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Abstract

The possibility of saving various computation-
al resources is an argument often advanced in favor
of permitting question-answering systems to make
occasional errors. In this paper we establish ab-
solute bounds on the amount of memory savings that
is achievable with a specified error level for cer-
tain types of question-answering systems. Ques-
tion-answering systems are treated as communication
channels carrying information concerning the accep-
table answers to an admissible set of queries.
Shannon's rate-distortion theory is used to calcu-
late bounds on the memory required for several
guestion-answering tasks. For data retrieval, pat-
tern-classification, and position-matching systems
it was found that only small memory gains could be
materialized from error-tolerance. In pair-order-
ing tasks on the other hand, more significant mem-
ory savings could be accomplished if small error-
rates are tolerated. Similar limitations govern
the tradeoffs between error and computation time.

1. Introduction

Loosely speaking a question-answering (QA)
system 1s any mechanical system which accepts data
of a specified type and at a later time produces
output symbols in response to queries from some ad-
missible set. The output symbols are interpreted
as answers to the queries about the specific data-
set and are expected to conform to some acceptable
test of correctness. Practically all question-
answering systems in operation today are deductive
in nature. When a query is presented concerning
an assertion not derivable from the data, either
the query is declared inadmissible, or the data is
declared incomplete.

It is apparent that human information proces-
sing is not confined to deductive reasoning; quali-
fiers such as 'probably', 'perhaps’', ‘(doubtfully’,
and many more are very common in everyday language.
People quite often assert or deny propositions
which are either themselves incomplete, concern in-
complete data, or are too complicated to be compu-
ted within the available time constraint. We usu-
ally interpret such behavior as an attempt to econ-
omize some computational resource (e.g., data spe-
cificity, storage space, search time) at the ex-
pense of answer accuracy. Correspondingly, it has
been suggested that a substantial amount of compu-
tational resources could be gained if one allowed
computerized QA systems to make occasional errors
via approximate representations of data or world-
models. Zadeh [1] has proposed the use of fuzzy-
sets to cope with the "incompatibility principle.”
In Zadeh*s words: "the essence of this principle
is that as the complexity of a system increases,
our ability to make precise and yet significant
statements about its behavior diminishes until a
threshold is reached beyond which precision and
significance (or relevance) become almost mutually
exclusive  characteristics."” Rabin [2] conjectured
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that the disparity between the super-exponential
complexity of proofs in even the simplest algebras
and the apparent simplicity of everyday human plan-
ning behavior can perhaps be explained by man's
willingness to tolerate a small amount of error.

These notion, while in harmony with one's in-
tuition and experience, have not yet been submitted
to a careful quantitative analysis. This paper
should be considered as a step toward such analy-
sis. It concerns the economy of storage space and
establishes absolute bounds on the amount of stor-
age that can be saved by tolerating a specified
percentage of errors in certain simple, yet typi-
cal , QA tasks. As a starting point, we ignore the
guestion of computational-complexity or search-
time, thus allowing the QA system any required (but
finite) amount of time for organizing and filing
data into storage, as well as for computing the
answers from the condensed data. A more recent
work [3] demonstrates that the relative savings of
most complexity measures in use are asymptotically
bounded by the relative savings of storage space.
Hence, the latter should be considered a fundamen-
tal characteristic of error-tolerating computations.

Four question-answering tasks are analyzed:
data-retrieval, pattern-classifications, position -
etching and pair-ordering. The first and second
tasks" are concerned with the economical description
of one-place predicates, while the third and fourth
concern the description of an order relation.

Data-retrieval QA systems accept as data an
arbitrary subset of individuals (from some uni-
verse), and respond to queries of the type "has
this individual been observed before?" A typical
example would be the task of determining whether a
certain node in a game tree has been expanded be-
fore, or whether it has been recognized before as
a "forced-win" position. A pattern-classification
system accepts data in the form of a subset of in-
dividuals classified into £ mutually exclusive ca-
tegories (property-values). It responds to queries
demanding the proper classification of a given in-
dividual from the observed list, permitting an ar-
bitrary classification of unobserved individuals.

