
I D E A S ABOUT MANAGEMENT OP LISP DATA BASES

ERIK S A N D E W A L L

Massachusetts Institute of Technology
Artif icial Intelligence Laboratory

and
Uppsala University

Sweden

A b s t r a c t . The paper advocates the need for systems which
support maintenance of LISP-type data bases, and describes an
experimental system of this kind, called DABA In this system, a
description of the data base's structure is kept in the data base
Itself. A number of u t i l i ty programs use the description for
operations on the data base The description must minimally
include syntactic information reminiscent of data structure
declarations in more conventional programming languages, and
can be extended by the user

T w o reasons for such systems are seen (I) As A . I . programs
develop from toy domains using toy data bases, to more realistic
exercies. the management of the knowledge base becomes non-
t r i v i a l and requires program support (2) A powerful way to
organize LISP programs is to make them data-driven, whereby
pieces of program are distributed throughout a data base A data
base management system facilitates the use of this programming
style

T h e paper describes and discusses the basic Ideas in the DABA
system as well as the technique of data-driven programs

1. Focus on t h e data base.

I n this paper 1 w i l l attempt to say three things at once Tha t
stylistic experiment is undertaken not out of choice, but out of
necessity the three topics are intertwined, and none of them can
be discussed without the context of the others

T h e first topic regards the attitude to data bases I shall argue
that the current thinking about data bases in A.I has missed an
important point, which can be tersely characterized as the separate
identity of the data base, independently of the program(s) that use
it

Work reported herein was conducted partly at Uppsala University.
Sweden, with support from the Swedish Board of Technical
Development, and partly at the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology. Support for the
laboratory's artificial tntetttgence research is provided tn part by the
Advanced Research Prolects Agency of the Department of Defense
under Office of Naval Research contract N00014-70-A-0362-0003.

T h e second topic is a corollary of the first one, namely the design
of systems for management of data bases in the new sense, In the
context of a LISP or LISP-like programming system A very
e x p e r i m e n t a l management system for LISP data bases Is
described. T h e system provides ut i l i ty operations on the data
base, such as data entry (prompt the user for contributions to the
data base), presentation (nice printouts) and backup (dump a part
of the data base on a file) Additional utilities are planned Al l
utilities use a description of the data base's structure, which is
stored In the data base itself The structure description must
minimally contain syntactic information similar to what one finds
In data-structure declarations in conventional programming
languages. It can however be arbitrarily incremented by the user
Since it is in the data base, the description must itself have a
descript ion, which is also in the data base, and so on un t i l a
description which describes Itself

T h i s system (called D A B A) is motivated partly by the practical
problem of maintaining collections of knowledge of non-trivial
size, for use in A.I. programs, and partly by my preference for a
certain programming style, which is here called data-driven
p rog ramming Only a throw-away implementation of D A B A
exists currently; the system is described here in order to exemplify
various desirable properties in systems for base management, and
not as an available tool

T h e method of datadrtven programming is the third topic of the
paper. That programming technique is frequently used but rarely
discussed; the reader who has already used it will recognize it by
a common operation in data-driven programs, namely

<APPLY (GET . . .) . . .)
In other words, data-driven programs are those where large parts
of the program are procedures or program fragments that are
stored in the data base, in a less t r iv ia l sense than as E X P R
propmes The paper argues for the use of this technique Th i s
is relevant to the data base topic because program management
tools for data-driven programs have the same requirements at
data base management tools In fact, the distinction between
'program' and 'data base' becomes fuzzy and unimportant

T h e remainder of section 1 attempts to spell out my view of data
bases, and the idea that utility programs are an important tool for
working with a data base in the new sense Section 2 describes
the basic description mechanism in the DABA system, section 3
discusses data-driven programming in more detail, and section 4
discusses some simple procedure generation techniques in data-
driven programs

585

O n e of the many def in i t ions of 'data base' in the wor ld of
commercial computing, is *a collection of data which ts suitable for
use by a variety of different programs'. It is implicit in the
definit ion that the data base has an existence of Its own, and a
non- t r iv ia) life-length (although it may develop and change
during its existence) The definition implies a need for separate
documentation and separate maintenance of the data base.

Th i s view of the data base is significantly different from what one
f inds in A . I In our f ield, the 'data base* has usually been an
appendix to or a scratchpad area for the program, created during
the computation, and later garbage collected, or discarded at the
end of the run But the separate-identity view of the data base is
appropriate also in the AT context, in the following cases:

- as the user-provided collections of knowledge that programs
use. It has been common practice to use minimal knowledge
bases when programs are run (for several reasons including
memory problems), but the time now seems ripe for working
with more exhaustive collections of knowledge. The problems
of setting up, debugging, and editing the knowledge base then
become non-tr ivial
* as knowledge generated by or reorganized by programs.
Learning programs (in the broad sense of the word) are only
useful if the acquired knowledge can be saved for use during
later runs As another example, programmer's-apprentice-type
programs [see e.g Rich and Shrobe, 1974] need to analyze the
user's Input program, and form a model of it That model has
to be maintained between runs
- as da t a -d r iven programs Since programs have to be
preserved between runs, it only makes sense to say that a
program is a special case of a data base if the data base is so
preserved.

