.

Kdge detection is actually composed of three
components: (!) choosing the proper neighbor-
hoods, (2) the measurements of differences be-
tween image structures in the two neighborhoods,
and (i) locking on the exact position of the edge.
Discussion of each of these steps follows.

IV. Measuring Differences in Structure
Between Two Neighborhoods

Any technique which measure structural dif-
ferences must make some assumption (explicitly
or implicitly) on the structure of an edge vs the
area inside a region. IUnford and Hershkovitz
(Ref. 22) suggested three possible ideal edges
defined by the intensity profile on a normal-to-
the-e.dge line (Fig. 3).

All of these idealized edges are in reality
washed with gaussian noise on both sides, where
the noise is the result of both hardware noise and
surface irregularities. Basically, the decision
needed to be made is between two hypotheses:

Ho- The readings in Nj and N2 are taken
from the same object.
\: The readings in NI are taken from one

object and in N2 from another object.

Neighborhoods N1 and N2 are the neighborhoods
mentioned in the previous section, and the deci-
sion ,vs to how to choose them will be described in
the next section.

An optimal
L1t) and 1] will

(best for its size) decision between
utilize the maximum likelihood
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ratio as follows: L<et Pn be the maximum likeli-
hood estimate of the structure (reading in N\ and

N2), given that Ho is true, and let Pi be the max
imum likelihood estimate of the structure,
assuming H\ is true. Then,
P
Choose Hl when-fp—— > K
0
p1
Choose H, when — < K
0 PO

I Py/Pg = K choose at random.

This decision will be optimal for its size (see
the Neyman-Pearson Test in Ref, 11, pg. 55);
hence, if our agsumptions are valid, we have an
ideal edge detector, given only readings in N)
and N2, (We will deal with gaussian probabil-
ities; hence we will ighore Py/Pg = K. ) The
conclusion 18 that P} /Pg is the best measure of
the edge strength. Following are two examples
of applying these principles to edges of types (a)
and (b) in Fig. 3.

EXAMPPLE )

Assume that the edges and surfaces will be of
type A, with added white noise which is object.
dependent. Then Hg and H| will become

Hg: The readings in both N) and Nz are
independently taken from the same
normal distribution N{kg, 05} with
unknown pg, ©g.

Hy: The readings on N| are independently
taken from normal distribution

N{p}), o]1); and the readings on N2 are
taken from normal distribution

N(kz, 92); (g1, a]) need not be equal to

(n2, @2).

To apply the maximum likelihood ratio prin-
ciple we need to find a maximum likelihood esti-
mate for {(pg. 7¢} (K1, 1) and (u2, o2). Given
(x{,* * « ,Xxp} readings taken {rom a normal dis-
tribution with unknown (4, ¢ ), the maximum
likelthood estimates are

n
X.
i

. - i=1
a n
n
2
2, i)
g2 . 1=t
n

Let Prax the probability of getting those
readings assuming they are taken independently
from normal distribution N{(i, o) then

max P(E.E) (xl'ﬁ | 'xn)
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Here we assume that when assumption H1
holds the readings on the two neighborhoods are
independent. That is, the maximum probability
assuming H1 is the product of P1 and P2 To
save computation of square roots we work with

2 instead of the

Note that the edge value suggested is self-
scaling with respect to noise and texture: In
areas where oy > o2 x0g > 0 (highly textured
areas or the result of noisy hardware), the edge
value will be low, near 1, while any small steps
in almost uniform areas will be recognized easily
In practice, we computed the variance of noise in
the hardware by sampling over time the same
points in static scenes. Al variances were
forced to be at least the hardware noise so as to
prevent divisions by zero in pathological cares.

At this point it may be worthwhile to compare
our approach with that of Ref. 12. Both try to
use a maximum likelihood ratio to compute
scores for an edge. But while we have a simple
model and a practical way of computing the con-
fidence, Ref. 12 assumes a priori deterministic
classification of all possible idealized noise-free
structures to edges and no edges Then, for a
given reading structure, the noise assumption is
used to compute the probability of all idealized
structures that could have caused the readings.
These probabilities are used to decide whether or
not the readings represent on edge.

It should be mentioned that other statistical
techniques were used for edge detection as in
Ref 22 and Ref. 18, but none of the edge detec-
tors which appeared in the literature used the
maximum likelihood test for edge value.

