AN | NTERPRETER FCR THE
PROCRAM NG LANGUACE PREDI CATE LOG C

Sten- Ake
Comput er

Abstract

We describe an Interpreter for the programmng
| anguage predicate logic. Some topics are; syntax
and proof procedure, procedure evocation, function
transformation, goal variationandinteractive
computational control.

Introduction

The devel opment of programm ng |anguages has
more and more relieved a programmer from machine
control and details, giving himthe power of ab-
stract reasoning and thus helped himto concentra-
te more on his problem Kowalski [8,9] has convin-
cingly argued that predicate logic formalizes a
man's thoughts and is a useful simple programm ng
language for human problem solving. Consequently
It is desirable to have predicate logic imlemen-
ted on machines for practical programmng. There
is one implementation at the University of Aix-
Marseille, PROLOGUE [2]. At the University of
Stockholm we have implemented an interpreter in
LISP1,6 [11].

Procedure

Syntax and Proof

The syntax of the language consists of
Kowal ski's procedural form [7] plus a control
structure consisting of an ordered procedure, or-
dered procedures and computational consequences

(Tarnlund [14]). The proof procedure is based on
Kowal ski's connection graph system (6].
Kowal ski's procedure form

A procedure is the only type of
the language. It contains two special cases, a
goal and an assertion. Tw typical procedures are

own(x,y) % Om(x, z)Part (y,z),

which is read "x ows y if there Is a z such that
x owns z and y is a part of z", and

D(X’y)’D(sz) * D(XIW)’P(X)lM(y1ZIW)t

which is read "x divides y or x divides z if there
is a w such that x divides wand x is a prime and

z * wW. The part to the left of the arrow is
cal led procedure name and the part to the right i s
called procedure body consisting of procedure
calls.

A goa
nane e. g.,

statement in

statement is a procedure without a

“ Omn(John, tyre).

An assertion Is a procedure without
e.q. ,

a body

Part(tyre,car) «.

A program is a set of procedures connected
In a graph depending on how they match each other.

601

Tarnl und
Science Department
University of

Stockhol m

For example, the program

+ Part (finger,arm)
Part{x,y) +« Part(x,z),Part{z,y)
Part (hand,arm) =+

Part(finger hand) + ,

gives rise to the following connection graph

« Part{finger,arm)

x +« finger

-
------- -

Par{ (hand,arm) « Part(finger,hand) +

Flg.l. A connection graph. Each atom is
connected to al |l other atoms with the

sanme nane occurring on opposite sides of
the arrows, provided that they can be
matched i.e., unified (12). Recursive pro-
cedures are linked with dotted lines.

The connection graph is

indipendent of the
order the programmer

presents his statements. De-
pending on one's programmng style (problem-sol-
ving) one can combine top-down, middle-out and
bottomup programmng. The goal of the interpreter
is toactivate links (resolve corresponding atoms)
in a way that eventually leads to the emty pro-
cedure D

Control structure

The control structure transfers some decision-
making responsibility fromthe search stra-
tegy to the programmer and makes the decisions ex-
plicit, This is illustrated by a program that
probes for a node to be deleted in a binary tree
such that its remaining nodes are sorted when tra-
versed in symmetrical order. The program is based
on a delete algorithmin Knuth [5]. W use Knuth's
zodiac example (sec. 6.2.2) to delete the node
CAPRICCRN froma binary tree. The initial goal i s

Del et e* (CAPRI CORN) . (1)
Suppose that we have the binary tree in a data
base

A(tree) - | (2)

where A is an arbitrary predicate whose argument
tree is equal to

t (t(0, AQUARI US, t (0. ARI ES, t (0, CANCER, 0))), (3)
CAPRI CORN, t (t (0, GEM NI, t (0, LEO, t (0, LI BRA, 0))),
PI'SCES, t (t (0, SCORPI O, 0), TAURUS, t (0. VIRCO. 0)))),