Let the two kinds of data base be called a 'scratchpad* data base
(temporary data base during execution of a program) and a
' p e r e n n i a l ' da ta base (has separate i den t i t y , separate
documentation, etc., is maintained between runs, and is designed
so that it can conveniently be used by several programs). In fact,
the difference is as much in the way of looking at and working
wi th the data base, as in the design of the data base itself

T h e 'perennial' or 'separate-identity' view of a data base is very
s i m i l a r to the o rd inary LISP programmer's at t i tude to his
program Work ing with a program does not merely Involve
running it, but also various types of service work; one may take
out a part of the program and re-write it , one may take out a
piece of another program, adapt it, and insert it in one's own; one
uses pretty-print programs, cross-indexers and other tools, to
obtain readable listings and documentation for careful study of
the program, and so forth The very same operations on a data
base come naturally when it develops to non-trivial size.

T h e major computational implication of the 'separate-identity'
view of the data base is therefore the usefulness of uttUty
programs. I.e. programs like pretty-printers and cross-indexers,
wh ich serve the user when he works with the data base, and
which are usually called directly by the user, rather than as
subroutines Utili ty programs for operations on LISP programs
are in common use, and can sometimes be used for data bases as
well (such as pretty-printers) But a number of additional utilities.
as wellras additional options tn existing utilities, are useful for
data base operations The following are utility operations which I
have often wished I had had, when working with LISP-type data
bases, and which exist or are planned in the DABA system:

— i data entry utility that prompts the user for contributions to
the data base In a simple case, instead of letting the user type in

(OEFPROP BOSTON MASS INSTATE)
(In an elementary object-property representation), the system would
acquire the information that BOSTON ts a city, and then prompt
the appropriate properties by typing out for example

BOSTON t INSTATE -
whereupon the user can answer

MASS
T h e d i f fe rence in convenience and error rate is of course
negligible for the extremely small toy bases that often have been
used in A . I programs, but significant when one enters more
practical volumes of data - In practice, a good data entry utility
must allow for higher-level data representations as welt, for
mixed-initiative dialogue, and for conversational conveniences
such as 'undoing' [Teitelman, 197*]

— a dumping utility for saving collections of data on files If we
a g a i n use an example in the elementary object-property
representation, the f i l ing utility needs a catalogue of carriers (such
as BOSTON above) and information about which properties of this

carrier shall be saved, and it should generate a file which when
read wil l re-create those properties A basic facility of this kind
exists in INTERLISP [Teitelman, 19741

— presentation utilities which print out the data base or parts of It
in a nice format, so that the user can work with it easily Several
presentation methods are possible an indentation-oriented layout
is reaspnable when one prints properties which are sizable
expressions, and when when one wants to print properties of
properties recursively to some depth. A tabular layout with
several columns is appropriate for atomic properties, and for
relation-type data bases where the data base a a set of tuples
Such presentation utilities are similar to the dumper, except that
they could also make use of information about the intended
structure of properties. For example, if it is known in a separate
declaration that the property under a certain indicator Is to be a
list which wil l be used as a set, then an appropriate indentation
strategy could be chosen, and one might sugar the printout with
curly brackets If it is known that another property is a gtnsjm
atom, then one might want to print it in terms of some of Its
properties, rather than as Its printname

— a checking utility, to check that all properties in a collection of
data satisfy the descriptions that have been made One can check
against declarations of the intended structure for each property
(atom of certain type, list of atoms, etc.). against redundancy rules
Of A < getpCBJI then B < g e t p [A . j] . and so on

— a merging utility Suppose that travel cost between cities has
been represented as

gotp[BOSTON,TRAVELCOSTI -
[NYC [AIR 28.37 BUS 13.7S1

TORONTO (AIR 109.10 . . .] . . .)
wi th the obvious interpretation (Boston - New York t 28.37 by air,
etc.), and that one wants to merge two files of data with similar
s t ruc ture If both files contain properties for the same
carr ier / indicator pair such as BOSTON/TRAVELCOST, then one
must make the obvious merge of the two assigned properties,
rather than let one overwrite the other A fairly general utility
program could do that if provided with structure declarations for
properties

— an excerption utility The inverse of merging (for obtaining a

586

prescribed subset of the data base), but needs the same structure
Information.

— a uti l i ty for shift of representation. Suppose we want to re-
represent the travel cost information above as

getpIBOSTON.FLlGHTCOST) -
tNYC <USt 28.37> TORONTO <USt 103.18> . . .)

g«tp(BOSTON,BUSCOST] - [NYC <USt 13.7S> . . .)
e i the r because of a wh im when changing our own p r imary
p r o g r a m , or in order to adapt somebody else's data to our
program. Such a shift should again be doable by some utility,
provided with descriptions of the old and new structure, and their
relation.

