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Abstract

An application of Artificial
Is discussed:

Intelllgence
an automatic programming
system that generates Information
retrleval programs and data base
structure designs for highly structured
or network data bases. Is claimed
that these applications are unusual In
that they have more practical value than
Is usually the case, being of Immediate
utility to commerclal data base
management. The paper concludes with a
short reflection on the problems
associated with the representation and
acquisition of knowledge for problem
solving programs. In particular,
representation of knowledge Is Important
for efficiency of the programs, yet an
efficient representation may not be
"natural”. It was difficult to separate
representation from content/ and
successful application required that the
expert providing the knowledge also know
how the program uses that knowledge.
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Introduction

Artificial
exercise their
non-realistic

Most successful
Intelligence programs
problem solving ability In
environments or apply it to a game
playing task, but thls state of affalrs
does not constitute a basis for criticism
of Al. As many of the proponents of Al
have malntalned, It Is necessary for Al
to cut Its teeth on toy problems, games,
and In otherwise I|imited environments
before It can proceed to fulf111 | ts
high 1y touted promlses. Perhaps the only
fair criticism is that this teeth cutting

Is taking longer than envisioned by early
workers In the field.

Al s entering an age where
practical and objective application Is
feasible. This Is not to say that there
have not been very valuable spin-offs
from Al research that have contributed to

* A major portion of the work described
herein was done while the author was at
Carnegie-Mel lon Unlversl!ty, Plttsburgh,
Pennsylvania.

(*)

Pennsylvania
Pennsylvania
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advances In fields such computer
science, linguistics/ and psychology.
However, there have not been many direct
applications of Al technologies (with
perhaps the exception of pattern
recognition) to problem areas outside the

research laboratory.

as

My background In

Al, but lies

is not primarily
more in the area of
commercla? data processing, data base
management, and Information retrieval.
My experience In these areas predates by
several years my Introductory exposure to
Al. This fact Is relevant because the
problems, whlch will be descrl bed
shortly, existed for me Ilong before |
dlscovered the technology to solve them.
As such, my clrcumstances provlded an
amount of practical experience not
typically possessed by the Al researcher
who Is looklng for problems to adapt to
his technology.

The application described here Is a
practleal one. The problem solving
systems that have been developed can
supplant or augment some of the tasks
currently being performed by programmers
and data base administrators.

Data Management Application

this
application
automatic

The subject of Is
successful
particularly

technology,

paper the

of Al,

programming
to the problems of
Information retrieval and data base
design. This has resulted In a
system<l|,2,3> that generates Information
retrifeval programs and data structure
declarations.

These two problem solving tasks have

been around for a long time, but growing
commercial usage of larger and more
complex network data bases has suddenly
Increased their significance. CAs used
here, the term "network data base" refers
to a data base In which a data Itern may
be linked to many other data Items. Our
subject is not data bases on computer
networks.) There has been an attempt
within the United States and Canada to

develop a standard for network data bases

through CODASYL which spawned the Data
Base Task Group (DBTG) involving both
industry and academia. This group has
produced a speclficatlon for a general
purpose network data Dbase system<U>.
Although not yet accepted as a standard.
It is believed by many that the DBIG

specification will be so adopted, perhaps



by default since many computer
manufacturers and software firms are now
selling Implementations of the DBTG

specification.

Both applications described herein
function In the data base environment as
specified by the DBTG. That is, data
structures designed by the system conform

to DBTG specifications, and the
Information retrieval programs generated
by It are COBOL Procedure Divisions
containing Data Manipulation Language

(DML), as defined by the DBTG.

Programming for Network Data Bases

Introduction of the network type of
data base brings with It a new level of
complexity for the business programmer.

Earley<5> points out that Instead of the
usual logical-physlcal dichotomy that a
programmer traditionally deals with,

there Is a logical(a)-logleal(b)-physlical

trichotomy facing the network data base
programmer. The loglcal(a) level
corresponds to data relationships as
perceived by the data user. The
loglcal(b) level concerns the actual

1 inks between the data In the data base.