This zodiac hinary tree "tree" Isanlnstantiation

of the data structure

t(x,y,z2)
denoting a binary tree with a root y and a [eft
subtree x and a right subtree z. An enmpty tree Is

denoted 0. Wen we have picked up the binary tree
fromthe data base and deleted the node CAPRI CORN,

we want to put the new tree back into the data
base i.e.,
(A(z) * },Delete*(u) - <A(x),Delete(x,u,z)> (4)

where u is the node to be deleted in a binary tree
X, and z is theresulting binary tree. Note that
Delete and Delete are two different predicates.
The predicate within the braces is a computational
consequence not to be resolved upon during the
computation, but t o be put intothe data base when
the remaining part of procedure (4) is resolved to
the empty clause. (Computational consequences rmay
be viewed as a generalization of Green's answer
predicate [3]). The angled brackets '< and ">
tell us that procedure (4) i s an ordered procedure
and is executed from left to right within the
brackets.

In the delete algorithm we check each node
the binary tree to determne whether it is to be
deleted or if we have to continue a hinary tree
search for the node to he deleted. The procedures
for this algorithmare ordered anong themselves
and delimited by a pair of double angled brackets
'<<' and " >>" . This ordering controls the executi-
on of the procedures.

There are two cases when a node is deleted.
The simpler case occurs when t he left subtree of
the right subtree of a node u is empty viz.,

« Delete(t(x,u,t(0,y,z7)),u, t(x,y\z')) + ,
where the new hinary

in

(5)
tree
t(x,y\lz")

is "the old tree with the root wu deleted".

trol structure attempts to execute this procedure
first. I n case we have t o search for t he successor
node y of the deleted node u in symmetrical order,
the procedure i s more complicatedviz.,

Delete (t (x,u, t (x\y\z»)),u,t(x,y,t(x",y\z")) -

Successor(x',y,x"), (6)
where
tix,y,t(x",y\z"))
is the new binary tree in which the root y and the

left subtree x" are still unknown. They ar e de-
duced by the Successor procedures (9) and (10).

In case we have not found the node to delete
we have to search for it viz.,

Delete(t(x,y,z),u, t(x",y,z)) *

<LE(u,y),Delete(x,u, x")>, (7)
where the node u to be deleted is to be found in
the left subtree x of y. The new binary tree
becomes

t(x',y,z),

where x" i s the same tree as x but with a node de-
leted. Waen t he probed node i s i nthe right sub-
tree of y we have

The con-

602

Delete(t(x,y,z),u,t(x,y,z")) «
fGr(u.y},Delete(l,U, z')} >>l

to be deleted is found in the

right subtree z. LE and Gr are "built-in" procedu-
res that determne alphabetic orderings (see below).
The procedures (5) (8) are ordered anong them

(8)
where the node u

selves, which neans that a procedure call
Delete(x,y,z) first will try procedure (5); if that
procedure cannot be resolved to the empty procedure

the call will try procedure (6) and so on,

To complete the program we write the recursive
successor procedures that probe for a node y which
I's the successor in symmetric order of the deleted

nodeuvi z. ,

c<c

(%)

Successor (t (0,y,2),y.z) +
and

Successor (t(x,y,z),y 't {x',y,2)}) =
Successor(x,y',x'} >>,

where (10) is the recursion step and (9) the re-
cursion bhase which termnates the search for the
successor node on the first root with an empty left
subtree.
Procedures (5), (6),

(10)

(9) and (10) with the
goal

+ Del ete(tree, CAPRI CORN, z),

where tree is equal to the binary tree in (3),

have been executed on the theorem prover of Allen &
Luckham [1], at the Artificial Intelligence Labora-
tory, Stanford University, in 2.6 seconds (see
appendix) .

