DEADLOCK-FREE PARALLEL PROCESSING

A.O.Hill,

University of Edinburgh,

H.R.A. Townsend, Machine

University of Edinburgh,

Introduction

Recent developments In programming languages
for A.I. such as Manner (1), Popler (2) and
Conniver (3) have mainly been concerned with
pattern matching techniques applied to a
relational database. Consequently little
attention has been paid to the problems of
multiprocessing required to operate in a

real-time environment.

Consider the problem of manipulating a pile
of blocks. If some accident or deus ex machina
happens to move a block after a "picture" s

taken then this will only he noticed If and when
the next "picture" is taken. What we would really
like is to be able to monitor the external
environment and to roport back if any significant

alteration ocoun.

We are interested in the analysis of the
electroencephalogram (EEG) where there is an
extremely high rate of continually changing data.
This rate is so high that even with the current
generation of computers the processing speed s
the major limitation and the sheer volume of data
requires that it should be processed reasonably
expeditiously.

Fortunately the problem is much less
difficult than would at first appear. Only a few
patterns are of Interost, or at least are known
to be useful. Many of these pattorns are
transient, and in some EEGs they may be absent (a
fact which is often relovant). Tho presence of
some of the "interesting patterns'* can be
detected in real-time but the detailed
description of the structure of a short segment
of EEG utillses a much larger amount of
processing time.

This problem is very similar to the real-timo

blocks problem. We cannot stop monitoring the
external world since we might miss some relevant
event but we can pass information over to a
collection of parallel processes which, relieved
of the necessity to monitor the data can then

build up a database and perhaps plan somo active

intervention.

In this paper we shall examine the problems
of writing programs for cooperating parallel
processes , especially tho problems of the deadly
embrace (4) where a set of processes cannot
proceed because of mutual interference. We shall
not at this stage consider the problems of
maintaining a relational database which can be

altered by several processes.

534

M.R.C. Brain Metabolism Unit,

Edinburgh.

Intelligence Research Unit,
Edinburgh,

Scotland.

Systems of Cooperating Parallel Processes

We have methods for
constructing
will not

requirement is

been developing
systems of parallel processes which
have deadlock problems. One major
that it should not matter whether
the processes are situated in the one area of
common core under tho control of the same
processor or whether they are distributed over
several processors with communicating data links.

Each process is considered to be completely
autonomous and is written a* a self-contained
module which has a number of "ports" through
which it can communicate with the outside world
and other processes. A system ts constructed by
connecting pairs of ports and communication s
achieved by the sending and receiving of messages
along the routes.

In the simplest version each
store one message and a message can only be
if the route is free. If it is occupied then the
process sending the message is held up until the
route becomes free. Similarly a message can only
be received if there is a message on the route

route can only
sent

and any process trying to receive a message from
an empty route is held up wuntil a message ia
available. In more complicated vorsions it would
be possible for a route to store more than one

message but so far no great need for this has
arisen.

The equivalent of Dijkstra's P and V
operations (5) appears in the fact that sending
and receiving a message must be indivisible
operations but the advantage is that since these

operations are common to all processes thay can
be handled by the system thus relieving the
programmer from any need to become involved in
the conceptually difficult details.

Analysis of the Complete System

It would be useful if a system of processes
could be checked and any possible deadly embraces
discovered. Under the formalism presented here
this becomes a relatively simple procedure.

Each process can be modelled as a (possibly
non-deterministic) finite-state machine with the
states as the stages between message passing and

the transitions occurring when messages are sent
or received. Since each process only communicates
with the outside world by means of these messages
the details of the code of the process become
irrelevant.

finite-state can be coded

This description

into a simple finite-state
more succinct

language to provida
representation of the process.

a

e.g. Bending a message:- PUT 0 0->1;
describes the action of sending
route 0 and going from state 0

a message on
to state 1.
GET |

Similarly s- 2->3;

describee the aotion of receiving a message on
route 1 and going from state 2 to ststr 3.
Therefore a simple system of two processes in

which the first sends a message to the second and
gets a reply can be written as

PROCESS ONE

PUT 0 0->I
GET 1 [->0;
PROCESS TWO
GET 0 0->I
PUT 1 1->0;

As wlth other methods for investlgating
deadly embraces (0) the graphs of the processes
can be joined to form one composite graph. The
vertices of this graph are the states of the
processes and also of the routes. if we restrict

the transitions so that only one process may
change state at a time then the edges that Ileave
a vertex represent all the currently allowable
transitions.