Both position-matching and pair-ordering sys-
tems accept data in the form of an ordered list of
individuals. Position-matching systems admit quer-
ies of the type "What individual stands in the kth
position?" or "Who is the immediate successor of
individual x?" Pair-ordering systems respond to
gueries of the type "Does x precede y?". The num-
erical encoding of the order in position-matching
tasks is known as a nominal scale (e.g., the num-
ber on the shirts of football players) and that of
pair-ordering tasks as ordinal scale (e.g., rank-
ing of players in order of ability).

In all these tasks it is possible to answer
all queries correctly if an exact replica of the
original data is kept in storage. In many cases,



however,
would be prohibitively large. Consider, for exam-
ple, the task of deciding which member of a given
pair of chess configurations has proven more prom-
iIsing in past games. Such tasks are never handled
by complete enumeration but rather by employing
approximate models which allow the computation of
an order-preserving scale from some aspects of the
configurations. The memory space needed for stor-
ing these imprecise models is expected to be smal-
ler than that required for storing the scale
and much smaller than that required to store the
primary observational
deduced.
impreciseness depends on the purpose served by the
model, as reflected by the type of task-related
queries that the model is expected to resolve. We
therefore define the measure of the task-related
damage (or distortion) as the fraction of queries
in_the admissible set which are answered incor-
rectly.

the memory required to hold such a replica

itself,

data from which the scale was
Naturally, the amount of damage caused by

This paper demonstrates that the conversion of

a small error allowance into a significant memory
saving requires highly redundant query sets, and

that such conversion is not feasible for the tasks
of data-retrieval, pattern-classification and posi
tion-matching unless, perhaps, the data is highly
structured.

2. Background and Nomenclature

The model chosen for defining QA systems
represented by the block diagram of figure 1*.
consists of three parts:

a retrieval procedure B,.

ing the 'filing' phase, B-.,
of a data set and files a 'summary’
another procedure B-find .. Later,

phase, Byfing. . uses the information in the memory to

make decisions about the queries. Our aim is to
calculate the minimum quantity of data that B*...

must store in S in order to guarantee a minimally
acceptable performance standard.

is
It
a storage procedure B,..

and a memory S. Dur-

in the 'finding’
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Figurs 1. Block Disgrsm Model of a Qusstion-Answering
Systam.

The model is made precise using the following
formulations: Let M be a collection of data-sets,
M= {ujsupsro-uyls and Q a set of admissible quer-

ies on M, Q = (97,9, - -aq}. A QA system is a fin-
ite state machine QA with input alphabet M U %,
output alphabet AU ¢ = {a].---ax} U ¢, a finite

state-set 5 = {0y,0,,""'0g}, and a pair of charac-

“We are using here the terminology of Minsky and
Papert, Reference 4, Chapter 12.

examines the elements
in S for use by
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terizing functions: an output function fA:
(MUQ) xS+ (AU ¢), and a next-state function

fo: (MU Q) =5+ 3 satisfying
falugs o5) = ¢ (2.1a)
falags og) = 3 (2.1b)
folay, oj) = o (2.2a)
folugs aj) = foluy) (2.2b)

The output symbol ¢ represents the system's output
during the data-filing process. (2.1a) and (2.1b)
express the fact that during the data-filing pro-
cess we ignore the system output, while during the
query process we wish the output to represent an
answer to the query. (2.2a) constrains the machine
from changing its state in response to a query,
while (2.2b) forces the machine to clear its state
before the application of a new data. The storage
E%EEﬁiEI.Of the machine is defined to be the size

of the state-space S.