T h e list can easily be continued It is trivial to write programs for
such operations, for each application or each data base one has.
But it is a bother, and one would prefer to have access to more
general ut i l i ty programs. More general programs are slightly
harder to write, since one wants them to be usable for various
higher-level data representations besides the elementary object-
property representation. Depending on the desired flexibility of
the program, a utility program may range from a hacking exercise
to a hard A.I problem

When a (general) utility program is used, it must be provided with
a parameter-type description of the data structure that it is to
operate on That description can sometimes be integrated in the
data itself, but often it is desirable to write it separately, like a set
of declarations for the data representation In the latter case, it Is
also possible to speed up execution by partially evaluating the
u t i l i t y program with respect to the parameters as described in
(BeckmLn et a l , 1974]

If one has to write out those declarations for each utility program,
then that also can be a considerable burden But It seems that the
same declarations or structure descriptions could serve several
ut i l i t ies For example, in the elementary representation where
properties are assigned to typed objects, one needs information
about

•» which properties are carried by each type (used by data entry,
dumping, and presentation utilities);
* which structure is expected for the property under a certain
indicator (can be used by almost all utilities, including those for
presentation, checking, merging, excerption, and shift of
representation Also, It would be reasonable to check for
appropriate structure during data entry)
* redundancy rules, for example for property inversion (used by
the checker, as discussed above, and could also be checked or
generated on data entry);
<• if higher-level data representations are used, such as contexts,
property assignments to non-atomic carriers, or relational
storage with pattern-directed retrieval, then all utilities need to
Know about the storage conventions for that representation.

Furthermore, such a structure description for the data base Is also
part of the desired user documentation for the data base. It is
therefore a reasonable goal to have one common description
w h i c h can be used by a l l u t i l i t ies , and fo r documentat ion
purposes.

A l l points that have been made so far apply not only to LISP
data bases, but also to conventional, 'bulk* data bases, and are in
fac t wel l recognized in the latter environment The L ISP

envi ronment does however offer some additional possibilities
Most importantly, the description of the data base can be stored in
the data base itself, and still be used by the program that operates
on the data base To render this more precise, it is natural to
consider the data base as a collection of data blocks, where the
description of a data block is a new data block which is also in
the data base. (T h e regress terminates if some data block
describes itself) The structure description of a data block wil l be
called its meta-block. Util i t ies can then usually be defined as
operations on blocks, which use the meta-block of the argument as
parameters.

T h e idea o f da ta b locks is in fact usefu l not only f o r
d i s t i n g u i s h i n g data f r om their descript ion, but also fo r
modularizing the 'primary' data (data which serve the purpose of
the system, as opposed to descriptions) in the data base. A data
block should then be a chunk of data which have a common
structure and/or are closely related by some criterion It could
consist of a set of tuples (- relations) which are stored in the data
base, or (in the elementary representation) of a set of property
assignments (- triples of carrier, indicator, property).

A word of caution the term 'block' has some connotations In

computing which are not intended in this context No recursive
nesting of blocks or scope for identifiers is intended. It is in fact
often desirable to distribute the properties of an atom to several
blocks. The primary intended association of the term 'data block'
Is to the practice of organizing LISP function definit ions Into
blocks' or Ylles* of closely related functions.

2 . Serv ic ing u t i l i t y operations.

T h e D A B A system can be used in at least two modes. In the
simplest mode, the user has one program, here called the primary
p r o g r a m , wh ich uses the data base A question-answering
program Is a standard example. As the data base attains non-
t r i v i a l size, the user wants to use some uti l i ty programs on the
data base. He therefore has to write down a structure description
of the data base he already has D A B A Is a system fo r
representing and maintaining such descriptions in a systematic
way, plus a col lect ion of u t i l i ty programs which use the
descriptions. In the case discussed here, the primary program and
the data base existed before the DABA facilities were called In.
(The other mode of using the system is for managing data-driven
programs, and wil l be discussed in the next section).

Let us choose a specific example and then describe how its
structure would be described to the DABA system. We must here
select a very simple example, which uses an object-property
representation, in order to concentrate on the description The
D A B A system Is however useful for data bases with a richer
structure as well.

Consider a block of property-list data about cities in the eastern
Un i ted States The block is a set of property assignments, or
triples, such as

UBOSTON. INSTATE, r1ASS>.
<BOSTON, SUBURBS, (LEXINGTON. REVERE,... I > ,

• • •

<NYCf INSTATE. NY>,
• a *

<MASS, HASC1TIES, IBOSTON, LEXINGTON, . . . 1 .
<MASS, FULLNAtlE, MASSACHUSETTS^

587

which of course says that Boston is in the state of Massachusetts,
and so on ('...' indicates continuation and is not intended to be in
the data base). Each data block has a name, which may be atomic
(but does not have to be) Let the atom US-EAST be the name of
the above block

A QLISP-l ike notation will be used, with angle brackets < > for
tuples = lists, curly brackets {...} for sets, and square brackets [...]
for free property-lists A property-list [II vl 12 v2 .] is a set of
assignments of vk to ik, to the square bracket expression is really
an abbreviation for

f<11 vt>,<12 v2>,... }
LISP function definitions will be written with round parentheses
(...). A l l these types of parentheses are assumed to map into
o rd inary parentheses in the actual implementation. In other
words, the knowledge that a certain list represents a set rather
than a tuple, is not assumed to be available in that item itself

