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A b s t r a c t 

This paper describee some new methods 
used in PLANNER-BESM-6 system f o r the im­
ple m e n t a t i o n o f PLANNER. B a c k t r a c k i n g i s 
implemented w i t h a s i n g l e stack and no 
copying o f a c t i v a t i o n frames i s needed. 
L i s t s are represented as a r r a y s of p o i n ­
t e r s ; the garbage c o l l e c t o r f o r t h i s r e ­
p r e s e n t a t i o n r e q u i r e s no a d d i t i o n a l memo­
r y . R e s t r i c t i o n s o n v a r i a b l e values are 
accomplished by u s i n g 'semi-defined f 

s t r u c t u r e s . These methods have enabled to 
achieve the h i g h e f f i c i e n c y o f t h e system 
work. 

Together w i t h the well-known t e c h n i ­
ques ( c o o r d i n a t e s in data base o r g a n i z a ­
t i o n [3.4] , context number f o r f a i l -
p o i n t s [ 5 ] and so on) PLANNER-BESM-6 sys­
tem uses some new methods. This paper 
b r i e f l y describes t h r e e o f such methods. 
B a c k t r a c k i n g i s implemented w i t h a s i n g l e 
stack and w i t h o u t copying i n f o r m a t i o n i n 
the s t a c k . L i s t s are represented as a r ­
rays o f p o i n t e r s which c o n t a i n the l e n g t h 
o f l i s t s ; the garbage c o l l e c t i o n used f o r 
t h i s r e p r e s e n t a t i o n r e q u i r e s n o a d d i t i o n ­
a l space. R e s t r i c t i o n s o n v a r i a b l e values 
are accomplished w i t h s t r u c t u r e s t h a t are 
not f u l l y d e f i n e d . 

1 • I n t r o d u c t i o n 

Newer programming languages [ 1 , 2 ] i n ­
tended f o r use i n A r t i f i c i a l I n t e l l i g e n c e 
research have i n t r o d u c e d many new f a c i l i ­
t i e s t h a t make much more easy the const­
r u c t i o n o f s o p h i s t i c a t e d A I systems. The­
r e f o r e p r a c t i c a l implementation o f these 
languages and c r e a t i n g e f f i c i e n t methods 
f o r t h i s are the necessary and i m p o r t a n t 
tasks f o r A I progress. 

Among the new languages PLANNER [ 3] 
has gained the widest p o p u l a r i t y . PLANNER 
was the f i r B t language i n t r o d u c i n g a ma­
j o r i t y o f the new concepts and methods. 
Now PLANNER a t t r a c t s much a t t e n t i o n : many 
papers propose methods o f i t s t r a n s l a t i ­
on, t h e r e are some p r a c t i c a l implementa­
t i o n s o f i t and others are being c r e a t e d . 

PLANNER-BESM-6 system i s an i n t e r p r e ­
t e r . I n some im p o r t a n t aspects t h i s sys­
tem d i f f e r s from o t h e r PLANNER systems. 
The system has been designed to be an e f ­
f i c i e n t p r a c t i c a l t o o l , s o the e f f i c i e n c y 
o f the language implementation, which i s 
the heel o f A c h i l l e s f o r PLANNER, has be­
en given more a t t e n t i o n r a t h e r than 
aiming t o implement a l l w i t h o u t exception 
f e a t u r e s o f PLANNER. Some f e a t u r e s which 
are not t h e main w i t h i n the language but 
r e q u i r e the s u p e r f l u o u s memory and time 
f o r t h e i r implementation have not been 
i n t r o d u c e d i n t o the i n p u t language o f 
t h i s system. For example the i n p u t langu­
age uses o n l y r e c u r s i v e and backtrack r e ­
gimes and p r o h i b i t s a c t o r s ' u t i l i z a t i o n 
i n matching p a t t e r n s . This has enabled t o 
use methods t h a t i n c r e a s e the e f f i c i e n c y 
of the system work. 