It is now necessary to define a measure of ma
chine performance. Let a{u,q)¢A represent the an-
swer selected by the machine in response to query
q€Q, with uéM being the most recently examined
data. We define 2 real-valued distortion function
§: A xM x Q~ Re' so that 6[a,u,q] would measure
the degree of damage caused by answering ‘a‘ to
query 'q' about the data 'u'. We may assume with-
out loss of generality that every (u,q) pair pos-
sesses at least one a €A for which s[ar,u.a) = 0,

representing a “correct” answer to a query. The
overall system performance is judged by the mean
distortion measure:

D= z z P(IJ !q) ﬁ[ﬁ(u-Q)‘ (I3} Q]
LEM qEg

where P(u.q) is the joint probability that data u
would be presented followed by query q.

{2.3)

When no aq priori knowledge is available on the
statistical properties of M and Q. it is reasonable
to assume that all queries and data are equiprob-
able and 1ndep?ndent of each other, thus making

P(u,q) = (MQ)~T, and:
]
D = 7 1 sla(ug), v, al (2.4)
W en ocg
Let alu) = alu, gy).---s alu, qQ) stand for the
answer-string obtlined when an * ordered sequence

is applied after data-set

of queries Qy-°**-q
an distortion can be written

was examined. The

as:
D= I dlalu), w) (2.5)
weM
where:
dlatu), ] = § [ slalw.a), w, ) (2.6)

qeq

Throughout this paper we will consider only
the symmetrical distortion function whereby all
deviations from the set of true answers

ﬂT(u.q) = {ay: 6{aq, p- q) = 0} have equal weights.
This leads to {0
1

‘s(ns (LEY Q’ =

.7
otherwise (2.7)



For the purpose of calculating the minimum
size of S it is convenient to regard a QA system
as a communication channel which receives at Its
input the data-set p and reproduces at Its output
the answer-string a. Thus, the source alphabet 1s
M, and the reproducing alphabet, A, 1s the(?collec-
tion of all possible answer-strings, A= A

Let i designate an Input data and ] an output
answer-string, and let dij be the (per letter)
distortion measure between the two. Shannon's
rate-distortion function for this source 1ls de-
fined by [5]:

R(D) = min  {M,A) =
P(:j|1)€P
= min z P, P(Jh)log—q—l—)— (2.8)
P(j|1XPD
where | is the average mutual information between

M and A, and PQ is the set of all conditional pro-
babilities yielding a mean distortion not exceed-
ing D:

PJI1)ER, 1iff PP P(j|i)dij <D

1,J

Shannons source-coding theorem states that it
IS not possible with any coding scheme to transmit
the source Information through any channel of cap-
acity less than R(D) with average distortion less
than D. Conversely, the positive form of the the-
orem states that given any channel with capacity
C > R(D), coding schemes exist which result in an
average distortion arbitrarily close to D when
used over this channel. |If one regards B*., [1n

figure 1] as the source encoder, B find, . as the de-
coder, and the memory S as a noiseless channel with
capacity S, then Shannon's source-coding theorem
implies that in order for a QA system to exhibit a
mean distortion not exceeding D, it must be provi-
ded with a memory space at least as large as R(0).
Conversely, the theorems guarantee that it is pos-
sible to realize a mean error arbitrarily close to
D with an average memory space not exceeding R(D).
The latter is true only if coding very long blocks
of data is permitted, such as would be required
for serving many users. If a code is to be as-
signed to each separate data-set as demanded by
(2.2b), then R(D) only provides a lower bound on
the memory space required.

(2.9)

To obtain the rate-distortion function for a
QA system one needs to minimize expression (2.8)
with P, * 1/M and dij given by (2.6). Shannon has

shown that R(D) is a continuous, strictly decreas-

ing, convex U function for 0 < D < DL,. where D
— — max max
iIs the minimum distortion achievable with zero
memo
B’mx - m;n ; Py 4 (2.10)
and
R(D) =0 for D>D.. (2.11)

The slope R'(D) is always infinitely negative at
D = 0 but may be discontinuous at D = Dma

A natural logarithm is used in the definition of
R(D). Consequently memory sizes will be given in
nats. A division by log,2 is required for conver-

sion into bits.
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The calculation of the rate-distortion func-
tion for an arbitrary distortion matrix Is, in
general, a difficult task. For our purposes, how-
ever, it would be sufficient to derive bounds on
R(D) using well known methods of rate-distortion
theory [6]. The derivations of these are omitted
in this paper and can be consulted in references
[8], [9] and [10].