Procedure Evocation

A computation is mainly goal
the interpreter tries to find
down fromthe goal. There are,
portant deviations.

oriented i.e.,
out a deduction top-
however, some im

Bottom-up pre-processing

1t 1s generally recognized that 1t {g impor-
tant to find the 'right" data structure for a prob-
lem and to make strong use of 1ir. For predicate
logic programs this can mean improvements of seve-
ral magnitudes. The reason for such improvements
is that predicate logic programs can be very non-
deterministic but by making a bottom-up pre-proces-
aing of the data structure the preogram can become
much more deterministic. We show this idea with a
slight variation of an example from Kowalski [9].

- -

Tover (y) « waer(u),Ongx!u),Partp(x,u,y)

Tower (y)} « Block(x),Pnrts(x.B:Y 5

Bldgf?;) . ::EOn(A.B) +
B1GTK(B) - 1 “>on(B,C) *
BldEE?C) . :>0n(C,D) *
Blo?:’i?n)/j,f - >0n(D,0) <
Partﬁﬁ.’ta,/u)) - / L

\\ Od%f;ff_;‘On(x,z).Parts(z.u.y)
_ﬁ__ﬁﬁ;L

Fig. 2. A recursive program defining a tower

Touer(l:(x t(vaower(t(v ¥)}),0On(x,v)

Towgr (t {x,0)) + Block(x) A\
BIock(A) + "'7 £ Sona,m)

5 (B ou(s,0)

$

B1GCk(B) + L
BIGEK(C) ~ / 0n(C, D)
B15€K (D) ~ / n(D,0)

on(x,t (z,u)) «Bnix,z)

+

4

L

Fig.3. A bottom-up pre-processed tower
program.

The program in fig.3 with the data structure
pre-processed into the procedures seems to use the
"right" data structure t(x,u) for this problem
where x is a top block and u is either an empty
tower or a tower t(v.y) where y is an empty tow-
er, denoted 0, or a non-empty tower. Notably, this
more deterministic tower program is more than 15
times faster than the program in fig.2 for the
goal

+« Tower(t(A,t(B,t(C,t(D,0))))).

when run on the theorem-prover at the Artificial
Intelligence Laboratory, Stanford University (see

appendix).

In a top-down execution the variable v of
atom On(x,v) will always be bound to a block so
the starred link in fig.3 will never be activated.

Consequently we can erase it, which then implies
that the recursive "On" procedure contains a pure
literal and thus can be deleted from the graph.
This reasoning about data types would be simplifi-
ed if the variables and their types were declared.
Most of the pre-processing that we have seen
follow a one link rule (see below).

One link evocation

Another important deviation from a top-down
computation can occur from a one link evocation.
The one link rule, however, is also useful during
a top-down computation, because of the fact that
a whole procedure can be deleted from a graph, if
the procedure contains an atom connected with only
one link, which is activated (Kowalski [6]).

The following figures show a one link evocation.

G: . 1. * Own(x,tyre)
2. mu.z),i’art‘(\y.z)
x + John y + tyre
y + tyr
2 + car . + vheel 2 * ©ar

3. Owa(John,car) + 4. Part(fyre.car) -

5. Part(tyre,wheel) +

603

-

G': e

1°. Owﬁ(x =~-.-‘1"'5011():,:) Part(z,y)
2'. + (x.z),Part(tyre,z)
AN
x + John
z + car
z + car

.

3'. Owun(John,car) +| 4'. Part(tyre,car) +«°

z + wheel

5'. Part(tyre,wheel) +

Fig.4. Two connection graphs G and G'.

Graph G'. follows from G by evoking statement 1
in a top-down computation. Interesting
substitutions are shown. The dotted links
show recursion.

There are two atoms connected with only one
link in graph G. Selecting statement 1 gives a top-
down computation and a new goal

« Own(x,z),Parc(tyre,z)

in C. This goal is non-deterministic in the sense
that the interpreter is not told which subgoal to

solve first. This problem is discussed tjelow in the
sections built-in procedures and instantiation evo-
cation. The old goal

+ Own(x,tyre)

In G, is deleted giving a cleaned up graph G'.

