SOUS CONSIDERATIONS
CONCERNING THE PROBLEM BASE
OF PURPOSEFUL SYSTEMS

Vitaly S.

Losovsky

Institute of Uathematics

Academy of Sciences,

USSR. Siberian Branch

Novosibirsk, 6J0090, USSR

Abstract

The problem base structure for pur-
poseful systems is considered. It cones
out that ?redlcate calculus is rather
unW|eId% or this purpose; semantic nets
should be preferred. The main attention
is paid to the convenience in represen-
tation of descriptive and operational
information in the form of universal
(con_ceptR in order to obtain natural and
straightforward means for simulation of
discrete and continuous processes, to
provide proper interaction between them.
The wide use of concept hierarchy is pro-
posed. A single universal operator is in-

item

troduced: the instantiation of concePts.
The material is presented in informa
way.

Key Words

Problem solving, purposeful systems,
data base, representation of knowledge,
models of the world, semantic net, con-
cept formation.

Introduction

The notion of purposeful system
seems to be a fundamental one in the fi -
eld of Machine Intelligence. Consider a
certain integrated model structure refle-
cting some pertinent properties of the
physical world. One or more substructu-
res are singled out representing active
subjects. Some fixed configuration of the
integrated structure is called a state.
The structure can change along with time,
so we must deal with a set of states. An
initial state is fixed. In some or other
way the goal state is characterized. Cer-
tain states are prohibited. The problem
iIs to plan the behaviour of the active
subjects, and then to execute the plan
bringing the whole system in one of the
goal states avoiding the prohibited ones
and satisfying the given restrictions on
time and resourses. The situation is re-
ally more complicated: we postulate the
incomplete knowledge about the system.

It results in so to say spontaneous chan-
ges of its state which cannot be predic-
ted by the planning system. Then, not all
active subjects axe liable to our control,
Some of them may represent natural pro-
cesses (seasonal changes during the year,
eruption of volcanoes, snow-slips, etc.)
or represent subjects being under control
of some other system (or systems). At
last, it is pragmatically more useful to

538

investigate the behaviour of the large
system. In this case we must abandon the
hopes to obtain the true optimal solu-
tion.

We are going to study an artifici-
al system represented in the form of co-
mputer software which is able to act pur-
posefully in the foregoing sense, and ex-
ternal operational mode of which resem-
bles the behaviour patterns of natural
intelligence. The artificial system will
not copy its neurophysiologies! proces-
ses; though some undoubted facts or em-
pirically useful hypotheses obtained by
the students of the living brain can be
profitably taken into account during si-
mulation. The creator of computer model
has a possibility to organize its data
base and operational sections in accor-
dance with peculiarities of hard- and
software at his disposal. It seems more
appropriate to use the term "Machine In-

telligence" instead of "Artificial Intel-
ligence" in this case.
Apparently,

the everyda%/ reasoning
roblems will suit us all right at the
eginning stage of the investigation.

There is no doubt that success in
development of purposeful systems rather
generally defined above will strongly
stimulate the growth of effectiveness in
many applications: natural language in-
teraction with computer, CAI, control
systems for integrated autonomous robots,
models of large enterprises, etc.

Known approaches

The development of purposeful sys-
tems (PS) attracts attention of resear-
chers for a long time. The term "General
Problem Solver" was coined by Newell,
Shaw, and Simon in 1957 T[2] , and since
oundation were

then ideas layed in its
refind, improved during the decade and
used in many implementations. J.McCarthy

(1959) proposed developing of universal
Programs with common sense having the
lexible strategy which can be effecti-
vely improved during the interaction with
human creator (Advice Taldeer). A number of
important considerations cun be found in
[3). A unique approach to the Droblem un-
der discussion was evolved and deployed
during efforts headed by U.Klykov, D.Po-
spelov and their colleagues; the results
obtained can be found m [4]

Starting from 19&9 the progress in
the art of purposeful systems design had
been tied with the development of special
programming languages for Al research



(C.Hewitt, [5J ). The power of this app-
roach had been convincingly demonstrated
by T.Winograd [6J <« The use of pure me-
chanical theorem proving technique in PS-
area is handicapped with serious practi-
cal limitations. The successful combina-
tion of theorem proving with the philoso-
phy of GPS f1] along with many important
mechanisms such as generalization of
plans was evolved in SRI [7-9J . Among the
most interesting recently issued papers
Is that of E.Sacerdoti [10l. A series of
important results was obtained by the re-
search group under R.F.Simmons in the Uni-
versity of Texas. It includes the inves-
tigation carried out by G.Hendrix which
resulted in recommendations concerning
the modelling of simultaneous interactive
processes including the processes with
continuous changes of model parameters.