Bachman<6> recognizes this
complexity in the 1973 ACM Turing Award
Lecture where he likens the programmer's
problem (In the network data base
environment) to that of a navigator. The
programmer Is given the user's query
requirements; his task |Is to find the

proper access path to the data through
the myriad of connective links In the
data base.

The programmer's task should be

reduced. After all/ much Its complexity
Is caused by an artlfact 1ntroduced Dby
the data network, the data 1 Inks. It

should be noted here that others In the
field, primarlly Codd<7,8,9>, have
proposed relational models of data bases
whereby they hope to avoid this artifact.
It is not clear, however, how this can be
done without exactly the kind of problem
solving program that is the subject of
this paper.

The technology used to reduce this
task comes from work in the area of
automatic programming. A compitier
developed by Buchanan and Luckham(10,11>
was used to create the Information
Retrieval Program Generator.

Programming Rules
The Information Retrieval Program
Generator is compiled from a set of
rules. These rules are stated in a
formal ism that closely corresponds to the

formalism developed by Hoare<12> to
describe the logic of programs. Each

such rule describes some type of program
construct, be It a loop, assignment
statement, a DML statement, or other
program construct”

One type of rule describes the
conditions under which a program

statement may be used/ and the effect of
Ilts use. For example, the rule for a
"GET" statement says that It Is not
possible to GET a record unless Its
location In the data base Is known to the
data management system, and that the
object record will be located In working
storage following execution of the GET.

This rule
compller) as:

(CURRENT RI) I'IGET RI1]|| (INCORE RI)
In this rule RI Is a variable (for record
name) and (CURRENT RI) and (INCORE RI)
are predicates. Henceforth we wuse the
convention that RI/ R2/ XI, 11, etc., are
varl able names.

Is formally stated (to the

Other rules do not bear such <close
resemblance to a description one might
find in a programming manual as does the
rule for GET. These other rules capture

my own programming knowl!edge, Includling
heurlsl!tles, that I had previously
acquired and developed as a professional
programmer.

One such rule Is the rule that

describes the top level composition of a
program:
(OPENED A1)A(CURRENT R1)A(LINKED RI R2)A
(CLOSED A1)A(STOP XI)

--> (PROGRAM XI)
This rule is different than the rule for
GET: it does not define a program
statement, rather It Is an Implication
stated with predicates. The order of the
predicates Is obviously Important.

A semantic Interpretation of this
rule I's that a program consists of five
blocks that : (1) open the required
files of the data base, (2) locate the
first record of Interest, (3) follow the
access path from this record to all other
records of interest, (U) close the files
opened above, and (5) terminate
execution.

Of these five blocks, the second and

especially the third, are the most
complex. They may Involve many further
levels of refinement, revealing
Iterations, alternations and
compositions. The third block will
include the processing of the records on
the access path to display values,

calculate statistics, etc.



Translation to Micro-Planner Theorems

The rules are
Buchanan- Luckham
Micro-Planner<13,14>

translated by the
compiler to
theorems that

constitute the Information Retrieval
Program Generator.
For example, the GET rule Is

complled to:
(DEFPROP GET
(THCONSE (R1) (INCORE (THV R1)
(THGOAL (CURRENT (THV R1)))
(THSET (CAR (THV ANS>)
(CONS (CONS (QUOTE GET)
(LIST (THV RI1)))
(EVAL (CAR (THV ANS)))))
(THASSERT (INCORE (THV RI1))))

THEOREM)

The theorem presented here Is quite
condensed from the one actually
generated, which also contains
bookkeeping, tracing, uniqueness, and
other special functions. Note that the

pre-condition of the rule, (CURRENT RI),
Is a goal In the theorem. Similarly, the
post-condition, (INCORE RI), Is defined as
the consequence of the theorem and will
be asserted when the theorem Is used.
When the theorem Is used 'GET R1' will be
catenated onto the ANSwer.