The one link rule does not work in G'; how-
ever, the interpreter could have followed the one
link rule in a bottom-up computation by evoking
statement 3 giving G".

G

- -
- -

John,y) + Pa t(YpCGY)]
5. Part(tyre.wheeism¥?

P

y + tyre
4, Part{tyre,car) +«

Fig.5. Graph G" follows from G by evoking
statement 3 In a bottom-up computation.

The one link rule is applicable again in G",
this time middle-out, giving the new fact

Own (John.tyre) =« ,

which is a recursion base. The problem is now sol-
ved top-down using the recursion base giving a
solution x + John in the goal

+ Own(x,tyre).

The transformation from C to C" shows an
efficient problem-solving sequence by the one link
rule combining bottom-up, middle-out and top-down
computation. Bottom-up and middle-out execution
corresponds to PLANNER'S (Hewitt [A]) antecedent
theorem and top-down to a consequent theorem.

A matcher containing a unification algorithm
(Robinson [12]) plays a major role, operating on
the substitution sets corresponding to a link. The
matcher computes the substitution set to a new
link in a local area.

Instantiation evocation

The graph G
however,

in fig.4 has no one |ink atom
in the goal

Own(x.z) .Part (tyre,z)

the second subgoal is more instantiated than the
other. Tliis fact is a heuristic giving the inter-
preter a hint that a first attack on that goal
could give a mre deterministic computation

(M nker et al. (10]). The interpreter recognizes
al so that the subgoals have common variables i.e.,
they are dependent. So when searching for soluti-
ons for z tn Part(tyre,z), the Interpreter checks
these for compatibility with the subgoal

<--Own(x.z).

Built-inprocedures

The interpreter also has built-in know edge

that mkes it simpler to write programs. We are
nlready familiar with the built-in predicates
| . K(u,y) and Gr(u,y) (the delete program above)

which arc true when the relations and

y > u are satisfied.

W can also use ordinary numbers |ike 0, 1,
2, ... instead of 0, s(0), s(s(0)), ... , where s
I's a successor function.

The interpreter has a know edge base of use-
ful LISP-functions [11] which can be used as pro-
cedures. The know edge base can be increased by a
programmer. Sone useful LISP-functions e.g., add,
difference and cons which can be represented as
the following procedures: ADD(x,y,z), DIFF(x,y,?z2)
and CONS(x,y,z), where x and y are input variables
and z is an output variable. If the input variab-
les are instantiated with numbers then the AD and
DIFF predicates are solved directly e.g.,

u <y

ADD(2, 5, z)
is solved with z 7. The procedure CONS(x,y,z)
is even solved when the output variable z is bound
to a list eq,

CONS(x,y,[a, b, c])

gives x + a and y <--- [b,c]
The matcher can solve more complex problems
the three dependent subproblems

+ ADD(|,y,z),ADD(x, 2,z), ADD(X, Y, 3)

from I'ts know edge base in LISP-code. The solution
is equivalent to the following sequence of substi-
tutions, y <-- difff{z, 1], and x <--- diff[z,2]
givingaddfdifflz,2],diff[z,1]]=3, whichgives
7-<---3, y<¢-2 and x<-- 1

Built-in procedures |ike LE and Gr are used
frequently at decision points during a computation
thus they are given high priority to be matched.

like

Function Transformation

In the section on pre-processing predicates

were Instantiated witha data structure (function).

Sometimes, however, we want to do the opposite
i.e.,

formit to a predicate. W explain this idea from

Kowal ski [9] with an examle.