The works mentioned above appreci-
abrl]y influenced the shaping of our appro-
ach.

The Problem Description Language

It seems reasonable to express all
useful findings in PS-area in the form of
special PS-oriented language. Apparently
it is the most effective way to generali-
ty. Next follows the discussion of the
main premises for problem base construc-

tion of such a language.

Information about the physical world
naturally falls into two categoriest des-
criptive and operational. The former de-
clares names, properties and relations
between objects specifying the model with
names of properties and relations being
predicates and that of objects—constants
and variables. Operational part of the
system changes a model. It results in de-
letion of some clauses and addition of
some others. Situation can become even
more complicated: the system can be acted
upon by several operators concurrently;
some can effect in gradual changes of va-
lues for various numeric objects. A seri-
es of operators can be under the control
of planning system, others can be provoked
by uncontrollable factors or be initiated
by systems-competitors. Besides operators
can have complex causative bonds.

All this aroses serious doubts in the
practicability of the first order predi-
cate calculus for description of such sy-
stems. Moreover, when the transition is
performed from the semantic net represen-
tation to the uniform set of clauses be-
ing the problem base for resolution-type
theorem provers, one can notice that some
important information fades away. It is
the non-homogeneous structure of semantic
net which is associated with its objects.
This organisation of data naturally pro-
vides straightforward acquisition of re-
levant sentences tied in contexts, disco-

vering links between various contexts and
the goal directed transformation of their
content. The greater practicability of se-

mantic nets was also emphasized earlier
by R.F.Simmons [12J.

539

the

to abandon the
logic

It seems reasonable
uniformity and formal elegance of
in behalf of flexible universal program-
ming language. This language must allow

the manipulation of complex data structu-

res and provide the convenient facilities

for procedural embedding of semantics in-

herent in the processes being simulated.
Trying to draw the expressive means of
language to those (hypothetically)
used by humans one ought to work out uni-
form, or at least similar, format for de-
scriptive and operational Information.

At last the fundamental relations, such
as sub-, superconcepts, cause-effect and
time must simply and naturally be inter-

preted by the system?*

Experimental heuristics oriented la-
nguage for purposeful systems simulation
(HEOPS) was decided to embed in LISP 1.5
paying the tribute to its universality,
laconism and complex data structures al-
lowed. The concept classes hierarchy and
time synchronization for processes in
HEOPS is borrowed substantially from
SIMULA [13].

The Systems Problem Base

The problem base of the HEOPS inclu-
des two basic parts: declarative section
and operational space. Declarative sec-
tion includes the definitions of all con-
cepts and relations currently existing in
the system. In the operational space is
"builded"” the initial situation for a gi-
ven problem. Its solution coprises seve-
ral transformations through the applica-
tion of the sole operation: "instantiate"
one or other definition from the declara-
tive section. The boundary between the
two sections is rather conventional: it
iIs allowed to transfer non-instantiated
definitions from declarative to operati-
onal parti one can imagine the inverse
too: synthesis of some new definition in
the operational space which is followed
by its transfer to the declarative secti-
on for further use.

Two types of objects are liable to
declaration: relations and concepts.

Declaration of Relations

It is instructive to think about re-
lations as arcs of semantic net. However
the number of their arguments not neces-
sary equals to two. Extra arguments play
the role of relation modifiers. Thus, let
A and B be two nodes. The relation (DIS-
TANCE A B I) means: "The distance is de-
fined between objects designated by the
names A and B, and this distance equals
to X". It is convenient in computer to
gather all relations of the semantic net
having identical first arguments and pla-
ce them on the property list of the cor-
responding node, deleting its name from
the explicit forms of the relations.

When the declaration of some relati-
on is interpreted the relevant informati-
on defining the semantics of the given



relation is put on the property list of
the choosen relation name in the form of
traditional property-value pairs:

- The number and also the necessary
properties for arguments of the relation
are specified. In the foregoing example
A and B should be physical bodies, and
X—a number.

- The pointer to the "superrelation”
IS inserted. Thus, the predicate SAT can
have as its superrelation the predicate
COMMUNICATE.