2. Implementation of b a c k t r a c k i n g 

There are some schemes f o r implemen-
t i n g backtrack c o n t r o l . For example t h e 
paper [ 5 ] proposes a scheme w i t h two 
s t a c k s . But t h i s scheme r e q u i r e s m u l t i p l e 
t r a n s f e r s of i n f o r m a t i o n from one stack 
to another. The scheme of [ 6 } uses one 
stack and i s intended f o r implementation 
o f v a r i o u s c o n t r o l regimes. This general 
scheme has been used to implement langu­
age POPLER 1.5 [ 7 ] which has s o p h i s t i c a ­
t e d c o n t r o l s t r u c t u r e . However, being 
adapted only t o b a c k t r a c k i n g , t h i s scheme 
spends the s u p e r f l u o u s space and time be­
cause i t r e q u i r e s m u l t i p l e copies o f ac­
t i v a t i o n frames. 

PLANNER-BESM-6 system uses a l s o one 
sta c k f o r keeping frames o f a c t i v a t i o n s 
but no copying i s needed, so t h i s scheme 
r e q u i r e s l e s s memory and time than t h e 
above schemes. The scheme is as f o l l o w e s 
[81 . 

There i s a l i s t c a l l e d ' a r c h i v e ' t h a t 
r o u g h l y corresponds t o ' f a i l i s t ' o f sche­
me [ 6 ] . A r c h i v e saves i n f o r m a t i o n on 
changes of v a r i a b l e b i n d i n g , data base 
and so on, made by the program. For each 
changed o b j e c t a r c h i v e keeps i t s l o c a t i o n 
i n memory and i t s previous s t a t e . Using 
t h i s the system w i l l r e s t o r e the p r e v i ­
ous s t a t e s o f the o b j e c t s when a f a i l u r e 
occurs w i t h i n t h e program. 

Stack contains i n f o r m a t i o n needed f o r 
f u n c t i o n s ' e l a b o r a t i o n . Upon e n t r y to a 
f u n c t i o n c e r t a i n storage, c a l l e d a frame 
o f t h e f u n c t i o n a c t i v a t i o n , i s a l l o c a t e d 
in t h e end of s t a c k . Any frame occupies 
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always one continuous piece of stack spa­
ce. The head of a frame contains activa­
tion name, a pointer Ar to archive and 
links of this frame: a pointer I (see be­
low), a pointer AL which specifies the 
variable bindings accessible within this 
frame, a pointer CL to the calling frame, 
and return address Rt to the caller (thus 
a continuation point is saved in the cal­
led frame). A frame may also contain i n ­
formation on exit actions of the activa­
tion. Another space of a frame holds tem­
porary intermediate results and local va­
riables' bindings, if any, of the functi­
on. During the whole activation the size 
of i t s frame is constant (while the con­
tents of frame may vary), so the size is 
fixed on activation entry and then does 
not vary. 

I f a function hasn't set any f a i l -
point during i t s elaboration and if the 
function exits, then the frame of this 
function is removed out of stack, i.e. a 
pointer s to the end of stack w i l l 
again point to a cell upper this frame. 
If during an activation a failpoint has 
been set, then the activation frame is 
retained in stack. In this case the poin­
ter s is not changed. A consequence of 
this is that the frame of active function 
is not always located in the end of stack. 
For this reason there is another pointer 
r which always points to the frame of 
function that is active now. The active 
function uses this pointer in order to 
access i t s own frame. When & new frame is 
created, the value of r becomes a link 
CL, and then r begins to point to the 
head of the new frame; later, when the 
function exits, CL w i l l be transfered to 
r. Therefore without failpoints the poin­
ters s and r are changed synchronous­
ly, which corresponds to normal recursive 
regime. 

When a function has to set a f a i l -
point, it allocated information on this 
failpoint in the last cell of i t s frame 
and then fixes a pointer f to this cell 
(the third stack pointer - f - always 
points to a cell of the last existing 
failpoint). This information consists of 
address PP of the previous failpoint cell 
and 'reaction address' RA that is an 
address of the interpreter instractions 
which w i l l perform certain actions when a 
failure returns control to this failpoint. 
Pig. 1 shows the contents of the frame 
for [AMONG (4 IJCAI (USSR TBILISI) 1975)] 
in the moment when this function has set 
a failpoint before returning the f i r s t 
selected value - 4. 

It is possible by comparing the poin­
ters r and f to determine whether or 
not a function has set a failpoint and 
hence to determine whether or not a frame 
of the function should be retained in 
stack. If on a function exit then 
the function has a failpoint so the poin­
ter s is not changed, otherwise s va­
ries. Pig. 2 shows the states of stack 
and pointers e, r and f at different 

moments of the elaboration of a function 
P which calls functions G, H and I in 
turn, the function G setting a failpoint 
and I calling a function J which genera­
tes a failure: a) G exits; b) H exits; 
c) J generates a failure; d) control is 
returned to G. 