For the system described above:

Process Route

ONE TWO 0 1

0 0 0 O (initial state)

1 o 1 0 (proc. OME sends a message)

1 1l 0 O (proc, TWO receivea s meassage)
1 0 0 1 (prooc. TWO sends a reply)

6 0 0 O (proo, ONE receives a reply)

In this example there is no branching.
It is a simple matter to examine
for each individual process and to discover its
transitions. The compound states <can then be
automatically generated. There is no theoretical
reason why several processes should not change
etate at the same time but in praotice this
increases the complexity of the graph and has not

as yet been implemented.

the coding

Definition of a "Deadly Embrace"

By convention each process starts in state O
and may have initialisation stages followed by a
recurrent sequence of states. if there were no
initialisation stages then a definition similar
to that given by Liwellyn (7) would be
appropriate. A deadly embrace exists if and only
if from any state (simple or composite) another
state oan be reached from which it is impossible
to return to the original state. With the

535

addition of initialisation stages however this no
longer remains true since the program never
returns to them under normal function and the

definition of a deadly embrace muat be tailored

to take this into account.

Another point which emerged in testing
multi-process systems is the else of the
composite graph (8). If the system Is correct the
total number of states of the composite process

is usually quite small, but when there are errors
a inn— effect Is that the graph becomes so big
that it cannot be atored. We therefore require
some method of analyaing the graph without
necessarily generating and storing it completely
In order to discover whether we have a complex
but correct system or to locate any deadlock
states.

Into
a strong component being a
aet of vertices which are mutually reachable,
tills factored graph la very much smaller than the
unfactored graph and oan more easily be stored.

This can be done by factoring the graph
ita strong components,

Tardan's algorithm (SO supplies
for finding the strong components
modified ao that deadlock states oan be detected
without necessarily generating the complete
graph. It also has the merit that computation
increases linearly with the number of vertices.
The graph is explored in a depth first tree
search collecting information on the way. It is
not intended to give a formal proof of the
algorithm but merely to point out the main
features of relevance to the detection of deadly
embraces,

a technique

and oan be

The algorithm starts with all nodes unranked
and all strong components zero. As the
exploration proceeds the nodes are ranked in the
order in which they are first met and values
assigned to the strong components where possible.
All nodes which have been ranked but as yet have
no strong component assigned to them are held on
a stack. The strong component of a node x la
assigned as the minimum rank of any node y which
can be reached from x where the strong component

of y has not yet been assigned. There is no need
to start off with the complete graph, since the
neoessary nodes oan be developed as the search
proceeds.

This algorithm was implemented wusing the
method described by Knuth (10> and has indeed

proved to be very efficient in finding strong
components. There are however greater benefits to
be had in the discovery of possible deadlock
states.

If there are no Initialisation stages in any
prooeaa then aa mentioned above there will be the
possibility of deadlock if there is more than one
strong component in the graph. In order to allow

for initialisation stages the strong components
can be claased as either terminal or non-terminal
i.e. whether it is ever possible to get out of
that group of states. Thus whether there arc
initialisation atages or not there exists the
possibility of deadlock if there are two or more
terminal strong components.

We are now left with the problem that
although it 5is feasible to check for deadlock
states in a multiprogramming »y»tem, this has to
be done as a separate analysis and not concurrent
with systora operation. While this has proved very
useful in some EEG applications (11) it has
considerable disadvantages in complex programs
where processes may be continually added and
deleted and wo have found it necessary to
restructure the problem in order to obviate
continual reanalysis.

One factor which often led to considerable
difficulty was the existence of cycles where one
process sent a message to a second process and
this second process could either reply directly
or send a reply via a third process. The system
was restructured to avoid this problem.

A Practical Implementation

The current version is implemented on a GEC
2050 computer which is a mini-computer very well
suited to multiprocessing. The basic structure is
that communicating processes arc connected as a
tree, there being separate trees for
non-communicating systems. Kach process may own
any number of dependent processes but n process
may have only one owner.

Message passing is as described above except
that the massages must always be paired i.e. if a
message in sont to a process then at some stage a
roply must be received and certainly before
another message is sent on the same route.

In ordor to accommodato messages of variable
longth the actual signalling of a message takes
only 1 bit of 8torAgo while the buffer for the
mossage is located in the dependent process and
contains its size.

This storage is then unusual in that the
variables located there only have validity at
restricted stages of communication between the
processes. In the resting state they are valid
for the owning message until the PUT flag is set
at which time their validity ceases. When the
message is received by the dependent process the
storage buffer becomes valid for that process and
remains so until the roply is sent. The buffer
then becomes available for the owning process
after the reply is received.

The tree is dynamic in that a process may ask
for another process to be attached to it if
either that procoss is froo and in core or is
held on disc. Similarly when a process has
finishod with a dependent process it may
disconnect it. If the dependent process is not
finished then it becomes the root of a new tree
and there is a now completely independent
parallel system. If it has finished then it
bocomos available for garbage collection when
more processes require to bo loaded.

A cyclic structure cannot be created beoause a
process cannot become attached unless it is

currently unattached, a process may only have one
"owner" at a time. An informal proof that the
tree structured system will not suffer from
deadlock states is as follows:*

If there are separate non-interacting tree

systems then deadlock in one will be independent
of the states of the other trees.