Suppose that we have to sort a list of three ele-
ments [c,b,a] i.e., the initial goal is

<- Sort (cons(c, cons (b, cons(a,nil))),z), (1)

where z is the output variable and x is the first

move a function out of a predicate and trans-

604

element and y the rest of the list cons(x.y).
Assume further that we have a procedure
Sort(list(x),z) <---0(list(x)) (2)
in the sort program Procedures (1) and (2) do not
unify though their first arguments denote a [ist.
But et us transformthe term "list' in (2) to a

predicate and also use two auxiliary procedures
e,

Sort(u.z) <--- 0(x),List(u,x) (3)

and
List(cons(x",y), list(x",u"))<----List(y ,u")(4)
List(cons(x",nil), list{(x".nil)) (5)

then the situation is changed and yields after
some computational steps the intended goal

PO(list{c. list(bylist(a,nil)))). (6)

The transformation of a terminto a predicate
extends the domain of the unification algorithm
and gives the opportunity to use a uniform proce-
dure for terms and predicates to determ ne which
of them to evoke.

Goal Variations

In problem-solving problem variation sone-
times leads to a successful solution (Polya [13]).
We show two ways to vary a probleml.e., problem

generalization and problemspecialization. In both
cases logical consequence plays an important role.
Problem generalization

Perhaps the simpliest example that shows both

problemgeneralization and specializationis a fa-
mily example from Kowalski [9].

that we have the following goal

*- Male(x), Parent (x,y), Father (x)
procedure

Father(x) * Male(x),Parent(x,y),

| ogical consequence we have the new goal
<---Mle(x),Parent(x,y).

Suppose

and the

then by

The problem is generalized in the way that the
connection graph for the new goal contains Iless
details in formof predlicate(s) and [ink(s), yet
still gives the sanme solution.

Problemspecialization

A reasoning by logical consequence can also
give a specialized problem in the way that we put
in mre details in formof link(s) and predicate(s)
into the connection graph.

Suppose we have the goal
<----Male(x),Parent(x,y)

and the procedure
Father(x)<---Male(x),Parent(x,y),
then by logical consequence we have the new goal

<---Male(x).Parent(x,y).Father(x).

The idea of logical consequence can also be
used in a heuristic reasoning.

Suppose that we have a goal to show that x is a
parallelogram

+ Parallelogram(x) (1)
and a procedure defining a parallelogram
Parallelogram(x) + Plane(x),Sides{(u,v,w,y,x), (2)

Parallel (u,v),Parallel(w,y),
Opposite (u,v),Opposite(w,y)

and two rectangle procedures

Rectangle(x) =+ Parallelogram(x),Rightangled(x), (3)
Rectangle(A) =+ . (4)
Let us assume that the goal we obtain by resolving
(1) and (2) Is very non-deterministic; then we
could use the idea of logical consequence in a
heuristic reasoning and make the following assump-
tion.

Suppose that Rectangle(x) is a logical consequence

of Parallelogram(x), then we have

alized goal,

the new speci-

+ Parallelogram(x),Rectangle (x), (5)
which by resolution, (A) and (5), gives the goal
< Parallelogram(A), (6)
which is more deterministic and could give a

faster solution. This computation is, however,
based on a heuristic assumption that could be
false and thus could be a wasted computation.

Whether or not It Is favourable to generalize
or specialize a problem depends basically on how
much each can decrease the non-determinism of a
problem.

Interactive Computation Control

Interactive control of a computation helps a

programmer debug a program, as well as improve a
program, and can give the programmer hints that he
can use to trim the search strategy.

Program debuqgqing

A computation
perty of predicate

is a deduction (a unique pro-
logic among programming langu-

ages), which means that each step In the computa-
tion is a logical step. This gives us a powerful
mean to discover bugs e.g., misspellings, missed

termination conditions
ly expressed ideas.

(recursion bases) and bad-

Program Improvements

Asgume that we have a data base holding
A(kl,l) + A(k2,2) ey A(kn.n) + (1)

and rhat we want to search in the data base for a
speclal key k

« alk,z), (2)
which a priori can be matched with all elements in
the data base, then this program is reasonable for
very few elements only. If a programmer is told
when the number of possible matches is more than a
given threshold then he could start thinking of
some program Improvements.