It wi l l be more convenient to specify the contents of blocks using
the access funct ion d g e t p [c , i , n l , where c is a carrier, i an
i nd i ca to r , n a block name, and the funct ion returns the
corresponding property-value The block contents above can
therefore be described as

d g e t p [BOSTON, INSTATE.US-EAST) = MASS
dge tp [BOSTON. SUBURBS, US-EAST] =

(LEXINGTON. REVERE, . . . I
• • *

T h e description of a block in DABA consists of two parts
Consider a data block (of which US-EAST is a toy example) and a
p r o g r a m wh ich uses the block as a data base for question
answering or some similar purpose One could write down several
di f ferent blocks, using the same conventions, and the program
would then presumably be able to use any of these blocks The
description of representation shall contain a specification which is
common to these blocks, and which therefore encodes some of the
conventions that are assumed by the program By contrast, the
description of extent contains a catalogue of the contents of each
block, and other information which is local to the block There
are several reasons for making such a distinction: economy of
storage for the shared part of the description is an obvious
reason Also, the previously mentioned possibility of partially
evaluat ing a ut i l i ty or other parameter-driven program with
respect to the data base description, Is only worthwhile if the part
of the description that is being kept fixed, can be factored out.
(There are however also ways of avoiding the distinction, in
special cases when one does not want to make it).

The common denominator for the two descriptions is the sorts. In
the present example, one immediately recognizes different sorts of
carriers. C ITY , STATE, etc The description of extent for a
block includes a catalogue of the carriers in each of the sorts,
represented as:

n g e t p IUS-EAST.NODES! -
(CITY (BOSTON, NYC. . . I, STATE (MASS, N Y . . . I . . . 1

whi le the description of structure includes the information of
what indicators are used by objects in each sort, for example that
objects of type CITY may carry properties under the indicators
INSTATE, SUBURBS, etc

T h e function nge tp is used for getting properties of bkxknames,
in the description of the blocks extent The function may
sometimes simply make an access in the property-list of Its first
argument, in which case it is synonymous to the INTERLISP
g e t p , but it may also compute its value by default f rom an
appropriately stored procedure, handle non-atomic block names,
etc.

T h e descript ion of extent also includes information about the
location of the block, for example 'as global property-lists', 'as
property-lists local to this block', or as text file with name ...' The
f irst case is expressed as

n g e t p [US-EAST, ATLOC] - GLOBAL

T h e conventions used in the description of extent are to some
degree arb i t rary One might prefer to split up the NODES
property so that the set of sorts is obtained In one access, and the
set of carriers in a sort is obtained in one access for each sort.
Such changes would not be significant.

The meta-block of US-EAST (- its description of representation) Is
another btocV, whose name might be CITIES The relationship is
indicated by

getp[US-EAST,flETAJ - CITIES
Some minimally needed information in the meta-block is, first,

w h i c h ind icators are carr ied by objects in each sort In the
described block. Thus, since BOSTON and NYC have properties
under the Indicators INSTATE and SUBURBS, and since they are in
the sort CI TY, one should have

dgetplCiTY.CARRPROPS,CITIES! = UNSTATE,SUBURBS,.. I
and likewise

d g e t p [STATE,CARRPROPS,CI TIES] =
IHASCITIES.HASCAPITAL...I

and so on.

T h e meta-block should also contain in fo rmat ion about the
expected structure of properties In our example, we know that
properties under the indicator INSTATE shall be atoms of the sort
STATE, that SUBURBS properties shall be sets of cities, and so on
Such conventions could be encoded in a straight-forward fashion
as

d g e t p [INSTATE,PROPSTRUC,CI TIES) - <SORT STATE>
d g e t p [SUBURBS, PROPS TRUC, CITIES) - <SET <SORT CITY>>

In our simple example, all names (block names, carriers, Indicators,
sort names, etc.) have been atoms That is however not necessary,
and in descriptions of less trivial representations it is frequently
useful to let them be non-atomic

T h e meta-block contains information which might occur as
declarations in some other programming languages, and in the
data description language of a management system for large data
bases The important difference is that here the meta-description
is a new data block, so that (he user can use and extend that
information according to his own needs For example, it would be
natural to extend the meta-block with information which relates
the pr imi t ives for this data block (sorts and indicators, in this
simple example) to user-oriented concepts in a model of the
intended application.

588

In the actual system, each block may be associated with a number
of ' sa te l l i te ' blocks which provide addi t iona l but opt ional
In fo rmat ion User additions ro a meta-block are usually best
organized as a new satellite block, rather than as a change in the
or iginal meta-block Even the PROPSTRUC property is actually
kept in such a satellite

Very often one wants to define access procedures for properties,
which compute the property from other data in the system, looks
up default values, stores properties in alternative locations,
etcetera T h e meta-block therefore always contains an access
function for each Indicator, for example as:

dgetpUNSTATE.ACCESSFN,CITIES) - XGETP
where Kgetp i% the default access function which does a trivial
(e x p l i c i t) l o o k u p Suppose however that one would want to
define a block US-EAST2 as an update of US-EAST, so that
properties in US-EAST2 use properties in US-EAST as default
The block US-EAST2 would be described similarly to US-EAST,
with the following amendments
(1) n g e t p [U S - E A S T 2 , M 0 0 [F 0 F] - US-EAST This property
assignment belongs to the description of extent of US-EAST2
(2) ge tp [US-EAST2,METAl - CITMOD. US-EAST2 needs a
d i f f e ren t description of structure (In practice, its meta-block
would have a non-atomic name, but we assume an atomic name
here for simplicity)
(3) dgetpUNSTATE.ACCESSFN.CITM001 -

(LAMBDA (C I Nl (OR (XGETP C I Nl
(OGETP C \ INGETP N 'MQDIFOFM II

and similarly for every other indicator that was assigned an access
func t ion in the old meta-hlock CITIES This access function
takes the same arguments as the function dgetp It first checks if
the property exists explicitly in the block that is mentioned as
th i rd argument, and otherwise looks it up in the default block
(In the actual system, access functions have a fourth argument,
and can be used fo 'get', 'put', 'delete', and 'change' operations).

