Section 8: Artificial Intelligence Software

LORD: LISP-ORIKHTBD RBSOLVBR AND DATA-BASE

V.M.Briabrin,
Conputing Center,

Abstract

The paper presents formalism and
Implementation aspects of the program-
ming system for Artificial
(Al) applications.
Resolrer which the ldeas
of LISP - like languages combined with
new Al formalisms. Semantic Memory Is
another part of the system which Is
Implemented by means of hlerarohloal
Data-Base. Interaction with a user |Is
goreraed by Metaprocessor which genera-
tes a syntactic analyser driven by the
grammar for the spectiflc version of the

Intelligence
The system contains
Is based on

Input language.
Introduction
The Al problems require Incorpora-
tion of new features Into the traditio-
nal programming systems. These features
Include: the availability of powerful

vehicles for creation and amendment of
structured data elements - lists, sets,
texts; comfortable and efficient forma-
lism for representation of knowledge
different problem domains;
ques for
style,

In
new techni-
"non-algorithmic" programming
such as pattern - driven proce-
dure Invocation and automatic backtrack-
ing; the availability of standard proce-
dures for the associative search in Data
Base; automatic logical inference, etc.

Some of these features could be
found in LISP, REFUL, SNOBOL, and also
in "big" language systems such as PL/1,
APL, ALGOL-68. At the same time there

exists a growing tendency for the design

of new languages combining the best
techniques and most suited for Al appli-
cations [1].

The system described herein - Lisp-
Oriented Resolver and Data-Hase - is

V.A.Serebriakov,
Academy of Solences,

514

V.M.Yufa
Mosoow, U.S.S.R.

designed at the Computing Center of the
USSR Academy of Soienoes with the purpo-
se to provide an efficient Instrument
for different Al applications [2] The
system is designed on the basis of some
essential ideas being derived at the
different scientific groups and materia-
lised in the Implementation of some expe-
rimental systems, viz., PLAINER, CONNI-
VER, LISP-70, SAIL, QLISP, POPLER 1.5.

General System Organisation
and Data-Base

The LORD system consists of three
relatively Independent parts: Resolver,
Semantic Memory and Metaprocessor. Eaoh
of these parts uses similar techniques
for memory allocation, function storage
and call mechanisms, lexloal analysis
procedures etc The Data-Base (DB)
the common ground for keeping and
ml of

is
retrie-
both program and data elements.
DB has a fixed number of hierarchi-
cal levels. The largest section of DB is
an area. Eaoh area identified by its
name and may contain an arbitrary number
of sets. A set consists of records eaoh
of which contains a full characteristic
of an object. Usually, such an object is
generated and used within the boundaries
of a specific user task. The access to
the objects is performed by means of
hash function (standard of individual
for each set).

is

different
and eaoh property has its

own value (sometimes a list of values).
List of references to the properties
stored In the body of the record corres-
ponding to the given object. 3aoh pro-

perty its is stored as a separa-

Objects may have several
properties,

is

in turn

te object with property indicator used
as an objeot name*

Thus in the hierarchical DB we have
the following levels associated with
system notions:

Data-Base divisions LORD notions

area problem domain

set context

reoo rd objeot

field property
oontents of the value of the proper-

field ty

The LORD access language Is provi-
ded with functions for establishing the
name of the problem domain and the name
of the working context. Special referen-
ces are generated during the creation of
new objeots and addition of new proper-
ties to the existing objects. According
to these references the objects and the
values of their properties may be deri-
ved from DB later.

In many Al applications it is
necessary to create the hierarchy of
contexts (and even the hierarchy of
problem domains). This is provided by
automatic bookkeeping of special "set
of references" containing the objects
which values are pointers at the diffe-
rent DB sections. The hierarohy of con-
texts or problem domains is represented
by Interconnections of the objects in
this reference set.

Semantio Memory

One of the most Important problems
in Al systems is aocumulation of infor-
mation representing "knowledge" about
some problem domain. There are two di-
stinct approaches to the techniques of
knowledge representation. One way is to
use a set of expressions describing
separate faots or hypotheses. Single
expression may represent the relation
between two objeots or between an objeot
and its properties, or between two or

more different facts. Another approach

is based on the utilisation of a set of
procedure*. Procedure execution checks
the existence of definite relations
binding specific objects, properties or
facts.

These two approaches, "relational”
and "procedural", are often intermixed
in actual implementations. Semantio
Memory in the LORD system is Intended to
serve the same purpose. Accumulation of
knowledge about different problem doma-
ins, structuring of accumulated infor-
mation according to predetermined heir-
archy, and retrieval of relevant notions
and facts - these are the main funotlons

provided by Semantio Memory.

