PROBLEM SOLVING APPROACH IN DATA MANAGEMENT

William D. Haseraan
Carnegie-Melion University
Pittsburgh, Pennsylvania

Abstract

This paper looks at an artificial intelli-
gence control program required for a system which
accepts queries to a data base which consists of
both data and program modules. Using a problem
solving approach, the data base structure and the
program modules specify the initial world model.
The operators consist of functions which look
through sets in the data base and the actual pro-
gram modules themselves. The goal is the query
which requests data and/or processes. The control
program determines the path which maps through the
data base and the program modules in a manner
which satisfies the predicate calculus constraints
and the goal. Real examples of how this system
is being used for a large scale data base is in-
cluded.

Introduction

This paper presents a problem in the data
management area and demonstrates how that problem
can be solved using an Artificial Intelligence
Technique known as Problem Solving. The problem
is that of determining a data path through a data
base which consists of data and programs in order
to determine the desired answer to a user's re-
quest. The data structure is viewed as the initial
state, the queries provide the goal, and the
various functions in the data base provide the
operators which are used to map from the initial
state to the goal. This paper will primarily be
concerned with describing this problem and the
development of its solution and then discussing the
particular algorithm involved in the solution. The
work presented here was a development made in the
data management area and is not simply a new appli-
cation developed for an Artificial Intelligence
Algorithm. The following, then, is a description
of the problem.

One of the many concerns facing organizations,
both in the private and public sector, deals with
the need to analyze as well as report information
from their data bases. There is an increasing
demand for these organizations to perform such
planning functions involving forecasting, simu-
lation, and optimizations. The GPIAN [1] research
project at .Purdue University is concerned with
developing a framework for a generalized planning
system which will help to satisfy that demand. The
system being developed will provide the planner
with an environment consisting of data, programs
for generating reports using this data, and a
collection of models (programs) which can easily
be used to analyze the data. The interface be-
tween the user and this environment will be English-
like interactive query language. The following is
a brief discussion of the major components of the
CPIAN system. (Figure 1)

Andrew B. Whinston
Purdue University
Lafayette, Indiana

WYL hY
R FR

o 182)

la

coe TR
i
e T

-

e—

ST RS }7--”

Figure 1. GPLAN Framework

The user (1) interfaces to the system through
an interactive query language known as the GPIAN/
QA [2]. The query system (2) accepts the user's
request as stated in the query language, parses
and verifies the syntax, and stores the query in
a standard matrix form. All of the tables used
in the parsing are actually stored in the data
base to permit each application to have its own
set of keywords and operators. A more thorough
discussion of the query language can be found in

user's manual
Whtnston [3].

[2] and paper by Haseman and

After the query has been parsed, the control
program (3) analyzes the query and determines
what action will be required to answer the re-
quest. These actions not only include generating
calls to the data base through the Data Mani-
pulation Language (DML), but also include the
execution of functions (programs) which will
operate on the data retrieved via the DML calls.
This process will be discussed in more detail in
the next section of the paper, while the
following is a description of the rest of the
system.

The core of the system is a Data Management
System (3, A, 5), which is called the GPLAN/DMS
["4] [5] system. The DMS was developed using the
specifications of the CODASYL DBTG Report [6] and
will support data structures which range from
sequential files to complex network data struc-
tures. The data structure which is supported by
the query language is a hierarchical data struc-
ture. The schema consists of a group of tables

which describe the logical structure of the data
base while the physical data is stored in the data
base. The system generates the schema based on

a user's description of the data structure using
the Data Description Language (DDL). The basic
unit of data is known as an item-type, where a
group of item-types forms a record-type. The user
can also define set-types which generate an owner-
membership relation between two record-types. The
DML commands are used by the control program to

search through the various set relationships to
determine the desired data.

The final component of the system is a
collection of functions (programs) which will
perform various operations on the data involved.

In general, we can have any collection of appli-
cation programs. Current implementation has the
following: report generators, plotting, simu-
lation, and optimizations. These functions re-
ceive their input from files generated from the
data base by control program and may return the
output to the user as well as store results back
into the data base.