Each tree has a root with no "owner". If a
message is sent by this root process to a
dependent process then a reply must be received
even if this reply only signifies that an error
has occurred. This implies that the root process
can never be held up trying to send a message.
Deadlock states will therefore appear as the
absence of a reply, i.e. the deadlock must be
produced by the dependent process and not by the
root.

Consider a dependent process. The rules are
that if a message is received from an owning
process then a reply must be sent, perhaps after
the procoss in its turn has sent messages and
received the replies. The reply may signify that
an error has occurred giving information about
the procoss that found the error and the type of
error, A reply will only fall to be sent if there
is an irrecoverable software error in that
process which is not by definition a "deadlock".
The structure is so arranged that a message
exchange is always originated by an owner and
completed by the reply (the "principle of
politoness™). Since the system is tree-structured
this argument can be continued by induction until
th© tips of the branches are reached. Thus there
will only be deadlock if it is produoed by the
terminal processes.

The terminal processes however simply receive
a roeSHage from their owner, carry out some
computation or input/ouput and then reply. Since
the owning process is always expecting the reply
the terminal process can never be hold up i.e.
the system is deadlock free.

Furthermore since these rules are structural
they can be checked syntactically for each
process as it is compiled i.e. a dynamic parallol
processing system which does not have deadlock
states can be constructed.

Limitations

Parallel
system by

processing may be achieved in our

a) An owner, after instructing a slave to carry
out some procedure, continuing to compute in
parallel for some time before expecting a reply.

b) An owner issuing several messages to slaves,

which will carry out their computations in
parallel, and then collecting the replies
seriatim.
c) A mixture of these two mechanisms.

The order in which computations will be

536

completed must be specified In advance aa no
mechanism la provided tor accepting replies In
unspecified order or for abandoning a computation
which la going on for too long (e.g. if the
answer has been found by a different parallel
branch). We think however that auch mechanisms
can be incorporated wlthout destroying the
desireable tree structure.

A more fundamental limitation is that
resource deadlocks can still occur due to
competing independent process systems, perhaps
because there is not enough core available for
the next process that either system requires, or
e.g. aa in the claaaic situation whore one owns
the reader and wants the lineprinter while the
other owns the Illneprinter and wants the reader.

In the completely dynamic case a system of
processes may not "know" what resources will be
required until a considerable tree structure has
been created and there may be little option but
to terminate one of the competing systems (even
In this event a properly designed error reply
should be able to Ilimit the damage to part of the
tree, and permit recovery).

Where requirements can be predicted in
advance a static analysis can be undertaken. Any
set of Interconnected processes forming a system
(perhaps dynamic) known to be deadlock-free may
be replacoed - as far as the non-deterministic
model of the whole set of systems is concerned
by a single composite prooess. This process can
claim a resource by placing a message on a route
(which la equivalent to setting a semaphore) and
relinquish it by picking up the message. This new
model can be analysed by the methods discussed in
the earlier section to discover if deadlock
states are possible.

Conclusion

Constructing parallel processing systems out
of modular processes which coranunicato by passing
messages provides a simple and efficient
structure to expand artificial intelligence
techniques to the real-time world. Static systems
can be checked for deadlock by means of Tarjan's
algorithm and by Imposing structure on the
message passing dynamic deadlock-free systems can
be created.

Acknowledgements

We should like to thank Dr.n.Burstall for
pointing out Tarjan's algorithm.

References

(1) Hewitt,C. PIANKERs A
Manipulating Models and

Language for
Proving Theorems in a

Robot. MAC Al Memo 168, 1970.

(2) Daviea.D.J.M. POPLER: a POP-2 Planner.
MIP-K-89 Department of Machine Intelligence and
Perception, University of Edinburgh, 1971.

(3) McDermott,D.V. and Sussman,G.J. The CONN1VER
Reference Manual. A.l. Memo 259 M.I.T. - A.l.
laboratory 1972.

(4) Dijkstra.E.W.
Concurrent
Vol.0,196S,p9.

Solution of a Problem in
Programming Control. CACM

(5) Dijkstra,E,W. Cooperating Sequential
Processes. Programming Languages. F.Genuya (Ed.)
Academic, New York,1966,

(0) Gilbert,re and Chandler,W.J. Interference
between Communicating Parallel Processes. CACM
Vol. 15, 1972,p427.

(7) Llwellyn,J.A. The Deadly Embrace - a Finite
State Model Approach. The Computer Journal Vol.
16,1973, p223.

(8) Hill,A.Q«ey and Townsend,H.R.A. The Computer
Journal Vol. 18,1975, p94.

(9) Tarjan,R. Depth-first Search and Linear Graph
Algorithms. S1AM J. Computing Vol.1,1972,pi46.

(10) Kn\jth,D.£. Structured Programming with Go To
statements. ACM Computing Surveys, Vol. 6, 1974,
p261.

(11) Townsend,H.R.A. In the footsteps of the
Amoeba or J&ilti-Processing Without Tears.
MIP-R-97, School of Artificial Intelligence,
University of Edinburgh, 1972.