Program construction proceeds In a
sub-goallng fashion. For example. | f
UNCORE PATIENT) Is a goal then the GET
theorem Is tried, and (CURRENT PATIENT)

becomes a sub-goal. A sub-goal may
Invoke other theorems In turn, generatlng
further sub-goals. This process
generates a goal tree with leaf nodes
which are true or false In a set of

assertions known as the "state".

The Initial state Is the only input
to the program generation process and |Is
made up of two major subsets of
assertions. One such subset describes
the structure of the data base, the other
describes the query for which program
generation Is required.

The description of one more rule

will give us a sufficient number of rules
for an example. A rule for FINDing
records:

(HASHKEY R1 K1)A(DESIRE K1 V1)A
(CONTAINS KI V1) | IFIND RI|| (CURRENT RI)

This rule Is similar to the rule for

GET,; It defines a program statement.
Again, It corresponds closely to a
paragraph In a programming manual: To
FIND a record, first initialize the key
for that record with the value
Identifying the desired record.
Following the execution of FIND, the
record is current to the data management
system. Current Is a DBTG term meaning
that a record's exact location In the

data base is presently know to the data
management system,

Example

Assume that a data base definition
specifies that STUDENT records are
(hash)keyed on SNUM. If a query asks for
Information regarding the student having
number (SNUM) 126, then two of the
assertions in the initial state will be:

(HASHKEY STUDENT SNUM)

(DESIRE SNUM 126).
The first assertion belongs to the set
defining the data base, the second to the
set defining the query.

Micro-Planner is given the goal
(PROGRAM EXAMPLE), and program generation

commences. The first sub-goal,
(OPENED A1), Is satisfied with a set of
rules not illustrated here resulting In

an initial
flles.

block of procedure to open the

The next sub-goal is (CURRENT RI).
Since the rule for FIND has this as a
consequence,it Is tried. The first two
sub-goals In this rule are immedlately
true in the state, and the variables RI,
KIl, and V1 get bound to STUDENT, SNUM,
and 126, respectlvely. The third
sub-goal Is satisfied with the assignment
statement rule (not Ilfustrated here),

and an assignment statement is Inserted
In the program. The pre-condition now
being true, 'FIND STUDENT' is put into

the program.

At this stage the program appears
as :

(Block to open files)

MOVE 126 TO SNUM.

FIND STUDENT.

The state (set of assertions) has
also been altered and now contains an
additional assertion, (CURRENT STUDENT),
because of the FIND rule. This may

affect subsequent procedure generation.
For example. if the query requires that
values from the STUDENT record be In
working-storage, the system will not
generate any procedure for the

(CURRENT RI) sub-goal In the GET rule.
Designing Network Data Structures

Another problem attendant to data

base management Is data base structure
design, that is, the design of
appropriate links between data elements
so that data relationships can be
properly captured and reconstructed.
Since all such relationships must be

Implicitly contained In the set of all
retrieval requests. It should be possible
to derive a data base structure from such
a set<3>.
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Data Structure

operates in exactly this

It generates a data structure
that |s satisfactory for a set of
queries. The resulting structure Is not
optimal but has the characteristic that
data redundancy Is minimized (and as a
corrolary, the number links are
maximized).

The
Deslgner
fashion.
design

Automatic

of

The design program
tasks: to design a network structure
that can accomodate all of the
hierarchical relationships referenced in
the queries, and to determine the best
location In the structure for each data
| tern.

has two major

Detection of a hierarchical
relationship in a query is not difficult.
The system simply looks for quantifiers
or summarizing commands such as "all,"
"any," "average," "total," etc. For
example, a query asking for a class list
(all  values of student-name when class =
"history") suggests a hierarchical
relationship between class and
student-name. Similarly, average grade
for student-name = "Anderson", suggests

that there may be many values for grade
for a given value of student-name.