When a f a i l u r e occurs, the inter p r e ­
t e r cleans stack up to the frame which 
keeps the last f a i l D o i n t (the value of f 
is transfered to s) and then returns 
control to the reaction on f a i l u r e w i t h i n 
t h i s f a i l p o i n t . Since information on the 
f a i l p o i n t is located in a frame of a c t i ­
vation that has set the f a i l p o i n t , the 
reaction gets an access to a l l informa­
t i o n o f t h i s frame, i n p a r t i c u l a r t o i n ­
formation needed for redoing the elabora­
t i o n of the function. Using t h i s informa­
t i o n the reaction restores the pointer r t 
restores access environment with l i n k CL, 
and then with scanning archive it resto­
res previous values of variables, pre­
vious state of data base and so on. Due 
to these actions the state of execution 
is restored. The further actions of r e ­
action are d i f f e r e n t f o r d i f f e r e n t func­
tio n s . For example, function AMONG w i l l 
chop the next element o f f the l i s t stored 
in i t s frame and then w i l l return t h i s 
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element as new r e s u l t . But i f the l i s t i s 
empty then the f u n c t i o n w i l l destroy i t s 
f a i l p o i n t (address PF w i l l be tranefered 
t o pointer f ) and f a i l u r e w i l l propagate 
upper. 

An a d d i t i o n is necessary to the des­
cribed scheme. Let us consider the elabo­
r a t i o n of [AND e1 e2 e3 e4 ] . This func­
t i o n c a l l s i t s arguments i n t u r n u n t i l 
f a l s e occurs- AHD sets no f a i l p o i n t so it 
cannot catch a f a i l u r e on i t s own. How­
ever i t s arguments may set f a i l p o i n t s and 
generate a f a i l u r e . Hence AND cannot ma­
nage t r a n s f e r s of c o n t r o l among i t s argu­
ments. For example, l e t e1 sets a f a i l -
point and e3 generates a f a i l u r e that r e ­
turns c o n t r o l to e1. If the repeated com­
putation of e1 succeeds then c o n t r o l is 
returned to AND again, but t h i s f u n c t i o n 
w i l l not know that i t should c a l l e2 and 
not e4. 

This mistake i s easily r e c t i f i e d . 
When a f u n c t i o n c a l l s another f u n c t i o n , 
the c a l l i n g one gives some information 
(a pointer I) to the c a l l e d one to keep 
i t . When the lower f u n c t i o n f i n i s h e s i t 
returns t h i s pointer together w i t h i t s 
r e s u l t . As a r u l e , I is a p o i n t e r to the 
l i s t of arguments followed the argument 
evaluated now. The returned pointer i n ­
forms the c a l l i n g f u n c t i o n which argument 
should be evaluated at the next step. 
Hence the correct work of the c a l l i n g 
f u n c t i o n is not broken by t r a n s f e r i n g 
c o n t r o l from one argument to another. 

A l l functions of PLANNER f o r back­
track regime, in p a r t i c u l a r non-local go­
to and f a i l u r e s d i r e c t e d to a p o i n t , were 
implemented w i t h i n the bounds of the des­
cribed scheme. 

3- L i s t representation 

I n PLANNER the main operations on 
l i s t s are more complex than, f o r example, 
those i n LISP, There are scanning l i s t s 
from both the ends, s e l e c t i n g any element 
or sequent from l i s t , matching l i s t - p a t ­
t e r ns. The usual l i s t representation (as 
in LISP systems) is not e f f e c t i v e f o r 
elaborating these operations. For example 
a match of l i s t s requires easy determi­
ning the l i s t lengths but i t i s impos­
s i b l e w i t h t h i s representation. On the 
other hand, the operation cons, e f f i c i ­
e n t l y implemented w i t h t h i s representa­
t i o n , i s not t y p i c a l f o r PLANNER. More­
over the usual l i s t representation leads 
to s c a t t e r i n g l i s t c e l l s a l l over the me­
mory, which is inconvinient f o r the pa­
ging of v i r t u a l memory used i n PLANNER-
BESM-6 system. 