T h e block CITIES, which is the meta-block of US-EAST, should
also in its turn have a meta-block and a catalogue (description of
extent) The sorts in the block CITIES are SORT (containing the
carriers CITY, STATE, etc) and INDICATOR (containing the
earners INSTATE. SUBURBS. HASCiTIES. etc). This structure
is correctly described if we have

ge tp ICITIES .METAl - OMEGA
dgetpISORT.CARRPR0PS.OMEGA1 = ICARRPR0PS1
d g e t p (INDICATOR,CARRPROPS.OMEGA) =

IACCESSFN PROPSTRUCI
plus the appropriate properties on ACCESSFN and PROPSTRUC It
ts then correct to define

g e t p IOMEGA,META3 = OMEGA
so that O M E G A describes itself In general, proceeding from a

blocks to their met a-blocks, one always eventually reaches OMEGA,
b u t o f ten the path is longer than in this example. - T h e
definit ion of the NODES properties for CITIES and OMEGA are
straightforward.

W h a t has been described so far is a basic description system,
w h i c h m i g h t be suff ic ient for data blocks that use simple
representations. In an environment where the user has already
designed his primary program and his data base, he has to set up
the description of representation as a post factum description of
the conventions he has made If he needs non-tr ivial access
functions, he has to write them himself, although with skill and

luck he may be able to define them as small interface procedures
that call appropriate parts of his primary program Similarly, the
N O D E S property (- the catalogue) in the description of extent
can sometimes be computed when needed, from information that
has already been set up by or for the primary program, and
otherwise the user has to create it

Such a basic description is what is needed by utility programs as
discussed earlier The intended purpose of the DABA system is
partly to provide a coordinated set of such utility programs, and
partly to provide 'canned' higher-level descriptions. For example,
in specifying the block C I T M O D in the last example above, the
user should only has to specify that it modifies CITIES (expressed
by an appropriate property assignment to the atom CITMOD) ,
and that the meta-block of C I T M O D is e.g. M O D I F , where
M O D I F would be a meta-meta-block which imposes the
appropriate defaults for access functions, NODES properties, etc
in C I T M O D Simi la r mcta-meta-blocks are or should be
available for other common operations inside and between data
blocks.

3 . P r o g r a m / d a t a b a s e i n t e g r a t i o n .

T h e D A B A system is not particularly helpful for developing
conventional programs It is however believed to be useful when
one uses an of ten used, but l i t t le recogniied p rogramming
technique that I call data-driven programming In this section I
argue that data-driven programming is a significant development,
and much more than a hack; and also that a DABA-type system
can facilitate the use of this method

A common model for a program in LISP (and most other
languages) is that the program Is a set of procedures which call
each other Each procedure has a name. A call from a procedure
F O O to a procedure FIE is manifested in that the definition of
F O O explicitly mentions the name 'FIE' Such a textbook model
of programs is not always applicable Many programs are
organized as a collection of procedures each of which is attached
to data items in a data base, plus perhaps one part which is an
o r d i n a r y p rogram. In such a program, a procedure f may
sometimes process its input data by calling procedures which are
attached to them in the data base This constitutes an indirect or
data-driven call from the procedure f to a procedure g. Usually
the procedures or program fragments are stored as properties of
atoms, but they may appear anywhere in the data base

A data-driven program then consists of some 'ordinary* procedures,
and some 'data-driven' procedures which are invoked through
data-driven calls In most programming languages it is difficult
or impossible to implement data-driven programs, except of the
very restricted kind that are obtained in case statements where the
d r i v i n g data are integers (Fortran, Algol 68) or a set of items that
have been explicitly declared in the program (Pascal) It is easy
and straightforward to implement data-driven programs with ful l
generality in interpreted LISP, but this programming practice is
not fully recognized. INTERLISPs makeftie system [Teitelman,
1974] provides a lot of service in keeping track of compiled code,
but assumes that it is stored in the function cell' of the atom In
M A C L I S P [Moon. 1974] the compiler has only very recently been
provided with an option that allows it to compile functions that
are not EX PR or FEXPR properties One should not treat data-
driven programming as 'hack', thereby implying that it should be
discouraged, or that it lacks research interest It is a powerful
programming method and program structuring method for the
following reasons:

589

----Procedures obtain truly m.eaningful names. In data-driven
programs, each procedure is identified not by a single name, but
by a combination of such. For example, procedures that are
stored directly on property-lists are identified by pairs of atoms.
Therefore , the identifier of a procedure can be more than
'mnemonic': It can state the purpose of the procedure in a fashion
which can be used by other parts of the program.