A designer has a problem if, for
example. In addition to the class list
discussed above, a second query asks for

a student transcript (all values of class
when student-name ="Anderson"). The two
queries' views of the data base are

Inverted with respect to each other.
the Automat!c
that recognize such
These rules will insure that
linking record Is included in
the data base design. Through this
record will pass two linked lists, one
for each hierarchy.

in
rules

Inciuded
System are
situations.

a special

Design

The second principal task of the
Designer Is to determine the location of
data iterns (attributes) In the
hierarchical structure. Querles may
differ in their views of attribute
associations. For example, hospital name
may be viewed as a patient attribute In

one query (where he's being treated), as
a doctor attribute (where he works), or
as a hospital attribute in other queries.

If hospital-patient
hierarchies (several

and hospital-doctor
patients and several

doctors per hospital) have already been
constructed by the system, then it will
assign the attribute In question to the
hospital record. This permits usage of
hospital name as a unique attribute of
hospital, doctor, and patient.

Using Earley's terminology, we can
say that the Automatic Data Structure
Designer finds a logical(b) arrangement

524

that accomodates all loglcal(a)
relationships. As a matter of fact,
translation from loglcal(a) to logical(b)
also characterizes the system's
activities as a programmer. Further
translation to the physlcal level is not
the task of these programs. That
activity is performed by the data
management system, e.g. an
Implementation of the DBTG specification.

As was the case with the Information

Retrieval Program Generator, the
Automatic Data Structure Designer I's
defined with a set of rules that are
translated by a compller to a program of
Micro-Planner theorems. However, in this
case the resulting system Is not a code

generator, it is a declarative generator.

Representation of Knowledge

If a system Is to
[t must of course
knowiedge. Untll generalized learning
systems become available that can be
adapted In a practical way for use within
a particular application domain. It Is
necessary to imbed knowledge of the
application either by building a specific
learner for that system or by providing
the system directly with the knowledge It
needs. The trouble with the former
approach is that building the learner may
turn out to be impractically difficult.
The latter approach Is the one that was
taken for the applications discussed
here.

apply knowledge.
first obtain such

Complexity of Knowledge

The rule formalism provided a
framework for capturing network data
programming and deslgn knowledge.
so, capturing the knowledge involved many
trlal-and-error Iterations because much
of It does not have a well understood
structure. Furthermore, It |Is possible
to map knowledge into a structured
set of rules in several valid
ways. representations may differ
with to efficiency.

good
base
Even

the
formal
These
respect

does
for
or

However, some of the knowledge
have a well-understood structure,
example the knowledge regarding GET
FIND as discussed above. In general, the
rules for single program statements like
GET are similar to usage rules that might
be found In a reference manual. it is
the rules that control the next higher
level of programming, the construction of
program blocks, that are complex and not
easlly derlved.

Such

rules were further complicated

by considerations of efficiency both for
the generated programs and for the
program generation process Itself.



As an example we Illustrate the two
rules that control code generation for
alternation. Alternation occurs In the
generated program whenever the query
specifies conditional processing. During
program generation, the condition that |Is
to be tested In the generated program is
contained in a list, FORMS, in
dlsjunctive form.

For example, the list
<<<GT A B)(GT B C)) ((LT A 26))) means
(A>B and B>D) or A<26.

The two rules are:

(NULL FORLIS)V
(CONJUNCT ACTION (CAR FORLIS)
(DISJUNCT ACTION (CDR FORLIS))

—> (DISJUNCT ACTION FORLIS)

DUM)A

((NULL CONJ)A(ACT ACTION)A(SETQ DUM 0))V

(SETQ REL (CAAR CONJ))A

(SETQ ITM1 (CADAR CONUJ))A

(SETQ ITM2 (CADDAR CONJ))A
(DETVAL ITM2)A(DETVAL ITMDA
(TEST (LIST REL ITM1 1TM2))A
(CONJUNCT ACTION (CDR CONJ) DUM)

-->

(CONJUNCT ACTION CONJ DUM)

who
these

readers
will agree that
correspondence to their
knowledge, elther viewed
or as such knowledge might

Those are programmers
rules bear little
own programming

Introspectlvely,

be represented

In a programming text.

The first rule CDR's through FORLIS,
each time picking off the CAR, which Is a
conjunctive list of predicates. The CAR
of FORLIS will be bound to CONJ In the
second rule.