A simple refinement of the given program is
to substitute goal (2) by goal

+« A(k,1) (3)

605

and add the procedure

Alx,y) « A(x,y+1), (A)

which gives a deterministic sequential search pro-

gram.

Conclusions

Our experience in predicate
only been positive. A program becomes structu-
and transparent. All variables of a procedure
are local variables of that procedure so we do not
get side effects from global variables. Each step
in a computation is a logical step, which supports
debugging. A proof of an algorithm on a theorem-
prover has a different behaviour from, for example
a proof in group theory where a proof of depth 9
is a surprise, though a proof of depth 42 for an
algorithm has been found in 75 seconds (Ta'rnlund

logic programming
has
red

Acknowledgements

The design of the interpreter is very much
inspired by Robert Kowalski of Imperial College
who visited University of Stockholm in December
James McSkimin of University of Maryland and Ake
[lansson of University of Stockholm have given many
valuable comments on drafts of this paper.

David Luckham, Jorge Morales and Joachim Schreiber
of Stanford University made the appendix possible.

NFR (Naturvetenskapliga Forskningsradet) and

74.

ITM (Institutet for Tillampad Matematik) have part-
ly supported this work.
References

1. Allen, J., and Luckham, D., An Interactive The-
orem-Proving Program, Machine Intelligence 5,
American Elsevier Publishing Company, New York
1970.

2. Colmerauer, A., Kanoul, H., Pasero, R., and
Roussel, P., Un Systeme de Communication Homme-
Machine en Francais, Rapport Preliminaire,
Groupe de Researche en Intelligence Artificielle
Universite d'Aix-Marseille, Luminy 1972.

3. Green, C, The Application of Theorem Proving
to Question Answering Systems, Doctorial disser-
tation, Electrical Engineering Department,
Stanford University 1969.

4. Hewitt, C., Description and Theoretical Analy-
sis (using schemata) of PLANNER: A Language for
Proving Theorems and Manipulating Models in a
Robot. Al Memo No 251, MIT, Project MAC, 1972.

5. Knuth, D., The Art of Computer Programming,
Vol. 3, Sorting and Searching, Addison-Wesley
1973.

6. Kowalski, R., An Improved Theorem-proving Sys-
tem for First-order logic, D.C.L. Memo No 65,
University of Edinburgh 1973.

7. Kowalski, R., Predicate Logic as Programming
Language, Proceedings of IFIP 1974.

8. Kowalski, R., Logic for Problem Solving, Memo
No 75, University of Edinburgh 1974.

9. Kowalski, R., Oral communication.

10. Minker, J., Fishman, D.H., and McSkimin, J.R.,
The Q* algorithm, Artificial Intelligence Nn 3,
1973.

11. Quam L,H and Diffie, W, Stanford LISP 1.6

12.

13.

14.

Manual , Al Operating Note 28.7, Stanford Uni-
versity 1972,

Robinson, J.A, A Machine-oriented Logic Based
on the Resolution Principle, Journal of the
Association for Computing Machinery, Vol. 12,
1965.

G, Hw to Solve It , 2d. ed., Doubleday
& Conpany, Inc., Garden City, NY., 1957,

Tarnlund, SA, On Logic Programm ng, Conpu-
ter Science Department, University of Stock-
hol m 1975.

APPENDI X

V¢ showthree programs presented i nthe text. The proofs of the programs are fromt he theorem

prover of Allen & Luckham [1] of Stanford University.

The programdel etes a node i n a binary tree.
fromthe binary tree that perserves the symmetrical order anong t he remaining nodes.
thefirstargument and t he newtreei s the secondi nthe predicate DELETE (bottom) given by t he answer

extractor.