3. Predicate-Related QA Systems

Data-Retrieval Systems

Consider a collection C of m objects from
which a subset C of n objects 1s selected and

presented to a QA system during the filing phase.
At a later time queries of the type "has object
x(x€c) been observed?" are presented to the sys-
tem for confirmation or rejection. An error 1s
committed when either a member in C is declared

"unobserved" or an object in C -C fs declared
observed".

It is clear that if no error at all can be
tolerated, then at least log,(™) bits of storage

must be devoted to describe the observation set.
When memory size is limited and (™) large (a typi-
cal example: rm = 2% n = 229 one 1s tempted
to "summarize" the data at the expense of accuracy.
The most straightforward way to reduce storage
would be to simply ignore a portion of the data,
and produce arbitrary answers to queries referring
to the missing objects. We shall call this scheme
"data-erasure”, and will use it to gauge the per-
formance of more sophisticated description schemes.

The Pattern-Recognition literature [7] may

provide many ideas for such schemes. One may be
tempted, for instance, to store only ‘representa-
tive' samples of the observed set, and base the de-

cisions on the ‘proximity' between the query object
x and the stored 'representatives'. Another possi-
bility is to approximate the binary representation
of the observed sample by a Boolean expression of
a limited length, store this expression, and use it
in the decision phase. A more popular method is
provided by the so-called "Statistical Pattern Re-
cognition”. Here the data-set 1s merely used to
calculate a set of parameters governing certain
statistical models; the parameters are stored and
subsequently used to generate the answer with the
highest probability of correctness. An even more
sophisticated description'method can be devised,
based on the so-called "Linguistic Pattern Recogni-
tion" philosophy. The names of the observed ob-
jects are regarded as sentences in some language,
a grammar generating this language is Inferred and
stored by Byije, While B¢,4 parses the query sen-
tences and decides whether it is in the language.
It will be shown that in the absence of any spec-
ial structures underlying the selection of the
subsets C and for large m, all such schemes pos-
sess memory vs. error characteristics equal or in-
ferior to those obtained by data-erasure.

The data-set space, for this problem, consists
of all subsets of C, which contain exactly n

A discussion of the storage vs. search-time
tradeoff for such tasks is qiven by Minsky and
Papert [4].



objects, while the query set 1s isomorphic to C .
Therefore:

M= (1), Q

Every answer string constitutes a dichotomy of Cm.
so A is simply the power set of Cm' The distor-
tion measure di' is given by 1/m times the number

of objects in data-set i(M which are misclassified
by answer-string jCA.

m ., H=Tlog(y) , (3.1)

The rate-distortion function governing this
system was found to be [91:

R(D) = 109(2) + m(D log D + (1-D)1og(1-D}] (3.2)
where D stands for the fraction of mislabeled ob-

Jects. R(D) is depicted in Figure 2 for several
values of n, and m = 106.
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Figurs 2. Bounds for Storege v Errdr Curves of item-Retrievel
Svatem with Known Sampls Size.

It demonstrates that as the ratio m/n increases,
the rate-distortion function approaches the data-
erasure line 1 - D/Dnax at a logarithmic rate.
Thus, no amount of error (below the trivial level
of D = n/m obtainable by answering all queries in
the affirmative) can make memory demands grow
slower than n log m/n.

The implications of these results for the
prospects of finding a general language that simp-
lifies descriptions of subsets are rather discour-
aging. They essentially imply that no filing
scheme exists which performs appreciably better
than one which simply ignores a certain fraction
of the observed data. Only for sample sizes on the
order of m/10 can the statistical dependence among
the samples be utilized for achieving a somewhat
higher memory saving.