Using this introduction to the GPIAN system
as background information, the following, then,
is a description of the problem of how to design
a control program to intermix DML calls on the
data base and functions on this data to answer
more involved queries. This can be viewed as a
path finding problem.

Problem

The previous approach used to answer a query
involves determining the shortest path through
the data structure which includes all the item-
types which were requested in the query. For
example, assuming the data structure as shown
Figure 2a, the following query could be

in
requested

LIST REACH-NUMBER AND FLOW-RATE.

The algorithm would determine that the correct

path would involve S; and S3. Assuming each
reach contains three measurements of flow, the
following response would be obtained:
REACH-NUMBER FLW-RATE

| 110

1 114.

1 125

2 205.

2 230.

2 270.

CTT7
S { ;m-:r‘"l
e]

TR LA™ 2

FITLEE 5N, Y

Figure 2a. Example Set Structure

529

RECORD

Ri
RECORD Ry
RECORD R3
ITEM REACH-NUMBER INTEGER
RECORD R
ITEM FLOW-RATE REAL
RECORD Rs
ITEM TEMPERATURE REAL
SET s,
OWNER SYSTEM
MEMBER R,
SET S,
OWNER R,
MEMBER R,
SET S,
OWNER R,
MEMBER R,
SET s,
OWNER Rs
MEMBER R,
SET S,
OWNER R3
MEMBER Rs
Figure 2b. DDL for Above Example

and the derived data path would appear as follows

By —
1 »
-
Ry
1
Ry

As can be seen, if each set has only one owner
record-type and one member record-type, the data
path can be completely determined by the sets in-
volved. Extending the concept of currency as
discussed in the CODASYL Report, the following

is a definition of a current set:

A current set is a set which
describe a data path
a query.

to
answering

is used
required for

One of the problems with this approach of
answering a query is that functions can only be
attached at the end of a data path; in other
words, all the data along the path is collected
and then passed to the function. The following
query cannot be answered using the above approach

without a specialized average function:

LIST REACH-NUMBER AND AVERAGE (FLOW-RATE)

This query essentially requires that a function
be Inserted into the data structure, and there-
fore requires a restructuring of the data base.
A second type of query which cannot be handled
with the above approach is:

LIST REACH-NUMBER, FLOW-RATE , AND TEMPERATURE
since this request involves splitting a path at
the logical level. Assuming that the user speci-
fies that there exists a relationship between

FLOW-RATE and TEMPERATURE (say, a one-to-one
relationship), the system should be able to
answer this query.

It was these two requirements which lead to

of a control
The following,
tion of the formulation of
of the initial state, the goal, and the operators
available to transform the initial state into the
goal. It is assumed that the reader is familiar
with predicate calculus as discussed by Nilsson

[7] and with theorem proving algorithms such as

discussed by Fikes and Nilsson [8].

the development
techniques.

program using A.l.
then, is a descrip-
the problem in terms

Initial State

The purpose of the Initial world model
describe the initial state of the system in
of a group of well-formed formulas (wffs).
wffs provide a description of what the
proving system is given as known's or
a particular solution is generated, various
operators will change or modify this initial
model to represent the current state at that point
in the solution. This is done in terms of gener-
ating a list of those wffs which should be removed
from the initial state, and those which should be
added to the list.

is to
terms
These
theorem

truths. As

In terms of the specific problem addressed
in this paper, the initial world model contains
a description of the initial data structure as
described in the data description language. The
wffs include definitions of which variables are
item-types, record-types, and set-types, as well
as a description of the item-types which compose
the various record-types, and various record-
types which form the various set relationships.
Additional wffs can be defined which will provide
a description of the relationships such as was
discussed previously with the TEMPERATURE and
FLOW-RATE problem. These relationships can either

be defined as an addition to the DDL, or inter-
actively by the user.
The wffs which would describe the data

structure shown in Figure 2 are as follows:
TYPE (R , RECORD)
TYPE (R , RECORD)
TYPE (R , RECORD)
TYPE (R4, RECORD)
TYPE (Rs, RECORD)

530

variable cannot

TYPE (REACH-NUMBER, ITEM)

TYPE (FLOW-RATE, ITEM)

TYPE (TEMPERATURE, ITEM)

TYPE (SO, SET)