I n view of t h i s , PLANNER-BESM-6 sys­
tem uses a d i f f e r e n t l i s t representation, 
namely, a l i s t i s represented as an array 
of pointers (see Fig. 1). A pointer to a 
l i s t consists o f three parte: the i n i t i a l 
address of array, the length of array and 
a type i n d i c a t o r (each data type has i t s 

own i n d i c a t o r ) . A l i s t length used t n a 
pointer makes easy to match patterns and 
to scan l i s t s from the end. Successive 
l o c a t i o n of l i s t elements makes easy to 
select any element or sefment. Due to 
such representation l i s t s and tuples are 
not d i s t i n g u i s h e d . I n a d d i t i o n , t h i s r e ­
presentation p a r t i a l l y (on the highest 
l e v e l ) l o c a l i z e s l i s t c e l l s i n memory. 

A pointer to integer is the same i n ­
teger w i t h f i x e d exponent which is also 
an i n d i c a t o r of type 'integer'. Pointers 
to other data types consist of two parts, 
v i z . , type i n d i c a t o r s and references to 
property c e l l s of data. Free space of 
these pointers is used f o r various aims, 
f o r example t o l i s t a l l labels of f u n c t i ­
on PROG. 

The l i s t representation described r e ­
quires the free space of l i s t memory to 
be one continuous sequent. The i n t e r p r e ­
t e r f i l l s t h i s space from bottom t o top, 
hence the garbage c o l l e c t o r must pack r e ­
levant pointers and move them down, modi­
f y i n g references of these p o i n t e r s . Mul­
t i p l e references to insi d e of l i s t s make 
d i f f i c u l t i e s f o r t h i s moving and f o r r e ­
ference changing, so the garbage c o l l e c ­
t i o n used i n FLANNER-BESM-6 system takes 
three stages. But t h i s garbage c o l l e c t i o n 
is simple and doesn't require a d d i t i o n a l 
space, and t h i s d i f f e r s it from other me­
thods of garbage c o l l e c t i o n w i t h packing. 

The f i r s t stage i s t o mark c e l l s of 
l i s t s needed f o r the f u r t h e r runnig of 
program. This is performed as in IaSP 
systems, besides the t o t a l amount of 
marked c e l l s is counted. 

The second stage is l i n e a r scanning 
l i s t space from top to bottom and chang­
i n g a l l references down ( i . e . references 
to c e l l s w i t h l a r g e r addresses). This 
changing is performed as follows. 

Let a current examined c e l l a is 
marked and also contains a reference to 
c e l l b ( b > a ; i n t h i s stage a l l r e f e ­
rences up are ignored). Then the garbage 
c o l l e c t o r interchanges both the r e f e r e n ­
ces of c e l l a and b, and if t h i s r e f e r e n ­
ce to c e l l b is the f i r s t one from top 
then both the c e l l s a and b is marked by 
'+' ( t h i s marker is d i s t i n c t from the 
marker used i n the f i r s t stage). Then 
c e l l a+1 w i l l be examined. 

If a current examined c e l l b contains 
the marker '+' then at t h i s moment the 
c e l l b contains also the i n i t i a l address 
of l i s t of c e l l s a1 a?, ... , an 
( a i<a. + 1, a < b ) which have had 
the references to c e l l b before. At t h i s 
moment address b' which should be as­
signed to p o i n t e r of c e l l b i s known: b' 
i s defined by the t o t a l amount and the 
amount of already examained marked c e l l s . 
So the garbage c o l l e c t o r in scanning the 
chain of c e l l s a , ... , a„, a- puts the 
address b1 i n t o them. The l a s t c e l l &1 of 
t h i s chain is marked and contains the r e -
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ference that has before been placed in 
cell bt so this reference ie transfered 
to cell b, marker • + • is removed out of 
cells a1 and b, and then the contents of 
cell b is treated on common base. 

In PLANNER-BESM-6 system the l i s t 
space is placed in the bottom of memory, 
hence a l l references from other spaces to 
this space are references down. In order 
to avoid scanning other spaces in the se­
cond stage, a l l references of those spa­
ces to the l i s t space are treated in the 
f i r s t stage as described above. 

The third stage of the garbage col­
lection is linear scanning the l i s t space 
from bottom to top, moving a l l marked 
pointers (to the space bottom) and chang­
ing a l l references up. This stage is s i ­
milar to the previous stage but each re­
ference up is moved to new location f i r s t 
and then i t s new address is used. 