This does not mean, however, that more sophis-
ticated schemes cannot provide better storage-error
characteristics under special circumstances. |If,
for instance, there exists a strong a priori know-
ledge that the observed sample is in some sense
compact, then it becomes quite reasonable to store
only descriptions of its boundaries, not the en-
tire sample. The results obtained here refer to
query sets and data sets which are uniformly and
independently distributed. They are valid in cases
where no structural knowledge exists (except the
sample size n); any combination of n objects from
Cs could constitute a data set and any member of
Cm could represent a query.
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Preliminary investigation of the effect of
structure (using Markovian model) shows that the
essential features of the memory vs. error charac-
teristics remain unaltered with the introduction of
structure into the data. While the memory required
to achieve zero error is substantially reduced, the
additional percentage reduction in memory require-
ment induced by error-tolerance remains close to
that of structureless data.

Pattern Classification Systems

Consider a collection C of objects (or pat-
terns) which is partitioned into three classes: n
objects are in class C , n in C", and the remaining
m-2n objects in class C°. During the filing phase
a QA system is shown the elements of C and C" with
their proper class identity. During the query
phase an arbitrary object from C is presented,

and the system is asked to classify it either as C
or C". An error is counted whenever an element of
C or C" is misclassified, but not when an element
of C° is labeled (+) or (-). C* and C* stand for
what is commonly called the "training-set”, while

C° represents unobserved patterns. The neutrality
of C° reflects our commitment to evaluate system
performance strictly on the basis of observed data,
leaving aside considerations of inductive-power.

It is clearly possible to answer all queries
correctly if we store the identities of the n ele-
ments of C , We simply label every query (+) if
it is in storage and (-) if it is not. This scheme
requires on the order of n logo m bits of memory

and thus could become prohibitively large for prac-
tical values of the sample-size and the data dimen-
sionality (e.g. m = 2'% n = 22°). Most pattern
classification methods, however, are motivated by
the belief that classification systems lend them-
selves to a greater storage economy. It is promp-
ted by noting that unlike data-retrieval systems
the exact reconstruction of the data is not re-
quired; only information pertaining to the differ-
ence between the classes need be stored. It fol-
lows that one can always add any number of elements

from C to either C or C~ at no extra cost, and s>
simplify the description of the separating rule.

It will be shown that this argument is justified;
the number of dichotomies needed for correct sep-
aration of all pairs of classes is much smaller
than the number of all possible choices of C

Thus, storing the description of any one such di-
chotomy could be made more economical than storing

the exact description of C

Consider the multi-category classification
problems whereby a description of an f-chotomy is
to be found, and the sample set contains n objects
in each class Civ 1 = 1, 2, »--, 2, and m - P
objects in Co' The rate-distortion function for
this problem is given by [9]:

R{d) = an[log ¢ + d log d + {1-d) log (1-d)

- d log (2-1)] (3.3)
where d is the number of misclassification errors
per sample:

g="D

. (3.4)



It 1s depicted in Figure 3; as the number of cate-
gories Increases the normalized rate-distortion
curves approach the line 1-7.

Alditn LOG ¥

L 2 3 4. B 8 P T R E
4 (ERAORS PER BAMPLE )

Figurs 3. Normalized Rets-Dintortion Function for
2. Catagory Clamitication.

In particular, for ¢ = 2 we obtain:
R(d) = 2n[log 2 + d log d + {1-D)Vog{1-d)] (3.5)

Note that the memory required for classificatian is
1inear with n, the sample size, but is independent
of the size of the sample space, m.

It 1s not at all obvious that storage require-
ments should remain finite as m + =. Consider, for
instance, the requirement for d = 0, the zero er-
ror conditton. The straightforward scheme of stor
ing one complete class, say C , requires a storage

capacity of log,(™) & n log,m bits, while equation
(3.5) claims a gtﬁrage of 2ﬁ bits, which amounts
to only 1 bit per sample. Indeed, the complete
storage scheme 1s far from optimal, and schemes
such as decision trees could achieve a perfect
classification with a mean storage of only 1 bit
per sample.