For example, McDonald's bibliography program [McDonald, 1975)
assumes that each blbl io- graphy entry is associated with a
number of properties such as AUTHOR. T I T L E , etc., and each
property name has on tts property-list procedures for reading,
pr int ing, etc. that property The procedure that Is identified as
ge t lAUTHOR.PRlNT-UP-FN] has such a better-than-mnemonic
name The routine which goes through all desired properties of
an item and applies the reading procedures of each indicator, uses
the meaning embodied in the 'name*.

— Facilitates automatic program gtneration. If program
generation Is to go beyond the level of toy programs such as
t r i v i a l sort routines, the generator must use a model of the
p rogram that is being generated The task of specifying the
model, and even more the task of relating the model to the
program, are particularly simple for data-driven programs The
actual program generation can then often consist of generating
individual data-driven procedures or code fragments. The latter
case arises If each data-driven procedure has the form

(L A M B D A (X . XFOO (code I) (code 2)... (code n»)
where each expression (code i) has been generated separately, and
where the function FOO is the 'glue' between the programs and is
responsible for communication between them. (FOO may be a
bui l t - in function such as OR or PROGN, or a function written
for the purpose). The PCDB system [Sandewall 1971. Sandewall
1973, Haraldson 1974) uses this method for program generation.

— Uses tht application languagt. and makes it eastty extensible.
T h e no ta t ion that is input to a program is or should be a
language which is natural to the application of the program. The
same holds for the notational conventions that are used in a data
base. In both cases, a program which is organized around such
an application-oriented notation is likely to have a good structure,
and extensions to the program immediately reflect extensions to
the application 'language'

Interpreters are a classical example of data-driven programs.
Interpreters for conventional languages are data-driven wi th
respect to procedure names (i.e. data of the interpreter). Recent
language features such as pattern-directed invocation and demons
also assume that procedures are Indexed from data structures,

although in this case the data of the interpreted program. The
apparent power of the latest generation of A.I languages [Bobrow
and Raphael, 1973) Is perhaps largely due to the fact that they
made data-driven programming available to users who did not
t h i n k of using It explicitly The claim here is that it is often
better for the user to develop his own scheme for organizing his
program (In the sense of storing the procedures in the r ight
places) instead of using a single package of high-level devices.
T h e r e are also several examples of successful data-dr iven
programming around The SHRDLU program [Winograd, 1972)
can be used in support of many claims, it is also data-driven in
several parts.

T h e reason why this whole discussion is brought up In a paper
about data base description, is that data-driven programs allow
procedures to appear in arbitrary positions in the data base.
There are often plenty of relationships between procedure Items
and other items in the data base: procedures may have been
generated from other data, and program analysis programs may
often generate data about programs that should be stored in the
data base, so that it does not have to be re-generated repeatedly
It Is then natural to use one's data base management system for
managing programs and program descriptions as well

T h e contrast between the si tuation described here, and the
s i tuat ion described in the previous section, is characterized by
figure I. In diagram (a), the large triangle is the primary program,
the small tr iangle the ut i l i ty programs, and the data base Is
described by the D A B A system for the uti l i ty programs. In
diagram (b), the primary program consists mainly of data-driven
procedures which are also managed by DABA

There is also another reason: the data that data-driven procedures
are associated with, can sometimes be 'object* data for the system,
but very often it is natural to choose them as items that appear In
the self-description of the data block, for example indicators or
sort names. Thus the descriptions of a data block are often an
appropriate framework for organizing the program.

Most uti l i ty programs can with advantage be data-driven. For
example, a presentation uti l i ty could be driven by pr in t ing
procedures associated w i th property indicators T h i s Is a
commonplace idea, but raises some practical problems. Consider
the fol lowing scenario: we have acquired a large data base (large
by A. I standards, that is), consisting of several blocks with
di f ferent structures We are also using a number of different
utilities, each of which drives specialized procedures for all or
some of the blocks. Furthermore, descriptions of the data blocks
sit around and are directly interpreted by several of the utilities,
and are used for generating specialized procedures for some
others. Suppose now that wc want to move this battleship a bit,
f o r example: (a) modi fy the structure of some data block, (b)
delete a data block, (c) discard a uti l i ty The first operation
implies a number of other changes in the system, the other two
enable non-tr ivial garbage collections In a large system with a
considerable life-length, such garbage collections are necessary
(even if one has infinite memory, he still wants to know what Is
garbage so it does not have to be updated).

In order to support such such simple operations, and also in order
to support the user who wants to understand the system, so that he
can perform more complex operations on it, one needs a model of
the structure of the system. Mere again the block structure and
other concepts in DABA are useful

590

Let us exemplify that, again with a simple example. Consider a
pretty-printing utility program P, which operates on a data block
B whose meta-block getp(B,f tETA] - M The program P makes
use of specialized printing procedures and other parameters which
apply to all blocks which like B have the structure described In ft.
These parameters together constitute a data block MP (They
might be included in ft itself, but it is not desirable to clobber ft
wi th auxil iary procedures for all utilities, and therefore we prefer
to let each util ity define its own 'satellite' block to ft).