The examples of simple expressions
processed by the Semantic Memory:
(PRODUCT =1S-SBT= (CARS, OIL,CRAIN))(A1)
(PRODUCT =HA5-PROPERTY= SHORTAGE)
(PRODUCT =BECOME-AN-OBJECT-OF:s

BLACK-MARKET-OPERATION) (A2)

After processing of these expres-
sions special DB sections are filled.
These sections are named NOTION - LIST
and FACT - LIST.

1) New objects: PRODUCT, CARS,...
appear in the NOTION-LIST if they were
not put there earlier.

2) Expressions A1 and A2 are plaoed
into the PACT-LIST, and identifiers A1
and A2 become the names of the correspon-
ding objects, text of the expression be-
comes the value of the main object pro-
perty.

3) Kaoh object in the NOTION-LIST
is accompanied by the property list. One
of the properties has the value showing
the object type, another property is
evaluated into a list of references to
all facta oontalning the given object.
Examples of objects being stored in the
NOTION-LIST:

PRODUCT = type SET,facts (A1 A2)

OIL -» type SET-ELEMENT, facts (A1)

SHORTAGE - type PROPERTY, facts (A2)
Besides the above mentioned seotlons

915

there Is also RELATION-LIST in DB. In a
sense this list is a subset of NOTION-

LIST, all system and user defined re-
lations are kept in this seotions, e.g.,

IS-SBT, HAS-PROPERTY etc.

Semantic Memory performs processing
of the
cessary changes

input expression and all the ne-

in the DB. Furthermore,

the Semantic Memory processor pro-rides
answering simple questions of the type:
(OIL =IS-SET-ELEMENT-0F= 7X) (7?)

The answer is based on binding the
pattern variable ?X with
PRODUCT, which

of the property

the object
results from the analysis
OIL

list of the object

and "backward" processing of the fact A1.
Besides filling DB with the simple
facts, expressions describing complex

the
One form of comlex ex-

structures may also be input to
Semantic Memory.
pression oould be the definition of the
function which governs the maintainance
of Semantic Memory. An example of such
a function is:

(PROPERTY-TRANSFE

This function acts as an analogous
IF-ADDED function in CONNIVER, i.e.,
evaluates operators in the funotion body
when the fact matching the given pattern
is added to the Semantic Memory.
7Y, ?P, ?X, 7R, 7Q are
$Y, $P,... are

ding values, obtained by pattern-varia-

Here

pattern-variables

and the correspon-

bles after successful matching.
Therefore the apperance of the

fact (OIL =RAS-PROPERTY= SHORTAGE) in

the presence of A1, A2 and A3 implies

automatic addition of the fact:

(OIL =BECOMB-AN-OBJECT-OF=

516

BLACK-MARKET-OPBRATION)
It is worth noting

(A4)
that A3 has the
same format as expressions defining the
e.g., A1 and A2. That
is why A3 may be amended in the same

usual relations,

way as any other fact in the Semantic

Memory. For example, the following
question may be asked:

(PROPERTY-TRANSFER =IS=FUNCTION-OF= %W,
=TYPE= ?X, =PATTEHN= ?Y, =BODY= 72)
("

In order to derive an answer
tern-variables %?W¥, ?X, ?Y, 7?2 get
values the corresponding texts ploked
from AS.
ability

pat-

as

up
This feature gives a convenient
the

to investigate and modify

system by its own means.
Standard object
the

constant,

types are establish-
ed at

e.g.,
function name,

time of sjrstem creation,
objeot, relation name,

etc. A user may also

types
logical

introduce his own
their
and modalities.

using existing
relations, compositions
Any fact and notion have a limited
We call it

"dynamic"

soope - DB context. "statio"

context as opposed to context
with

in tile next

struotures
The
language contains

being dealt in oontrol

discussed paragraph.

Semantic Memory access

operations for manipulating static con-

texts - rearrangement of the context

tree, removing contexts, uniting them
with each other,
As

are performed by processing

generating new contexts.
it was mentioned, these operations

the special

reference set.
Resolver
While the Semantic Memory is used

mainly for storing and retrieval of
facts, functions, objects and their pro-
perties, the Resolver serves for evalua-
ting the procedures carrying out diffe-
rent kinds of logical inference, search-

ing AND/OR trees, reduction

tive normal

to disjunc-
form and other general or

specific functions.

The Resolver may be considered as
an extension of LISP containing new fa-
cilities both In the Input language and
In prooessor Implementation. A brief list
of these facilities follows.