4. Restrictions on variables 

Matching two patterns is used in 
function MATCH or during theorems' invo­
cation. One of problems here is the im­
plementation of restrictions on variable 
values. When a pattern matches another 
pattern some variables get no values but 
their future values are constrained. For 
example on elaboration of [MATCH *X *Y] 
(prefix '*' means 'to assign value to va­
riable') no variable gets a value but 
their future values w i l l be equal. An­
other type of restrictions appears in 
matching a variable with a l i s t which 
contains variables. For example on elabo­
ration of [MATCH * I (*Y A .Y)] the fu­
ture value of X w i l l be a l i s t with three 
elements, the second of which is atom A, 
two others are equal and are the future 
value of Y (prefix '.' means 'to get va­
lue of variable'). 

Since the input language of PLANNER-
BESM-6 eystem prohibits actors' u t i l i z a ­
tion in matching two patterns, restric­
tions on variable values may be of the 
above types only. This restrictions are 
implemented in such manner. 

New data type 'semi-defined structu­
re' is introduced. This is a structure a 
part of which is not defined, namely, a 
inner (not accessible to users) variable 
without a value or a l i s t some elements 
of which are semi-defined structures. If 
a variable gets no a f u l l y defined ('re­
al ') value in matching then ite value 
(SD-value) w i l l be a semi-defined struc­
ture. This SD- value is constructed with 
the pattern which has been confronted to 
the variable: a l l variables of the pat­
tern are substituted by their values, in 
particular by SD-values, wherever pos­
sible; the rest of variables get refe­
rences to some inner unassigned variables 
as values, and then these references are 
inserted into the pattern. Thus any va­
riable has a value always but SD-value is 

not accessible to users. 

In matching SD-value behaves as well 
as 'real' value: object confronted to a 
variable with SD-value must match SD-va­
lue. A consequence of this is that a va­
riable may get only the 'real' value that 
matches the existing SD-value. In general 
case, any new restriction on variable va­
lue is immediately checked on compatibi­
l i t y with the existing SD-value, and i f 
they do not conflict then their 'inter­
section' w i l l be the new SD-value of the 
variable. This check often allows to de­
fine the f u l l value of variable in proper 
time* For example this takes place for 
[MATCH (*X .X) ((*YA) (B *Z))} . 

Cross-references among 'real1 variab­
les are accomplished by SD-values since 
in general case each inner variable is 
referenced by some semi-defined structu­
res. I f a semi-defined structure is f i l ­
led in f u l l y or partially then a l l or so­
me inner variables referenced by this 
structure get values, and hence some 
other semi-defined structures are also 
f i l l e d in ful l y or partially. Since 
cross-references among 'real' variables 
are accomplished indirectly, through i n ­
ner variables the existence of which 
doesn't depend on the existence of 'real' 
variables (but depends on amount of refe­
rences to them), so it is not necessary 
to retain 'real' variables in memory only 
because of the program has defined links 
among other 'real' variable by those. So 
when a theorem has set no failpoints then 
i t s frame ie removed out of stack even if 
there are cross-references among global 
variables through i t s local variables, 
because the existing inner variables are 
holding this links. 

References 

1. Bobrow D., Raphael B. New Programming 
Languages for AI Research. ACM Com-

puting; Surveys, v.6, No.3, 1974 abrin v., Serebriakov V., Yufa V. 
LORD - AI Programming System. VII 
Symposium on Cybernetics, T b i l i s i , 
USSR, 1974 

3. Hewitt C. Description and Theoretical 
Analysis (using schemata) of PLANNER. 
MIT AI Lab., Cambridge, Mass., 1972 

4. Baumgart B. MICRO-PLANNER Alternate 
Reference Manual. Stanford AI Lab*, 
Stanford, Calif., 1972 

5. Smith D., Enea H. Backtracking in 
MLISP2. Proc. IJCAI-73. Stanford 

6. Bobrow D., Wegbreit B. A Model and 
Stack Implementation of Multiple En­
vironments. CACM. v.16, No.10, 1973 

7. Davies D. POPLER 1.5 Reference Manual. 
University of Edinburg, Edinburg, 
Scotland, 1973* 

8. Pilshikov V. Backtracking i n PLANNER-
BESM-6 System, i n Symbol Informati-
on Processing, v.2. Computing Center, 
Ad&demy 6f Sciences, Moscow, 1975 

578 