EXAMPLE 2

Here we assume that each matrix point V (i, )
Is a 3-dimensional vector (x,y,z). Actually the
raw readings are just distance R(i,j), but to
avoid a strong dependency on the sensory posi-
tion, (i,j,R) are used to compute (x,y,z). This
Is the form of input read from a device which
measures distances to surface (such as radar or
devices which measure the time of flight of laser
beams to an object). The i,j corresponds to ver-
tical and horizontal steps in the scanning angle.
The two adjacent neighborhoods on the matrix NI
and N2 have readings (xL,yl,zl), - - «

. R { 1 1 .o

(Xn» Yn. zn) 0 Ny and (x1°, Y17, 21%), ’
(xml,ymri,zml) in N2. We assume that objects
are almost planar locally with added white noise
with mean to position readings. That is, if we
read (x1,v¥1,21), * - - » (Xn,¥yn,2zn) in a small
neighborhood on an object we "have a,b,c,d,<r
such that

a2+b2+cz=!



and

ax, + by, + cz. +d + N{(0O,0) = 0 i=1, - - ,n

With this assumption the edge detection decision
will be a chaoice between Hg and Hy.

Ho: The readings in the two neighborhoods
are taken from the same plane., That is
the readings on both Nj and N2 satisfy
for some (ag, bg, cg,» dg, o0}

a,x + boy t cgz + d0 + N(O, cro) =0

where

for all (x,y, z) readings in N] and N2.

H): There are two not necessarily equal
planar fits for the readings on N) and
on N2. That is, there are (a}, by, ¢},
dy, ¢1) for Ny and (a2, by, c¢2, d2, o2}
for N2 such that

2 pA 2
a, +b1 +C1 = 1
2 -
i=1, -+ ,n alzuc.l+bl_)a'i+<:1zi
R + d1 + N(O, Ul) = 0
i = 1-Itbn 1+ z. 1
L=1, »m ax%; 2¥; t %
+d2+N(0, r.r'z) =9

To apply the Neyman-Pearson principle for
this case we want to find maximum likelihood
estimates. Maximum likelihood estimates aj,
by, c¢1, d; will be

n

2
Vl = E (alxi-+ blyi-i clzi+d1)

i=1

main
= a,b,c,d
A 2 2
a + + ¢ =1

n

2 : 2
(axi + byi ez o+ d)

=1

and

V.
¢ . X
n

Solving for the optimal (al, bl, cl, dl) is a
relatively straightforward process. Once they
are found, the maximum likelihood estimate for
N1 will be

Hence, we have the expression which tests for an
edge. It is of the following form: I

decide for H1l, otherwise HO.

Note that (x,y,z) may be replaced by (i,j,g) in
regular black and white pictures, in which case
we will have a regular picture edge operation
which will be able to handle edges of type B in
Fig. 3. Somewhat similar applications were re-
ported in Ref. 20 and Ref. 22 for dection of gra-
dient edges Fig. 3(b). This edge operator has
not yet implemented on our system.

V. Locking on a Detected Edge

Computing the edge value is not usually suffici-
ent to decide where to put the edges. The values
that are computed usually look like the ones in
Fig. 6.

One way of forcing the edge to be well defined
is to constrain it to be a local maximum in addi-
tion to having a confidence value higher than a
certain threshold. This is, of course, extremely
important for locking on the center of the edge
(see Ref. 23, page 382). Usually there is still
some local ambiguity on the location of the edge,
and for many practical reasons it is better to
treat the area around an edge as ambiguous The
source of problems here is that, because of com-
puting time constraints, it was impossible to find
a global optimum for edge lines using all avail-
able data, and it was necessary to use only local
information for evaluating the edge units in this
level. In our system, the decision as to where
exactly to put the edge was left for the region
grower (see below). To demonstrate the possible
2-D ambiguity, see Fig. 7.

The search for a maximum may be used for
special-purpose edge detection. For instance, if
we look only for one dark stripe crossing a white
background, forcing the edge to be the absolute
maximum or minimum on a horizontal line in the
image (keeping track of the direction of the
change) will supply the appropriate pair of edges.



V1. Region Growing

The output of an application of an edge detec-
tor results in two new matrices in addition to the
matrix V(i,j) of raw data. The first is EV(i,J),
which is the measure of the confidence that there
is an edge unit between (i,j) and (i,j + 1); the
second is EH(i,,j), which measures the confidence
that there is an edge unit between (i,j) and
(i +1,j). EV(i,j)and EH{i,j) may include extra
bits as determined by the direction of the change
on that suggested edge unit.