TYPE SET)
TYPE SET)
TYPE SET)

TYPE SET)

TYPE (REL,

BELONG

RELATIONSHIP)
(REACH-NUMBER, Rj)
BELONG (FLOW-RATE, R)

BELONG (TEMPERATURE, R)

CONNECT (S,, SYSTEM, R;
CONNECT (S , R , Ry)
CONNECT (S., R , Ry)
CONNECT (S3, R3, Ry)
CONNECT (Sﬁ R33 R4 4)
CONNECT (REL, R4, Rs5)
STATUS (S , ON)
STATUS (S; OFF)
STATUS (S,, OFF)
STATUS (S3;, OFF)
STATUS (S,, OFF)
STATUS (REL, OFF)
where the following wffs are defined as:
TYPE - define the type of a variable
BELONG - define which record-type contains
an item-type
CONNECT - define which records form a set
or relationship
STATUS - define whether the set or relation-

ship is currently connected
(determines path through data base)

Two additional wffs are
uniqueness. The first
be more

required for determining
states that a particular
than one type:

(VVVXVY)
TYPE

[TYPE(V,X) A (X Y)]

(V.Y)]

that an
record-type:

The second states
long to one

item-type can only be-

(V V.V x V Y) {BELONG (V,X) A (X # Y)]
BELONG (V,Y)}

Specifying the Goal

The goal is specified by
of the query language.
contain arithmetic and

the user in terms
Although the query can
logical operators, the
portion of the query which is critical to the con-
trol program is the item-types involved and any
functions which are specified to operate on those
item-types. The goal essentially becomes a list
of item-types and functions which must appear

¥
1]
2 ARACT Kk, CR '
f e
3 /
Ry
Fod-RATE
B .T — —— 8-FLOY
r LY AT I

—— [1
1L}y Fiang I : l

1 .or

Figure 3. Data Path with Program anrd Function

along a single data path in order for the query

to be valid.

For the following query:

PLOT THE REACH-NUMBER VERSUS THE AVERAGE
(FLOW-RATE)

the goal would be to determine a data pth which
contained REACH-NUMBER, FLOW-RATE, AVERAGE, PLOT.
One path (not necessarily unique) which would
satisfy this goal is shown in Figure 3. Since
many models can produce specific item-types as
outputs, the function names may be implied by the
goal, rather than specifically stated. An ex-

ample might be:

LIST LEAST-COST-SOLUTION

the execution of an
a variable

where this query would imply
optimization program whose output is

called "LEAST-COST-SOLUTION." As the technique
is further developed, it is hoped that goals can
be implied from ordinary English-like questions.
It should be noted that this definition of goal

is substantially different from the concepts used
in many of the so-called "question and answering"
systems. The goal, in our context, is to determine
the data path which will satisfy the desired query.
Once this data path is determined, a separate al-
gorithm will actually go out and access the data
and execute the functions along that path for the

different record occurrences.

Operators

The operators are used to transform the
initial state to the final state, which satisfies
the goal. These operators can be classified into
two groups. The first group is used to connect
and disconnect various set relationships in the
data base to reach those item-types of interest.
The second group relates to those functions which
are stored in the data base and are used to oper-
ate on the data items. The format which will be
used to describe the operators are as follows:

a) Name and Parameters.

b) Preconditions: This expression must be
evaluated as being true for existing
state before this operator can be applied.

c) Delete List:
deleted from the current
system when this operator

d) Add List: These wffs should be added to
the current state of the system when this
operator is applied.

These wffs should be
state of the
is applied.

The following predicate will be referred by the

operators:

a) available (P) m (7 X) (% Y) (3 2)
[TYPE (P, ITEM) A BELONG (P,X) A CONNECT
(Y,Z,X) A STATUS (Y,0N)]

The following function is used to determine the

unique X for a given P.

b) record (P) = X such that (7 X) BELONG
(P.X) is true

The predicate available determines if item-type
P is available; in other words, if item-type P
currently lies along a path which is "ON". The
record function determines which record-type X
owns the item-type P. The following, then, are
two operators which connect and disconnect the
set structures;