For a simple demonstration of such schemes
consider n = J, where two binary sequences each N
bits long (N = logzm) are presented with their (+)

and (-) labels. At a later time an arbitrary bin-
ary N-sequence is presented for classification
with the requirement that if the third sequence is
identical to any of the original two, it must be
classified correctly. Rather than storing one of
the original sampies (which requires N bits of
storage?. a more economical scheme can be employed:
one need store only the index of the bit where the
two samples first disagree, and the content of
that bit. This requires at most only 1 + log2 N
bits of storage. Moreover, if the two samples are
arbitrary, the probability is quite high that dis-
agreement would occur in the first few bits of the
sequences leading (e.g., using Huffman Code) to a
mean storage requirement of about three bits -
slightly more than the two bits predicted by (3.5).

4. Order-Related QA Systems

Position-Matching Systems

Here we will consider systems which accept
data-sets in the form of ordered lists of m dis-
tinct items, and respond to queries of the type:
"What item stands in the kth ppsition?" In such
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systems the admissible queries can be represented
by the set of integers from 1 to m, the answer-
vocabulary A is the set of items {a;, ay, --- ap},

and M is the set of permutations of the o's. This
leads to: M =m!, Q= m, and K = m. Since every
m-tuple from A_'" can represent an answer-string,

A= 5_"‘. and 1A] = m". The distortion measure dij

is given by the mean number of symbols in answer-
string § which are not matched to their correspond-
ing symbols in i. Clearly, a mean error of 1-1/m
js achievable with no memory at all simply by pro-
ducing an answer-string with one repeated symbol,
thu5| D“,'ax = ]']/m.

The rate-distortion function of this system
can be shown to satisfy [9]:

R(D) > Tog m! - m[H, (D) + D log(m-1}] (4.1)

where

Hb(D) =-Dlog D - (1-D) log (1-D) (4.2)

For large m one may use Stirling's approximation
log m! »m log m, and obtain:

R{D 1
h—é'o';'f_‘l -D-mHD(D)

Thus, as m becomes very large the lower bound on
R(D)/R(0) approaches the data-erasure line I-D at
a logarithmic rate.

(4.3)

These results can be summarized by the follow-
ing conclusions. As the size of the data increa-
ses, the amount of storage needed to represent an
ordered sequence of m items with a per-query error
D is given by (I-D) m log m. Thus, no amount of
error (below unity) oan make memory demands grow
sdower than m log m, and no data-reduction scheme
exists which achieves a memory economy higher than
that of data-erasure*

Note that the mathematical structure of posi-
tion-matching systems remains essentially unaltered
if Qis replaced by queries of the type, "Who is
the immediate successor of u..l?" The only change

required would be the inclusion of a null symbol ¢
1n the answer vocabulary to represent the answer
"no successor". With this modification we have

K = m¢] instead of K = m, which for large m indu-
ces only a slight change in R(D). We thus con-
clude that successor-finding tasks are subject to
the same basic memory vs. error limitations as
those limitations found for position-matching
tasks.

Pair-Ordering Systems

Let us consider a question-answering system
which examines an ordered array of m items
(a]. a,. *-* &) during the filing phase, and later
m’ . ¢
respongs to queries of the type, "Does ay precede
a,?". The data-space M 1s again the set of permu-
t:ltions on (u]. Qgy oo um). The set of queries,

however, Is homomorphlc to the set of all m{m- |

pairs of elements, and the answer vocabulary® A 1s
(0, 1), with 1 and O standing for affirmation and
denial of the query respectively. We assume that
only one of the two g u e ay > ays Oy $ay s

in Q. Thus, we have:



A=1(0,1), K=2

memt, Q=9 (n1), (4.4)

An answer—sari ng can be any binary Q-tuple, and
so, |A[ = 2°. The distortion measure d.., between

data-set i and answer-string j, is simply given by
1/Q times the number of pairs in i whose relative
order conflicts with that stated by j. Clearly,
if no information at all is retained in storage,
any arbitrary answer-string would leave {on the !
average) 50% of the answers in error, so, Drax = >