_ - The Eointe_r may be inserted to the
list of "subrelations” currently existing
in the system. The predicate COMMUNICATE
thus can contain in its subrelations
list: SAY, WRITE, SUGGEST, HINT, etc.

Declaration of Concepts

Concepts are the main object type
in the HEOPS. Declared are classes of con-
cepts. Each class gets its name, for exa-
mple, ROOM, MONKEY, GET, APPROACH, etc.

In class declaration generally are
included:

1. Semantic net of applicabilit%/
(application pattern), probably, with poi-
nters to super- and subconcepta.

2. Activation pattern.

3. Operational section.
3-1 Delete-list.
3.2 Add-list.
3.3 Recomputetion formulae.
3.4 Notice-list.

4. Passivation pattern.
5. Suppression pattern.

Such classes usually represent a pro-
cess. The class with sections 2—4 absent
is called assertional and represents sim-
ple or compound entity—the part of sema-
ntic net with some set of nodes and rela-
tions between them.

The nodes used in declarations fall
into one of the following categories:

_ P: - free node of simple type: during
instantiation can be replaced with own,

terminal, or classified node.

_ G: - free node of generic type; not
disappear when instantiated, but produces
moreover the finite set of nodes (F:-type)

each of which can be further instantiated.

T: - terminal node; its semantics
comprises solely its name, it cannot have
any other properties and cannot be further
instantiated.

C: - classified node, i.e. the node
having its class declaration in the sys-
tem, when instantiated requires pattern
matching upon existing net.

Instantiation of Concepts

_ The first argument of the aforemen-
tioned operation of instantiation is the

540

name of concept declared (dynamically)
earlier. The second argument is the list
of instantiation parameters. Thus, the
concept MONKEY can obtain after instanti-
ation the fixed name, specific location
In some room; it can have some object in
its hands. It can even start moving at
once if in its class declaration the ap-
propriate operational section is present.

During instantiation the application
pattern of the given concept is matched
upon the current configuration of the ope-
rational space: explicitly—through ins-
tantiation parameters and implicitly—
upon the nodes and arcs of the currently
existing semantic net. The relevant in-
formation is choosen in this case by the
concept body itself. Instantiation resu-
Its in the new state of the operational
space with new concept "implanted” there.
Otherwise inapplicability Is indicated.
The more interesting mode of operation
results in the sequence of recursive ca-
IIs for instantiation of some other con-
cepts in order to eliminate the discrepa-
ncies found. This process is guided main-
ly by special pointers extant in declara-
tions and relating some relations with
concepts responsible for their originati-
on, support, or removal.

Operational information is reflected
in the proposed problem base in two ways:
in ready to use procedural form as opera-
tional section (3) of concept class dec-
laration, and as a so called possibility
hint. In the later case in the applicabi-
lity pattern (1), add-list (3.2) of class
declaration, or somewhere in the semantic
net of the operational space are inserted
nodes—reflections of certain concepts-
E)_rocesses_. Thus the node MONKEY can be
inked with possibility node MOVE, proba-
bly with some restrictions on the extent
of mobility (say, remaining on some solid
surface). This means that the MONKEY
can move. In order for it really to
move the concept corresponding to this
node of the net must be instantiated using
the declaration of MOVE.

Instantiation can be done partially:
i.e. implanted concept can retain some
of its free nodes. As for example, during
the process of getting bananas in the well
known Al problem, it may turn out that
the distance between the monkey and bana-
nas can be diminished if the monkey will
be standinfgI on something

0

risin
above the or. The node desi?nating t%is
"something” remains free until it even-
tually becomes instantiated to, say, a
box if the later is available.

Time dependency

Time and cause-effect bonds deserve
special discussion. In HEOPS it is plan-
ned to use the sequence list akin to that
introduced in SIMULA [131. Recomputation
formulae (3-3) are used in class declara-
tions in order to fix the crucial moments
of time. The notice-list (3.4) contains
the pointers to the instantiated concepts



in the operational space which must be
activated after fulfilment of certain con-
ditions. The provision of special machi-
nery for process interception at arbitra-
ry moment with return to the arbitrary
continuation point is not planned. Inste-
ad the processing of concepts (also qua-
siparallel processes') is arranged so that
exit and reentrance are done in precpeci-
fied points; special provisions must be
used to retain the contexts' value.
Relations

Super- and Subconcept

instantiation process the
in certain more general relations
Each instantiated node in the

has a pointer to its class

During the
need
can arise.
semantic net

name. For example, the specific monkey
named Cheetah remains to be a monkey ha-
ving all its properties. A MONKEY is a
subconcept of ANIMAL, and the fact that
any animal needs food need not be repea-
ted for all subconcepts of the concept
ANIMAL. An appeal to more general conce-

pts proved useful in some situation can
be fixed in instantiated subconcept as
explicit addition to the semantic net.