This output as it stands is not sufficient for
application of pattern recognition and various pic-
ture quantitative analysis tasks. Outlines of ob-
jects are needed in order to recognize features.
One way of achieving that is to use a region
grower which will outline objects by clustering
points into regions. This approach was used in
the past for picture analysis. Recent works
along that line are Refs. 6, 7, 8, and 9- The
basic conclusion of those works is that without
using semantic information, which is the knowl -
edge on the subject of the picture, clustering can-
not create perfect outlines. More recent work,
Ref. 24 and 11, pg. 324, introduced new tech’
niques of clustering which provide more flexibil-
ity and may upgrade clustering performance for
images .

Here we introduce a new algorithm for clus-
tering based on search for "valleys" of edge
values in a picture If random access is allowed,
a relatively simple algorithm which starts from
local minima of edge values and climb up can be
implemented. Due to lack of storage capacity on
our mini-computer, and in an attempt to use data
as it digitized from the video signal sequentially,
a one-pass algorithm to generate regions corres-
ponding to valleys was implemented. To our
knowledge, this is the first time that this ap-
proach is used. Most works on region growing
(ours included) lack the capacity to make use of
the shape of the growing object. An alternative
approach to region growing is "edge following"

which was used in various works like Refs. 10,
16, 19, and 21. The basic idea in edge following
IS to detect a discontinuity and trace it and this
way define edge lines. Unfortunately, the works
in edge following suffers from lack of an effective
way of tying regions properties into their decision
processes and output.

Let us start by describing a one-pass algo-
rithm which the edge data into data structures of
regions, boundaries, closed cracks and open
cracks, and creates, as byproducts, two arrays,
FH(i,j) and FV(i,j), where FH(i,]j) means that the
program puts an edge unit between (i - 1,j) and
(i,j), and FV (i,j) means an edge unit between (i,]j)
and (i,) - 1).

To ease the description of the decision mecha-
nism for placing edges, we need to define a few

new terms. Let T > 0 be the edge confidence
threshold; then,
(1) 'd" is the distance between two adjacent
grid points. It will be

a(l, i, (i - LN 2 dii - Lj), (i, )
Sif EH(i,j) < T then 0, else EH(i, j)

af(i, j). (i, 3 - 1) 2 d((i,j -1, (i)
Aif EV(i,j) < T then 0, else EV(i, j)

{2) Regli, j) will be the region to which the

point {i, j) belong. (Reg(i, }} is not defined
to all points until the program is finished.)

(3} Val(i,j) = Min d{(i, j), (k, n})

li~k] # Jj-m] =
No edge unit between
(i, j) and (k, ™m)

This value will be +» if (i, j) is the only
point in its region.

(4) Val{Regjy) = Min{Val (1,)))
, (i, j)
Regli, jY = Reg;

(5} A peint P will be the minimum point for
its region if

Val(P)y = Val{Reg{P)

The algorithm is designed so that at each state
there is always a non-decreasing edge distance
value path from each minimum of any region to
any other point in the region and the path enters
that point from its minimum direction,

That is, if P and Q are two points such that

Reg(P) = Reg(Q) and Val(P} = Val(Reg(P)),

then there is a path (x), x3, -+ Xp) such
that

(a) x; = P, xn, = Q

{b} Reg(xij = Reg(P), i=1, --- ,n

(c) x; adjacent to x{,;,
dixjs2, Xi41) 2z dixig, xp)

(& dixp, X)) = Vallxp

We say if such a path exists that Q is
reachable from P

That is, two points are in the same region if
you can get from one to the other in a path which
does not crose a ridge of edge values.

VII. Al;grithm Description

The program scans the image from left to
right, line by line, That is, the scanning is such
that when point (i,j) 18 processed, the program
already worked on all points (i}, j}) such that

(Ji<j) or (j = j1 and ij<i).
Assume the program is processing point (i, ).
Let D) be a Boolean variable set to true if this

prograrn is not going to put an edge unit between
(i, )} and (i, j-1}; and false otherwise, and let D>
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be a Boolean variable set to true if the program
is not going to put an edge unit between (i, j) and
{i - 1,3), and falge otherwise. Let R,
Reg(i, j-1) and Ry = Reg(i-1,j) (see Fig. 8).