The lower bound on R(D), obtained [10] by the
method leading to (4.1), gives:

R(D) > Tog mt - BBy (p) . (4.5)
For large m this becomes:

R(D m

RtoE > 1 - 7 Tas s By (D) (4.6)

Thus, given any non-2ero D, there is always an m
sufficiently large to make the bound zero. This
can be attributed either to the fact that the sys-
tem permits increasing amounts of memory savings,
or simply to the looseness of the bound. We will

later demonstrate that the former is true, by using
an upper bound on R(D).
Note that the essential difference in the be-

havior of equations (4.1) and (4.5) comes from the
increased size of the query set Q. The two are
special cases of a general bound [8]:

R(MDO) M. log M - Q H.(D) (4.7)
which holds for all question-answering systems with
symmetric distortion measure (2.7). We may con-
clude that in order for R(D)/R(0) to vanish for

all D > 0 it is necessary that Q increases (with m)
faster than log M. This can be expressed by the
general statement: a necessary condition to enable
a QA system to convert any small error tolerance
into a slower growth of memory demand is that its
query set be increasingly redundant. Position-
matching, for instance, has a query set with only a
slight redundancy; one must know the position of
m-1 items before the position of the remaining m""
item can be deduced with certainty. In pair-order-
ing systems, on the other hand, knowing the correct
precedence of only a small fraction (m-1) of selec-
ted pairs may be sufficient to deduce (by transi-
tivity) precedence in all the remaining (m-1)(m-2)/2
pairs.

We now derive an upper bound on R(D) and dem-
onstrate that a small error tolerance can reduce
memory demands by a factor of log m. To that end
we calculated the rate-distortion function R (D) of

a restricted system where only transitivity-preser-

ving answer-strings are allowed. This yields a

parametric representation for R((D) [10]:
o omz LU zk

R EE AU

= -z

m

Rr = Togm! + QD log z + m log{1-z) - ] 109(1-2“)

k=
(4.8b)

where z is the independent parameter varying be-

tween O and 1. For values of z not too close to 1
the summations in (4.8) converge rapidly, permit-
ting numerical computations of R,(D) even for very

(4.8a)
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large values of m. Equation (4.8) is depicted by
the solid lines of Figure 4 for m * 100, 1000, and
10,000. It is seen that the (normalized) curves
undergo a sharp drop in R near D = 0, and that
this drop continues to grow with increasing m.
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Figure 4. Rate Distortion Function for Pair-Ordering
Task lsolid lines|, Compared with Memory
vs Error Characteriatics of Qlustering
Schame {broken hinm ).

For large m, the asymptotic behavior of Rr(d)
IS given by:

Rr(D) ~ m log 2/D (4.9)
Thus, while the memory required to answver all quer
ies correctly grows as m log m, only a linear in-

crease with m ie required when a small but finite

error rate is tolerated.

Recalling that Shannon's theorems guarantee
only the existence of codes for very long data
blocks, it remains to show that a memory reduction
similar to (4.9) could also be achieved by schemes
which encode each data-set separately. This can
be demonstrated using the popular filing scheme
known as "clustering". Assume that the sequence

(a]. Gyttt “m) represents the correct order of

elements. Divide the sequence into & groups each
containing exactly m/¢ consecutive elements, and
retain in memory the name of each Item coupled
with its group name. In the answering phase,
adopt the following strategy: 1f a; and o™ belong

to two different groups, use the group label to
decide precedence; if aj and «. belong to the same

group, choose an arbitrary answer. It 1s easily
shown that the memory vs. error characteristics of
this scheme are governed by:

1
RC(D) N m(1092 v 1) (4.10)
implying a linear memory growth similar to that
predicted by the restricted rate-distortion func-
tion er(D). The two are compared in Figure 4.