Conclusion

Organizational principles of the

HEOFS language problem base for simulati-
on of purposeful systems, informally dis-
cussed in this paper, will be specified

more accurately in future. Under current

consideration are also the principles of
its computer implementation. In particu-
lar, we are faced with working out the

efficient methods for contexts bookkee-
ping to hold the nodes' values after in-
stantiation and preserving the convenient

access to the hierarchy of concepts. One
of the crucial points in future investi-
gations will be the realization of effec-

tive bootstrapping procedure for the sys-
tem both in descriptive and operational

aspects. This process can be regarded as
system's learning in one of the most im-
portant mode: algorithmic evolution,

The simulation of the system is be-
ing done on HESM-6 computer with DIAPACK
OS. The host language is LISP 1.5 [14,15]
which is run under TELELISP monitor sys-
tem implemented in the Institute of Mathe-
matics, Siberian Br. Acad. Sci. USSR, pro-
vided with archives and text editor which
make it possible to interact with the ma-
chine from distant terminal.

References

1. George W.Ernst. Allen Newell,GPS:
A Case Study in Generality and Problem
Solving, Academic Press, NY, 1969.

2. A.Newell, J.C.Shaw, H.A.Simon,
Preliminary Description of General Prob-
lem Solving Program-1, CIP Working Paper
No,7.Carnegie Institute or Tecnnoiogy,
Pittsburg, Pennsylvania, 1967.

3. J.McCarthy, P.J.Hayes, Some Philo-
sophical Problems from the Standpoint of
Artificial Intelligence, Machine lutelli-
ence4, B.Meltzer, D.Michie Cede) Edin-
urgh TI.P., 1969.

4. U.l.Klykov, Situational Control

in Large Systems, "Energia", Moscow,1974
(in Russian)e

5. C.Hewitt, PLANNER: A Language for
Proving Theorems in Robots, Proceedings
of the Int. Joint Conf. on Ai Bedford.
Mass, Mitre Corp., 19t>9.

6. T.Winograd, Understanding Natural
Language, Edinburgh University Press,1972.

7. R.E.Pikes, N.J.Nilsson, STRIPS:
A New Approach to the Application of The-

orem Proving to Problem Solving, Artifi-
cial Intelligence. 2. 1971, pp.189-208.
8. R.E.Pikes, P.E.Hart, N.J.Nilsson,

Learning and Executing Generalized Robot

Plans, Artificial Intelligence. 3.1972.
9. R.E.Fikes, P.E.Hart. N.J.Nilsson,
Some New Directions in Robot Problem Sol-
ving. Machine Intelligence 7 , B.Meltzer
and D.Michie leas), wliey, New York,1972.
10. Earl D.Sacerdoti, Planning in a
Hierarchy of Abstraction Spaces, Artifi-
cial Intelligence. 5, 1974, pp.115-135.

11. Gary G.Hendrix, Modelling Simul-
taneous Actions and Continuous Processes,
At\trcglflmal Intelligence. 4, 1973,pp. 145-
11t 0.

12. Robert F.Simmons, Bertram C.Bruce,
Some Relations Between Predicate Calculus
and Semantic Net Representation of Disco-
urse, Sec.Int.JT.conf.Al,London, 1971,
pp. 524-530.

13. O.Dahl, B.Myhrhaug,
SIMULA 67, Common Base Language,

K.Nygaard,
Oslo,1968.

14. S.S.Lavrov, G.S.Silagadze, The In-
Language and Interpreter of LISP-Ba-
HESM-6, Comp.
1969

put
sed Programming System for
Center, Acad. Sci. USSR, Moscow,

(in Russian).

15. V.M.Ufa, Elaboration of the Prog-
ramming System LISP—BESM-6, in Symbol
Information Processing, issue 1. Comp.
center, Acad. Sci. USSR, Moscow, 1973
(in Russian).

541