The decision on the values of Dy and D, is

described by the following ALGOL-like program:
Begin

Boolean Good-Downj, Bad-Down;, Up,,

Good-Down,, Bad-Downy, Upjy;

Good-Down} ~—(d({i,)), (i, j-1) = Val{i, j-1)A
((Val(i, j-1) = Val(Ry))

Comment: Good-Down; is true if point (i, )) is
going to become a new minimum for R; {the
region above), and it is adjacent to an old
minimum; hence, any point of R} reachable
from the old adjacent minimum will be
reachable from the new;

Bad-Down) — {d{{i, j}, (i,j-1}) < Val{i, j-1)A
({Val(i, j-1) > Val{R;}}}

Comment: This variable is true if (i, ) is not
reachable from all minima of R) going through
(ij j- l);

Upy -- d((i, j), (i, j-1)) = Val{i, j-1)

Comment: This variable is true if point (i, )

is reachable from any minimum of R; by con-
tinuing the path that leads from that minimum
to (1, }-1);

Good-Downp ~ (d((i.j‘], (i-1, 1)) < Val(i-1, jhn
((Val(i-1, j) = Val(R;)))

Comment: This variable is true if point (i, j)
is going to be a new minimum for R, {the
region minimum, to the side) and is adjacent
to an old minimum of R4; hence any point
reachable from the adjacent old minimum will
be reachable from (i, ));

Bad-Downjp — (d{{(i, j), (1-1,j)) < Val(i-1, ))A
(Val(i-1,)) ~ Val(Rz))

Comment: This variable is true if (i, j} is not
reachable from all minima of Rp through
(i-l [ J);

Ups = d(i, j), (i-1,j) 2 Val(i-1, j)

Comment: This variable is true if point (i, j)
is reachable from any minima of R2 by con-
tinuing the path that leads from that minimum
to (i"lv j’:

If Good-Downy A Good-Down; then D) - Djp - true
else

If Good-Downjy A Bad-Down; then begin D~ true;
D-> - false; end else if Good-Down) A Up then
begin

if d((1, j), (i, i-10 = d(i(i, j), (1-1,j§)

then D, — Dy + true

elae begin ) « true;
end

Dy ~— false: end;
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else if Bad-Down) then begin if Good-Down, V
Upz then begin

Dl ~— false

DZ - true

end

else begin

D] — false

D3 — false; end
end

else if Up; A Good-Down; then begin

if d((i'j)o (i-l,J)) 2 d({ilj)n (irj'l))

then D) — D, «- true

else begin D::';: ~— true;
end

D, - false: end

else if Up) A Up, then, if R} = R, then
Dy~ D, — true elee

if d((i,j), (i-1,))) 2 d((i,j), (i,j-1))

then begin D «— true; D2 -— false: end

else begin D) - false; Dy « true; end
end

Comment: In that case we must force t};;t

only one of D, and D, can be true; otherwise
we cannot guarantee entrance through mini-
mum value from all minima of both Ry and R,;

else if Up; A Bad-Down, then begin D) - true:
Dy ~— false; end

Val{i, j)= o ;

if D, then begin

Val{i, j- 1} — Min(d((i, j), (i,j-1)), Val(i,j-1));
Val(i, j) — d({i, j}, (i,j-1));

Val(R1) — Min(Val(R,), Val(i, j}};

end;

if D5, then begin

Val(i-1, j) ~ Min(d{{i, j), (i-1,))), Val(i-1,j));
Val(i, j) — Min(Val(i, j), d((i,j), (i-1,iN);
Val(Rj) ~— Min(Val(R;)), Val(i,j));

end;

If not (D} V Dj) then Val{Reg(i, j)) o ;

The €} and e, (see Fig, 8) may exist or not,
and as a result E}nere are four starting conditions.
The program may put D}, D,, Dy and D, or none
of them, and hence, there are 16 cases in a point.
(See Fig. 9 for a brief description of the different
cases.)

Merging of two regions may always result in
transformation into a crack of a previously com-
mon boundary of the two regions. In general,
each operation of the region grower is fairly
elaborate: more than meets the eye. The data
structure used is not described in this paper, but
it is essentially the same data structure
described in Ref. 9, with slight modification to
include edge line representation through chain
encoding.