Notation

One of the doubtless requirements
for Resolver implementation is the abi-
lity to process programs written in stan-
dard LISP [3]. At the same time special
preprocessor can accept and translate
into standard LISP-notation the expres-
sions written in ALGOL-like input langu-
age, e.g.,,

BEGIN NEW X,Y; X;= '"(1 3):
X CONS CDR(X); RETURN(Y) END

The given notation is similar to
that of MLISP2 [5] and is characterized
by the absence of superfluous parenthe-

ses, infix notation of most operators and
usual mathematical notation for function
calls.

The operator and function set is
provided with the priority system which
facilitates writing and reading complex
expressions.

A-polnts and backtracking

Resolver has the ability to back-
track programs which implies restoring of
program and data state in some previously

passed point and choosing and initiating
an alternative path of solution as in
[5]. A-point (alternation point) is set

up by the call for one of special func-
tions: REP (repetition), ALT (alternati-
on) and OPT (option). Generation of fai-
lure and return to the last A-point is

produced by the function FAIL which is

called directly or indirectly, e.g., on
unsuccessful pattern matching. Backtrac-
king mechanism compels talking about

"dynamic" context defined by access link,
binding link, control link and process
state in the sense of Bobrow [1].

The numbers of generated and elimi-
nated alternative branches (dynamic con-
texts) are fixed as values of special

5*7

system variable APOINT. There is a possi-
bility to transfer new values to the "hi-
gher" dynamic contexts. This is accompl-
ished by the following generalized assi-
gnement operator:

(SETO u (n1 n2 np) v) ,
where n1, n2, ..., np stand for A-point
numbers (possibly expressions evaluated
to numbers) indicating the dynamic con-
texts, where variable u has to accept
the new value v. The particular form of
this operator:

(SETO u v)
changes the value of u in the current
dynamic context. Another particular case:
(SETQ u (GLOBAL) v)

changes the value of u in the whole pro-
gram.
Indirect funotlon calls and debugging
aids

One of the most important trends
modern "non-procedural” programming is
the use of indirect function calls. In
LORD this is achieved by means of pattern
- directed function call, suspension of

in

function evaluation and "by-passing" of
functions.
The idea and implementation of pat-

tern-directed function call are analogo-
us to the corresponding facilities of
PLANNER and CONNIVER (V). The main point
is the inclusion of function call pattern
into the function definition expression.
Resolver performs only one type of pat-
tern call, namely: a function with a pat-
tern is called when some variable is as-
signed a value which represents an object
matching the function pattern. This WHEN-
ASSIGNED type of call is used for initia-
tion of relevant procedures when specific
information appears in the current dyna-
mic context.

Two other types of call, WHEN-ADDED
and WHEN-REMOVED, relate to the Semantic
Memory processor, i.e., to addition and
removing the structures matching the
function pattern.

The suspension of funotion evalua-
tion is performed by the operator (STOP
f m) whioh Interrupts evaluation of the
function f containing this operator. The
control is transfered to the dynamic con-
text, embracing the call of function f.
The argument m is a message (a value of
Interrupted function f) being sent to
the embracing program. If later the ope-
rator (CONT f) is met then evaluation of
f will be resumed from the point of in-
terruption. This tool permits the syn-
chronisation of computational processes;
moreover, combined with conditional ex-
pressions it may be used for organisation
of alternative branches.

"By-passing" of function calls faci-
litates debugging operations. It is
plemented by substitution of a debugging
function g everywhere instead of "suspec-
ted" function f. The substitution is per-
formed after evaluation of the expression

im-

(BYPASS f p q) Predicate p is evaluated
each time when function f is called. By-
passing is taking place only if p is
true.

Other debugging aids are: setting-up

the maximum number of calls for the spe-
cified funotion, establishing the "alarm
clock" for the current dynamic context,
etc.
Interaction with Semantic Memory

The Resolver interacts with Semantic
Memory processor by means of functions
ADD, REMOVE, FIND, CHECK and others,
which perform storing and removing expre-
ssions from the DB, associative search
by a given pattern in the static context,
check for the presence/absence of defini-
te object properties etc. While the Re-
solver is dealing with atoms, lists and
texts, Semantic Memory may contain ob-
jects of different types,
tree, arbitrary structure. The Semantic
Memory processor is capable of perform-
ing such actions as union and intersec-
tion of sets, check for membership, etc.

such as set,

518

Special types of predicates in Re-
solver - existential and universal quan-
tifiers - are also implemented with the

use of FIND and CHECK operations in the
Semantic Memory. The corresponding exp-
ressions in Resolver:

(EXIST (x1 x2 ...) e c¢) and

(FORALL (x1 x2 .) e o) ,
where x1, x2, - quantifier variables,
e expression, evaluating the conditions
of quantifier application, o static
context.

There

is also an aggregate operator:
(FOREACH x p e),

implying the execution of expression e
for each object x in Semantic Memory
satisfying predioate p.