It is tempting to relate these results to
fuzzy-sets representation [1] schemes. Here too,
only a fixed number of linguistic labels such as
"very small”, "medium", "large", and "extremely
large" are used to characterize linear orders of
any size. Equation (4.10) indicates that for the
purpose of pair-ordering the scheme is close to op-
timal. However, clustering methods employ sharp
partitioning of the element-set into non-fuzzy sub-
sets. It is not clear whether additional memory



gain could be achieved by the use of numerical in-
dicators for 'the degree of set membership'. It
is conceivable that the computational advantage of
fuzzy-set coding schemes can only be demonstrated
in more complex data structures such as those con-
taining relations among several orders.

5. Conclusions and Relations to

Computational Complexity

Four question-answering tasks were analyzed to
test the conjecture that significant memory savings
could be materialized with only a slight tolerance
for errors. It was shown that the tasks of data-
retrieval and pattern-classification, which in the
past have absorbed considerable efforts toward ec-
onomy of descriptions, are subject to a basic lim-
itation. No data-reduction scheme exists which ex-
ploits error-allowances in an appreciably more ef-
fective way than a straightforward data-erasure.
Position-matching, namely, the task of representing
a linear order for the purpose of rank identifica-
tion (or successor identification), is subject to
a similar limitation. In applications where the
basic decision unit served by the order is the de-
termination of precedences on pairs of elements, a
more substantial reduction in memory size can be
achieved when a small but finite error is permitted.
This difference in behavior is attributable to the
fact that in pair-ordering applications the elemen-
tary decision tasks are highly interdependent (via
transitivity), whereas those in position-matching
applications are almost independent.

In a more recent work [3] it was found that the
results reported in this paper go beyond our origi-
nal intent of limiting the storage-error exchange.
The work demonstrates that many complexity measures
on a variety of computation models can be effec-
tively bounded using the rate-distortion function.

Given a computational task (e.g., sorting, function
computation, sequence generation), a class of algor-
ithms for accomplishing that task (e.g., straight

line algorithms, finite state machines) and a com-
plexity measure on the class (e.g., program length,
time or space complexity, combinational complexity),
there exists a characteristic function C[R(D)] which
provides a lower bound on the mean complexity neces-
sary to produce a mean distortion not exceeding D.
Moreover, in almost all interesting cases the func-
tion approaches a straight line C[R(D)] * a R(0) as
the task size becomes very large. This implies that
the relative reduction in the mean complexity in-
duced by tolerating a mean distortion D cannot ex-
ceed the relative change of the rate-distortion
function R(D).

Typical

1. The mean number of binary comparisons
quired for sorting N-sequences is bounded by

C(Ds) >NlogN(I-Ds) , N -

results obtained by this method are:

re-

-->  (5.1)
where Dg is the fraction of terms in the output se-
quence which are followed by wrong successors. It
implies that no sorting scheme exists which matches
a fixed percentage of the term with their correct
successors and which requires less than O(N log N)
comparisons.

2. If D is the fraction of pairs in the out-
put sequence Which are out of order, then the mean
number of comparisons is bounded by
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D, =0

N log N D

E(Dp) > (5.2)

N - Dp > 0

Equation (5.2) allows for the possibility of sort-
ing N sequences in linear time if one permits any
finite fraction of pairs to remain out of order.
Such a sorting scheme indeed exists using QUICKSORT
with a predetermined number of iterations.

3. The mean combinational complexity of Bool-
ean functions in N variables is bounded by

2N

N log 2/Dp

(5.3)

where D is the probability of output errors.

4. The average number of states over the en-
semble of minimal-state sequential machines needed
to reproduce binary N-sequences with probability of
errors not exceeding D is bounded by:

fg(D) > {N - log N) Hb(D) (5.4)

It is conjectured that the relative insensiti-
vity of R(D) to errors of the type treated in this
paper will also limit the complexity vs. error ex-
change of language-recognition and theorem-proving.
It appears that if inexactness could permit drastic
computationa) savings the effect may surface only
in cases where the data is highly structured and/or
the queries are highly redundant.
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