This one-pass algorithm is local and requires
relatively small core resident data. However, it
does not create maximal regions with respect to
our criteria of path connectivity and reachability.
The reason is the possible directionality of the



region growing. On the other hand, it is rela-
tively simple and fast when other algorithms are
considered. The maximality problem may be
easily corrected if backup is allowed. Note also
that, in fact, the threshold T plays a very small
role in defining the output of the algorithm.

Simplification of the Result
of Basic Region Growing

VI,

There are two straightforward options for
simplifying the output of the one-pass region
grower: (1) take all regions that are too small to
be interesting and melt them into their closest
neighbor (the distance between two regions will be
defined later in the paper); (2) take all short
cracks which are weak (strength of the edge line
will be defined later) and delete them. Of course,
the threshold below which a crack is weak and a
region is small is a function of how much we want
to elaborate the task of the image analysis and is
defined heuristically. 1In fact, in the current
implementation all cracks are deleted since the
edge operator was sensitive enough for our
purposes.

| X. Merqging Regions

The basic region grower utilized local
detection procedures. Better decisions are
achievable (at least theoretically) by using more
global information. The problem is how to allow
this additional information and still keep the
program lean and fast. Research in that area
was reported (Ref. 9). Basically, our approach
is to be oversensitive on the local pass and as a
result to oversegment the picture. But then we
take the output data (which is simple relative to
original picture) and simplify it. We take pairs
of regions with common boundaries and merge
them into one In order to do that reliably, a
confidence value which measures the confidence
that the pair of regions are different is com-
puted. Then, iteratively we pick the pair of
regions with the lowest confidence of being dif-
ferent in the current structure, merge them, and
update the structure. The confidence is depen-
dent on two factors: (1) the magnitude of the
change across the boundary and (2) the difference
of the properties inside the two regions. Both
of these values are computed on the basis of
assumptions similar to those used in the edge

confidence evaluation. For instance, if we
assume gray level readings, then let XJ i = 1,
n be the readings on one region and xi'i = 1, m

be the readings at the other, then the second

factor will be:

CONFIDENCE

where
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> X,
X. + X,
(1) N S i:z 1 !
o = m + n
(2) VO =
n m
2 ! 2
E (xi _ po) + Z (xi - PO)
i = 1 1 = 1
m 4+ n
n
2 X
_i=1
(3) 20 U n
n
Y, -ow)?
i = 1
(4) Vl = n
m 1
£ x,
_ i
(5} M2 = m
m . 2
2 X (X; - #p)
-— 1 =
(6) Vz = -y

Results using only this factor are shown below.
In Ref. 9, the local boundary properties are used
to compute the edge values. The merging is
stopped when weakest boundary strength is more
than a given threshold.

Results

The suggested one-paes region growing
algorithm driven by edge values was implemented
on G.A. SPC-16/75 mini-computer of the Jet
Propulsion Laboratory robotics lab. The input
picture is digitized from black and white video
signal of Cohu camera. The signal is digitized
into 256 gray levels. The noise variance as
measured from repetitious readings of the same
point in a sequence of images is 2. A Ramtek
display unit is interfaced to the mini-computer
and is used to display the digitized picture in
green. Boundary lines of regions are displayed
in red over the original picture for performance
evaluation.

All cracks are currently ignored. The
threshold below which the edge value is truncated
to 0 was fixed to 2000 in all the examples below.
A system to set the threshold automatically so as
to allow only 5 percent of the points of the image
to have value over the threshold was scrapped in
favor of fixed absolutely threshold.



The output of the first pass is then passed to a
region merger which reduces the number of
regions also with default fixed threshold (merge
till log (confidence) > 20). The compute time for
a 200 x 200 picture is approximately a minute for
a program which is highly inefficient because of
debugging aids.

The results which are shown below are
encouraging. We believe that use of planar fits
(gradient edge detector instead of the step edge
detector) and using features of region dynamically
as they grow to upgrade performance of the
region grower will result even better perform-
ance. We found the region growing algorithm as
an important task to scene analysis (Ref. 25) and
look forward improving its performance.
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Figure 1
likelihood edge detector default threshold
VAR = 2 TR = 2000

Figure 2

> 20

-nlg Vz

{m+N)1log Vo-mlg Vl

one pass region growing using maximum

merging regions using iteratively
weakest boundary first with stopping criteria
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Figure 3 reconstructed image from regions in
Figure 2
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