Metaprocessor and function compilation

Resolver and Semantic Memory accept
the expressions satisfying formal syntax.
In the meantime the idea of giving the
user the ability to create his own versi-
ons of input language becomes more and
more popular. For thispurpose LORD system
contains Metaprooessor which is similar
to the one designed for MLISP2 [5].

Metaprocessor manipulates the seque-
nce of grammatical rules whioh have the
following format:

DBF f (x1, x2, .) =<syntax>

MEAN <semantlcs> ,
wher f stands for metavariable name or

program name; x1,x2, .- parameters;
<syntax> defines the formal structure
of an Input phrase; <sematlcs> - seque-

nce of functions to be evaluated by the
Resolver or the Semantic Memory proces-
sor.

A set of these rules defines a for-
mal context free grammar which describes
the specific version of the Input langu-
age. It is worth noting that this could
be a simple "functional" language, where
each name f corresponds to the program
composing the <semantics> Such a pro-
gram could be initiated either by func-

tlonal expression f£{(x1, x2, ...) or by
some phrase corresponding to the given

{(syntax) .

On the other hand, the nontrivial
language with deep phrase structure could
be defined by means of metararlables used
in the syntax of some rules. Thus a
special language system could be Imple-
mented, which finally is interpreted by
means of LORD Resolver and Semantic
Memory.

The role of <semantlos> could be il -
lustrated by the following example. Suppo-
se we would like to create a LISP-dlalect
to be translated Into standard LISP 1.5
program. In this case the sequence of
grammatic rules will define the general
syntax of the LISP - dialect expression
with the topmost rule
inai

DEF £ (x1, x2, .0) =

(general-syntax—of-LISP~dlalect-

expression>

MEAN (GENER<«f1le>, (output-stringy”

LISP<file>)

where ¢output-string, contaims pleces
of LISP 1.5 program icorporating x4, x2,

values provided by syntax analyser.

<semantics> in this example includes
two macrocalls:the first one generates
LISP 1.5 text in the specified file, the
second one calls LISP 1.5 translator
with generated file as a source of input.

looking as follo-

In the similar way we could define
any context free input language with

semantic interpretation provided by the
programming language which exists in the
computer already.

All functions composing the seman-

are compiled into macro-assembler
language and then into machine code. The
modules of compiled oode are stored in
the Data-Base. The LORD Monitor calls
them from the DB according to Resolver
and Semantic Memory functioning.

tics

Besides DEF expressions Metaprocessor
accepts also special
serving in on - line

command operators
interaction with

the LORD system - this includes editing
text files, switching to different ope-
ration modes, choosing input/output
channels, etc. [6]j.

Conclusion

The design of a new system capable
of successful competing with conventional
widespread programming languages suoh as
LISP or PL/1 is a hard and fascinating
task. The ground for optimism, lies, on
the one hand, in the fact that many of
the ideas comprised by the LORD project
are tested to some degree in experimental
systems such as CONNIVER, MLISP 2, POPLER
1.5. On the other hand, people connected
with this project are involved in system
implementation as well as in developing
methods of its usage for solving practi-
cal Al problems. In particular these
problems are connected with system ana-

lysis research for business and environ-
ment control, construction of information
retrieval systems and natural language

processing.

The necessity for
of this kind is urgent, and even the
prototype design will make a valuable
contribution to the experience of const-

intelligent systems

ructing and usage of Al systems.
References
1. Bobrow D., Raphael B., "New Program-
ming Languages for Al Research",
ACM Computing Surveys, 1974,3.

2. Briabrin V.M., Serebriakov V.A.,
Yufa V.M., "Semantic Memory, Resolver
and Metaprocessor in LORD system",

Symbolic Information Processing, v.2,
1975, PP. 5-46.
3. Lavrov S.S., Silagadee G.S., "lInput

Language and Interpreter of the
LISP-BESM-6 Programming System",
Moscow, Academy of Solences of the
USSR, 1969-

4. McDermott D., Suaaman G., "The CONNI-
VER Reference Manual", Al Memo 259,
MIT, 1972.

5. Enea H., Smith D.C., "MLISP-2",

Al Memo 195, Stanford University,
1973.6.

Brlabrin V.M. et al., "On-line Trans-
lation and Debugging of Programs"”,
Communications on Computational Mathe-
matics, 9, Moscow, Computing Center
of the Academy of Sciences of the

520

USSR, 1974.

Brlabrin V.M., Pospelov D.A., "DILOS-
Dlalog System for Information Retrie-
val, Computation and Logical Infer-
ence", Paper presented at the Workshop
on Dialog Systems, IIASA, Vienna,

June 1975.