1) 1link (P): Link together two records
to form & set

Precondition: STATUS (P,OFF) A (3 W) (3 X)
(z (@ 2)
[CONNECT (P,X,Y) j CONNECT (Z,W,X) A
STATUS (Z,0N) A TYPE (Z,SET) A
[~(¥ A) (YU)[CONNECT (V,W,U) A STATUS
{V,ON} A TYPE (V,SET)AU # X]]

Delete List: STATUS (P,OFF)

Add List: STATUS (P,ON)

2) unlink (P):
set

unlink two records from a

Precondition: STATUS (P,ON) A (4 X)(% Y)
[CONNECT (P,X,Y) A ~ (Y W)(V Z) [CONNECT
(Z,Y,W) A STATUS (2,0N))

Delete List: STATUS (P,ON)

Add List: STATUS (P,OFF)

The
two records

link operator is used to link together
in a set or link together two records
which form a relationship. Before a record can
own a set or a relationship, it must Itself be
owned by another record through a set relation-
ship. Records which are owned through a relation-
ship cannot in turn own other records. The un-
link operator is used to break the set and re-
lationship links. This operator will not break

a link in the middle of the chain; in other words,
it will only remove records from the bottom of
the path.

531

The following operators are two examples of
the kinds of functions which can be defined to
operate on any data items:

3) ave (P): Average the value of P
AVAILABLE (P)
STATUS (S-AVE,OFF)

CONNECT (S-AVE,RECORD
(P),R-AVE) STATUS (S-AVE,
ON)

Precondition:
Delete List:
Add List:

4) plot (P1fP2): PLOT P4 VERSUS P,
Precondition AVAILABLE Py A

AVAILABLE: (P2)
STATUS (S-PLOT,OFF)

STATUS (S-PLOT,ON)
CONNECT (S-PLOT, RECORD
(P4),R-PLOT)

Delete List:
Add List:

CONNECT (S-PLOT, RECORD
(P2),R_PLOT)

where the above functions assume the following in-
formation which was initial in the initial world
description:

TYPE (S-AVE,FUNCTION)

STATUS (S-AVE,OFF) I] AVE
TYPE (R-AVE, RECORD) I ~ S-AVE
TYPE (P-AVE,ITEM) AVE
BELONG (P-AVE,R-AVE) —
P —
TYPE (S-PLOT,FUNCTION)
| B-FLOT

STATUS (S-PLOT,OFF)

The third operator describes the average
function which inputs one item-type and generates
a new item-type called P-AVE. When this function
is used, a new record is actually created in the
data base. The fourth function is PLOT which in-
puts two Item-types and generates a plot as its
output. Since the result of the PLOT function is
only output, no new data structures are created
by the PLOT function.

The two operators just discussed are general
functions which are designed to operate on any
data items. Another class of operators can be
defined which requires specific data items rather
than any data item. An example of this type might
be:

5) Temp A Temperature Analysis Routine

Preconditions:
Delete List :
Add List:

STATUS (S-TEMP,OFF)
STATUS (S-TEMP,ON)

available (TEMPERATURE;

where the following would be included in the
initial state:

TYPE (S-TEMP,FUNCTION)
STATUS (S-TEMP,OFF) TEWRP

MPTURB —

This function could be requested by the simple
query:

TEMP
Examples
The following examples will show how the

previously defined operators may be used to
determine the logical data path through the data
and the programs stored in the data base. The
first example is the query mentioned previously:

PLOT REACH-NUMBER VERSUS AVERAGE (FLCW-RATE).

One example of the sequence of operators which
might be applied to the Initial world model to
solve this problem would be as follows:

Function Add List Delete List
link (S) STATUS (S ,0N) STATUS (S; ,0OFF)
link (Sy) STATUS (S4,0N) STATUS (S4,0FF)
unlink (S4) STATUS (S4,0FF) STATUS (S4,0N)
link (S3) STATUS (S ,0N) STATUS (S ,OFF)
ave (FLOW- CONNECT STATUS (AVE,OFF)
RATE) (S-AVE,R4,

R-AVE)

STATUS (S-AVE,

ON)
PLOT (REACH- CONNECT STATUS
NUMBER,R- (S-PLOT,R (S-PLOT,OFF)
AVE) R-PLOT)

CONNECT

(S-PLOT,R-AVE,

R-PLOT)

STATUS (S-PLOT,

ON)

The logical structure this query would
generate is shown in Figure 3. Once this path
was determined, the data would be accessed and
the functions (AVE and PLOT) would operate on the
collected data.