A DELETE PROZRAM

PRE_PRED: DELETE , SUCCESSOR;
VAR: »,y,z.yl,y2:

PRE_OP: 8, t,AQUARIUS, ARIES, CANCER, CAPRICORN, P1SCES, GEMIN] ,LED,LIBRA,
TAURUS,SCORPIQ, YIRGO;

DELETE (tix,y2, 118, yl,z1)),y2, tixn,yl, 211}
SUCCESSOR Ix),y, »2)5DELETE {2 1, x3, tixl, yl, 21020 %3, tlx, y, tinZ, yl,21)}};
SUCCESSDR 118, y,2).y.2)1

SUCCESSOR {(x,yl, %11 3SUCCESSOR (1 {x,y, 2}, yl, tixl, y,z}l1;

THI

3z DELETE (t(t{@, AQUARIUS, t (B, ARIES, t (8,CANCER,®))) ,CAPRICDAN, t (t{(B,GE~
HIN!, t{O,LEC, t{8 . LIBRA,B})) ,PISCES, t(t(8,SCORPIN,8), TAURUS, t {8, VIRGOD, ~ .
01))),CAPRICORN, z};

HERE -ARE - THE -CLAUSES:

2 DELETE(tix, g, (0, z,y1)), y, tix,z,yl1));

3 SUCCESSOR [z, %], x2)5DELETE it ix,y, t1Z,yl,y2)), y, the, x], tix2,yl,y2)));
& SUCCESSOR{t{8,x,y) . x,y}:

S SUCCESSOR (x; yl,yZ)>SUCCESSOR(t (x,y, 20, yl, tly2,y,2));

& -DELETE(HHE.AQUARIUS.th.ARIES.tlB.CANCEH.BHl.CAPRICORN.t(t(O.GE«-
MIND, t(O,LED, t(B,LIBRA.Q))} PISCES, t(t{0,SCORPI0,8), TAURUS, t (B, VIRGD, ~
8)))) ,CAPRICORN, x) ;

7 —~SUCCESSOR{t(8,GEMINI, t(@,LED, t(O,LIBRA,B1))}, x,y);

COUNT

2

LEVEL

]

ELAPSED-TIHE

2617

8 -~SUCCESSOR(B.x,yl;

NIL 1 ¢

1 -SUCCESSOR{t (@, GEMINI, t{B,LED, t{B.LIBRA,B}}) ,x.y):3 6

2 SUCCESSOR(t (9, », yl,x,y) 1 AXIOM

3 SUCCESSOR{z, x1,»x2) 2DELETE (t{x,y, tlz, gl . u2} iy, tix, x1, t{x2,yl,y2)));~
AX10M

4 ~OELETE (t{t(8,AQUARIUS, t{0,ARIES, t{@,CANCER,B))),CAPRICORN, t(t(@,CE~
MIN], ¢{0,LEQ, tiB,LIBRA,8)}),PISCES, t(t1R,5CORPID, B), TAURUS, t (8, YIRGO, ~
8111) ,CAPRICORN,) : THM

ANSUER:

(QELETE (¢ (£ (@, AQUARTUS, t {8, ARIES, t (B, CANCER, 831} .CAPRICORN, t (¢t (9. CEM! ~
NI, t(B,LEQ, t(9,L1BRA,2)}) ,PISCES, t(t(8,5CO0RPI0, a1, TAURUS, t(@,VIRGO.8) ~
1)) ,CAPRICDRN, t{t (8, AQUARIUS, t(D,ARIFS, t (8, CANCER, Q) }), GENINI , t{t (@, L~
EO, t{8,LIBRA,0)) ,PISCES, t(t(8,SCORPIO, 8}, TAURUS, t{8,VIRGO,B) 1)}))

606

| n t he showed computation t he node CAPRRCORN i s del et ed
The original treei s

TONER PROERAM 1

This tower program does not use any data structure exept for the PARTS assertion, which makes
leas ef ficient than program?2.