The second rule CDR's through CONJ
until It becomes NULL, at which point the
processing code can be generated
(accomplished by invoking the ACT rule,
not shown here).

Each time the second rule is used,
code is generated to determine the values
of the two i terns In the test described by
the CAR of CONUJ. Then the test itself is
Inserted In the generated program.
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For the example of FORLIS given
above, the generated procedure has the
follow!lng form:

(block to determine value of B)
(block to determine value of A)
IF A>B THEN

BEGIN

(block to determine value of C)

IF B>C THEN

BEGIN
(block of conditional
processing)
END
ELSE PROC2
END
ELSE PROC3
PROC2: (and PROC3)
BEGIN
IF A<6 THEN

BEGIN

(block of conditional processing)

END

END

The Buchanan-Luckham compller takes
special care with rules that may generate
alternations. Unbound variables become
important, and it is for this reason that
DUM is included iln the second rule. For
further detils see <1,10,11>.

Tests are separated in the generated

runtime efficiency.
the value of C I's
A>B. Since such a

procedure to increase
in the example above,
determined only I f

value determination may require a |lot of
processing, It is best to avoid It if
posslible.

Impact of Representation on Efficiency

Since the content of the rules
determines the decision tree that
controls the search space, the choice of
mapplngs mentloned above can have a
dramatic impact on the efficiency of the
search for a program. If the use of a
particular rule occurs far out in the
branches of the tree, and If the rule |Is
a powerful discriminator, then It would
be appropriate to consider an alternative
rule structure that would permit earlier
use of the rule in question.

It is also Important to direct the
Information Retrieval Program Generator
as much as possible. Consider the FIND
rule previously discussed. This rule
states that FIND has the effect of making
a record current. There are In fact four
other rules describing statements that
have the same effect. These rules all
differ in the way in which they make
records current: some use polnters,
another utillzes sequentlal access, etc.



Since
a record

there are five ways of
current/ Micro-Planner may try
several Inappropriate rules to satisfy a
CURRENT goal before the proper one |Is
attempted” This can be very expensive
since an Inappropriate rule may not be

making

discarded until a very large subtree has
been evaluated.

Frequentiy, such searches can Dbe
eliminated because the programming
context will determine which type of FIND
I's needed. In the Iteration step of a
loop, for example, we would not expect a
direct FIND, rather we would expect a
FIND for the next record on a Ilist or the
next record in sequence.

By changing the
system is directed to
whenever possible,
to avoid a lot of

rules Yo] that the
a specific rule
we were obviously able

unnecessary searching.

it is important to
rules were correct without these specifilc
directions. The way in which the rules
were used requlred add!tlonal knowledge

about the application so that the rules
could be used efficiently.

note that th&he

For a particular set of
that the system generated. it
average) about 94 rules per program. Of
these (on average) only 13 rules were
inappropriately tried, resulting in
backtracking to use alternative rules.

programs
tried (on

Although we have no exact
compare with, the system was
20 times as many unnecessary

figures to
trying 10 to

rules prior
to the addition of more specific
direction. The difference I's
multiplicatlve rather than addltive
because the sub-tree associated with a
single inappropriate rule may be quite
large.

Conclusion

As a user of Al technology, I am
somewhat dlsappolnted that It was not
sufficient to directly transfer my
knowledge to the machine. In Itself a

difficult task.

observe how that
by the machine so
augment the
efficient

It was also necessary to
knowledge was being used
that | could change and
representation for more
use of the knowledge.

These problems were also encountered

while building the Automatic Data
Structure Designer. Another difficulty
arose as well. As the Designer took
shape It became apparent that my design
knowledge contained many ad hoc
techniques that were not easily captured
in a set of general rules. This
realization led me to develop the rules
for the more direct, general purpose
algorithm that is embedded in the

Designer.

Although the difficulties of
transferring knowledge to the machine
were somewhat frustrating, the process
(and the machine as a mirror of myself)
also led to new Insights Into the problem
domain.
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