The block IIP has the same sorts and the same catalogue as ft, but
uses d i f fe ren t CARRPROPS assignments For example, in our
in i t ia l geography example, the block ft contained PROPSTRUC and
ACCESSFN properties, for HASCITIES and other indicators used
in B. T h e block M would contain a PRINTFN property for
HASCITIES, which P then uses The relationship between MP and
ft should be expressed by a reference such as

n g e t p [M.DESCRIBES) - M
T h i s reference should imply a default value for the NODES
property of MP

T h e meta-block f o r MP must be a block which describes the
structure of the parameters that the program P assumes, i.e It is
part of the documentation of P. In the present DABA system,
uti l i ty programs are integrated with their specification, so a data-
block P contains both the set of procedures that make up the
u t i l i t y program, and the information that makes P a suitable
meta-block fo r MP. For example, P contains a reference to the
knowledge about how to compute the NODES property of ftP from
its DESCRIBES property (Actually, that knowledge is conveyed to
P by its meta-block) The structure of these blocks is Illustrated in
f igure 2.

Th i s example illustrates how blocks of data are noi merely clusters
w i t h dense internal connections there are also relationships
beween blocks, such as the META relation, the DESCRIBES relation,
the MOOIFOF relation (used in an example in the previous section).
Several other relations are important, such as the relations
between a program, the block of data that was input to it, and the
block of data that it produced as result Relations between blocks
are macro-level.descriptions, which complement the micro-level,
declaration-type descriptions such as CARRPROPS or PROPSTHUC

properties.

4 . G e n e r a t i o n o f procedures.

The D A B A system as such assumes that data base descriptions
contains procedures, namely access functions, and specialized
procedures for various uti l i ty programs In addit ion, many
applications may involve data-driven programs as discussed in the
previous section.

Where do these procedures come from? The simplest case Is of
course where they are always written by the user There are
however several ways whereby the user can be relieved of this
responsibility, or at least of some of the drudgery involved.

One obvious method is by default computation. If the procedure
does not exist, then it is computed by a procedure which may
derive it f rom other data, ask the user, etc This is accomplished
in a simple and uniform fashion in DABA through a recursive
access-function mechanism The function dgetp which was used
In section 2 to obtain data from the block USCITIES, Is defined
approximately as

d g e t p t c , i , n l

i f n-OMEGA then getptc. i l
e l s e a p p l y f dgetp(t ,ACCESSFN,getp ln . f lETAl l ,

I i a t I c , i , n l)
In other words, in order to dgetp the HASCITIES property of
MASS. one retr ieves and uses the ACCESSFN property of
HASCITIES in the meta-block But for that, he must retrieve the
ACCESSFN property of ACCESSFN in the meta-meta-block, and so
on. (At least theoretically, the recursion is sometimes shortcut).
T h e recursion terminates at the ultimately 'meta' block OMEGA

Th i s mechanism is a flexible way of defining appropriate access
functions. For example, in section 2 we discussed the modified
data block US-EAST2. which modified the block US-EAST, and
where

getpCUS-EAST,ftETA] - CITIES

getp[US-EAST2,nETAl - CITMOO
ngetp [US-EAST2.n00IF0F] - US-EAST

Here the user should not have to write out the access functions
f o r C! TftOO Instead, there should be a data block MOD which
d e s c r i b e s m o d i f i c a t i o n b l o c k s i n g e n e r a l , s o t h a t
getptCITn00,r1ETA) - MOD The access functions in CITMOO
are obtained as dge tp [ACCES5FN,ACCESSFN,nOOJ, and might
be the one outlined in section 2. or (improved) the following: go
and get the access function for the same indicator in the block
C I T I E S . T r y using it In the current block (in this case. US-
EAST2). If no result, then make an access in dgetp (c u r r e n t
b l o c k , MODIFOF)

In fact, al l other system properties, for example CARRPROPS, are
accessed in the same way using d g e t p It is therefore not
necessary to invent a new atom as a name for CITHOD. Its name
is chosen as (MOD CITIES) , whereby it is implicitly specified to
be a block whose meta is flOO and which modifies the block
C IT IES (The actual DABA notation ts slightly different) In
general , the method of def in ing properties of blocks through
access functions in the meta block, complements well the method
of using non-atomic ('molecular') names for blocks, where the
contents of the block, or at least some of the contents, are implicit
in the name of the block The advantages with non-atomic block
names are analogous to the naming advantages of data-driven
programs.

Ut i l i ty programs which use specialized parametric procedures also
access them with the function dgetp, which means that the same
k inds of defaul t mechanisms can be used for their parametric
procedures such as PRINTFN The recursive access mechanism is
qui te power fu l , and enables one to implement a number of
desirable facil i t ies with a very small kernel system Its major
drawback is that higher-order access functions of access functions
a re usual ly less than transparent to read and understand
E f f i c i e n c y may also be a problem, which hopeful ly can be

591

handled by saving access functions so they only have to be
computed once ('memoization'), and ustng automatic simplification
of the lower levels of access functions

Sometimes a procedure is to be buitt up and modified in several
successive steps U must then be init ial ized In some way (for
example by its meta-level access function), whereupon it can
receive advlst which successively modifies it. For example, If a
data-driven procedure contains or refers to a set of theorems or
demons that are to be triggered by the indexing data, then each
advise might contr ibute one more theorem or demon to the
structure. A program for simpli fying LISP expressions might
associate w i th each LISP function a simplif ler procedure for
forms where it is the leading function A new simplification rule,
such as

<CAR (LIST SX SSY)) -> IX
would then be sent as a message to the simplifier for CAR (The
REDFUN program [Sandewall 1971, Beck man et at 1974] works in
this fashion) - Sometimes the advise that is given to a procedure
is less, uni form INTER LISP [Teitelman 1974] contains facilities
for user-specified advise to the entry and exit parts of arbitrary
user procedures In the DABA system, it is frequently desirable to
let various items send advise to an access function or class of
access functions, telling it where to f ind explicit and default data,
whether and how to 'memotze' computed data, and so on.