YAR: u,x,v,y,zZ;

PRE_PRED: PARTS, TOUER, ON,BLOCK;

PRE_OP: t.A,B,C.D,8;

PARTS (x,u, Yy AON {x, u) ATORER (u) >TOWER (yl ¢

PARTS (x, 9, y) ABLOCK [x)>TOMER Iy} :

PARTS (x,u, t(x,u)};

PARTS (2, u, y) AON (x, 2) 20N (e, y} 3

ON{A.B); ON(B,C); ON(C,D}; ONID,8): BLOCK{A): BLOCK (B): BLOCKI(C); BLOCK (D);
THA:

TJOWER It A, tiB, t(C, tiD,8)1)));;

CHOICE-STRATEGY-1S:
VIMEASUPPORT (THM) ;

EDIT-STRATEGY-15:
OEPTH(B) VLENGTH (3]«

ELAPSEL-TIME =74750

NIL 1 6

~(QMIC , Ul AFPARTS (u,x, t {D,811)3 24

—ON{C ., (0,8Y);5 26

= {BLIOCK tu} A (DML, 1D, B}) APARTS (L, B, t(D,8)))):7 8

—~{ONIC, tiD. D) ATOUER (e ID,0)):9 26

BLOCK (x) APARTS {x. B, u) >TOWER (u) s AXTOM

=AM G, e} A ITOUER ()} APARTS (u, e, t (L, 20, 0)1)301:11 28

J1 -~TOWER{+¢(C,t{D.2)1),;13 26

13 - DNR, U ATTONER(IC, tiD,2)))APARTS{u, x, tIC, t1D,8)))1):15 24
1 ~{(ON1B, t (0, v D, 01 I ATDWERILIC, t{D. V)Y 17 26

17 =10N{u,) A (TOLER (%) APARTS (u, %, t (B, t(C, 0. 81)1]1)1);19 28

19 =TQWER¢ (@, t(C, ttD, A1 21 26

21 ~{ON{A, W A{TOUER (1 (B, t(C, t{D,2) 1} 1 APARTS{u, x, t 1B, tIC, t(D,8)1))))3:23 2¢
23 —(OMAA, B, LIC, tiD, 81 1) ATOUER (L (B, t(C,tiD, 8)11)):25 26

24 ON{GL, vIAPARTS (v, y, x 1 DON{u, x) ; AXTOM

25 = {ON{u,x)A(TOUER (x} APARTS{u, =, t (A t (B, t{C, t{D,8})))1)))}:27 28
26 PARTS (u, x, tfu, %} 1 AXION

27 STOLERIt{A, t(B, t{C. 1D, 8} })); THA

28 ON{ix, vIAITOUERIv) APARTS Ix, v, u))2TOWER {u) ; AXTDM

LW

607

t

TONR PRORAM 2

This tower programmakes stronger use of the data structure t(x,y), wherex i s thetop of the tower
and y is therest. It is about 15 times faster than programl.

VAR u.x.v.g.z;

PRE_PRED. TOUER ON BLAX;
PREJ3P. t,A B,CD,0O0;
ON(x{v) ATOUER(t (v.y))DTOL4ER(t (x. t(v.y)Jd);
BLOCK(*): >TOUER(t (x, 0>);
ON(A. B) ;

ON(B. C);

ON(C. O :

ON(D. 0>;

BLOCK(A) ;

BLOCK(B) ;

BLOCK(C) ;

BLOCK<D>:

THH
TOUERIt (A t 13. t<C. MD.0)))>);:

CHO CE- STRATEGY- | S:
M N& >SUPPOAT | TNn) ;

EDI T- STRATECY- 1S:
DEPTH(GJVLf cNGTH13) t

ELAPSEG- TI ME - S2S3

NIL 1 7

1 -TOUERtt(D.0»);3 8
BLOCK(u)*TOUER(t(u,0));AXIOn

-TOUERCHC. t(D.0J)):S 8

-TOUI-R<t(B. t(C. t(0,0))));7 8

-TOUER(t(A,t (B.t(C.t(0,0)1)I);THH
ON(u.x)nTOUERIt (x.v>):>TOUER<t (u. t (x.v)));AXIOM

OO WN

608