The second example would involve the
following query:

PLOT FLCW-RATE AND TEMPERATURE

The query cannot be answered using the set re-
lationships alone since these two item-types do
not lie along the same data path. If the user
were to define a relationship as given in the
initial world model, then the logical data path
for the query would be generate'd as follows:

Function Add List Delete List

link (S4) STATUS (S .ON) STATUS (SAOFF)
link (S3) STATUS (S3;,ON) STATUS (S; OFF)
link (REL) STATUS (REL,ON) STATUS (REL.OFF)

where the generated data structure is shown in
Figure 4a.

The third example involves requesting a
function whish will operate on a specific set of
data. For example:

EXECUTE TEMP

The functions which would be required are:

Function Add List Delete List

link (Sy) STATUS (S1ON) STATUS (S1OFF)

link (S4) STATUS (§40N) STATUS (S4OFF)

TEMP STATUS (TEMP ,ON) STATUS (TEMP, OFF)

where the logical data structure for this query
is shown in Figure 4b.

Conclusion

The approach which was presented offers one
possible solution to the complex problem of dynami-
cally restructuring a data base in order to respond
to a user's query. The problem solving technique
provides the unique capability of determining if
the goal (query) can be obtained given the initial
world model. There still clearly remains several
areas which need to be explored in more detail.
One area involves trying to recognize "classes of
queries" such that for simple requests, the tra-
ditional data path algorithm can be used, and for
more involved requests, the problem solving ap-
proach should be used. Another area involves the
possibility of saving queries and their paths
for future reference, thus providing a learning
capability to the system. The final area is con-
cerned with placing more preconditions on the
various functions to prevent such things as trying
to average a group of names, and to perform other
syntactical checks.

‘3 REACY.-HUHEER]
3 L".' YLON-RATE = = la&r) H TOVFEATIN]
r.or _

Figure 4a. Path with Specific Function

|
n]
'-'3
AEACY-NLNHER
Si_...
*,]
L TR R T
= A-TYMY
My

Figure 4b. Path with Specific Function

Acknowledgement

This work was supported in part by Grant
Number 65377-55 from the Office of Computing
Activities of the National Science Foundation.
The authors are Indebted to Professors Dave
Workman and Bob Bonczek of Purdue University and
Jack Buchanan of Carnegie-Mellon University.

Bibliography

1. J. F. Nunamaker, D. Swenson, and A. B.
Whinston, "Specifications for the Development
of a Generalized Data Base Planning System,"
Proceedings of the Natural Computer Conference,
New York City, AFIPS Press, June 1973.

2. W. D. Haseman, A. Z. Lieberman, A. B. Whinston,
Generalized Planning System/Query System
(GPIAN/QS) , Users Manual, Krannert School of
Industrial Administration, November 1974.

3. W. D. Haseman and A. B. Whinston, "Natural
Query Language for Hierarchical Data Struc-
tures," Krannert School of Industrial Admin-
istration, November 1974.

4. W. D. Haseman, A. Z. Lieberman, and A. B.
Whinston, "Generalized Planning System/Data
Management System (GPLAN/DMS). Users Manual."
Krannert Graduate School of Industrial
Administration, December 1973.

5. W. D. Haseman, J. F. Nunamaker, and A. B.
Whinston, "A Fortran Implementation of the
CODASYL Data Base Task Group Report," Pro-
ceedings of the Fifth Annual Pittsburgh Con-
ference on Modeling and Simulation, April
1974.

6. CODASYL Committee, Data Base Task Group Re-
port. Association for Computing Machinery,
April 1971.

7. N. J. Nllsson, Problem Solving Methods in

. g rOT Artificial Intelligence. McGraw-Hill Book

Company, New York, New York, 1971.

8. R. E. Flkes and N. J. Nllsson, "Strips: A
New Approach to the Application of Theorem
Proving to Problem Solving," Artiflcal
Intelligence 2 (1971), 189-208.

533