Several of Hewitt's actor ideas (Creif and Hewitt, 1974] carry over
to this purpose What we have called advise is a kind of message
Giv ing advise is like an actor 'handshake1: the receiver of the
messages must be the one who knows how to incorporate It into
his internal structure. There is a need for actors in the sense of
objects which both receive and send messages But chains of
messages which trigger each other are here only a secondary
purpose; the primary purpose of a message is to modify a
procedure or other data item Also, it is mandatory in our case to
have an option for saving a protocol of which messages were sent
where, so that later changes early in a message chain can
perpetuate along the chain Such a protocol should of course be
stored as another data block, in line with the general philosophy
of the system.

T h i s message-sending facil ity is not intended as some kind of
programming system If the DABA system is used as in section 2
of this paper, then the facility does not affect the user's primary
program at all It is intended as a mechanism for performing and
keeping track of updates to the data base (including data-driven
procedures), so that later changes in the data base (in the
separate-identity sense of the word) obtain appropriate secondary
effects. Also, messages are only sent 'to procedures' (loosely
speaking) for changing them, not for invoking them

5 . O t h e r aspects.

Some aspects of the DABA system have been more or less ignored
in th is paper We have remarked that each block needs a
descr ip t ion of structure, and a description of extent T h e
description of structure is the meta-block, and has Us meta-block,
and so on The description of extent, or 'catalogue', is at least in
simple cases the set of properties of the block name But it also
needs a meta-block, where for example the access function for the
name's N O D E S property is located (in the cases where the
N O D E S property is computed from other information) The
meta-block of a block B. and the meta-block of the catalogue of B
are not in general identical, but the latter is derivable from the

fo rmer . Also, the catalogue block of the catalogue block is

computed as needed (storing it explicitly would lead to an infinite

regress) The resulting structure is powerful, but unfortunately

also tends to become fa i r ly complex Later generations of the

system wi l l attempt to simplify it

Another aspect which has not been covered is the relationship

between the description structure of DABA on one hand, and

problems in the representations of knowledge, such as IS-A link

problems and frame systems [Mtnsky 1974] on the other hand.

Information in DABA meta-blocks such as CARRPROPS and

ACCESSFN information corresponds vaguely to what one needs

in those cases, but the correspondance is not tr ivial

D A B A is presently a MACLISP program although it should be
relatively easy to transfer it to other LISP dialects. It contains
s i m p l e u t i l i t i e s f o r data en t ry , check ing , d u m p i n g , and
presentation The utilities are data-driven and their structure is
described w i th in the system, as described above The current
system also contains facilities for keeping track of all blocks; and
a few general-purpose facilities such as comment blocks (for
arbitrary other blocks) and update blocks The message-sending
fac i l i t y for updates of procedures has been specified and is
probably the next to be implemented After that, the present
implementation will probably have served its purpose, and the
next generation of DABA will be due

A c k n o w l e d g e m e n t s .
Several members of D L U in Uppsala and the M I T A.I. group
have taken the time to experiment with the DABA system, discuss
the issues raised in this paper, and look over the manuscript
Special thanks are due to Dave McDonald, Charles Rich, and
Gerry Sussman of M IT , and to Anders Ha raid son and Jaak Urml
of D L U

References .

-- Beckman, L et at. A par t ia l evaluator, and its use as a
p rogramming tool Datalogilaboratonet. Uppsala university,
memo 74/34
-- Bobrow. D and Raphael, B New Programming Languages for
A r t i f i c i a l Intel l igence. Computer Surveys, Vo l 6. No 3
(September. 1974)
— Haraldson. A PCDB - a procedure generator for a predicate
calculus data base IFIP 74 proceedings, pp 575-79
-- Grei f . I, and Hewitt. C Actor semantics of PLANNER -73 M I T
A.I Lab, working paper 81 (November. 1974)
— McDonald, D Private communication
-- Moon , D M A C L I S P reference manual M I T Project M A C ,
Ap r i l 1974
— R ich , Ch. and Shrobe, H Understanding LISP programs:
towards a programming apprentice M I T A.I Lab, working
paper 82 (December 1974)
-- Sandewa l l , E A p rogramming tool fo r management of a
predicate calculus-oriented data base IJCA1 1971 proceedings
— Sandewall, E Conversion of predicate-calculus axioms, viewed
as non-deterministic programs, to corresponding deterministic
programs IJCAI 1973 proceedings
-- Teitelman. W INTER LISP reference manual Xerox Palo Alto
Research Center. 1974
-- Winograd, T Understanding natural language. Academic Pres>,
1972

592

