THE VOCAL SPEECH UNDERSTANDING SYSTEM

Stephen E.

Levinson

Yale University

New Haven,

Abstract

This paper describes the VOCAL (Voice Operated
CALculator) speech understanding system. VOCAL is
a software package that lets Its user program a
computer to perform numerical calculations by
speaking to It in English-like sentences. To ac-
complish this, VOCAL uses processes for acoustic,
grammatical, and semantic analysis. These individ-
ual procedures, which are relatively simple, are
embedded in a control structure that uses the in-

formation from each component to arrive at a mean-
ingful interpretation of spoken sentences.

One unique feature of VOCAL, which is essen-

tial to the development of speech understanding
systems, is that it is complete and self-contained.
Coded in standard FORTRAN, it is compact enough to

run on many minicomputers and can be used in a
real-time, on-line environment on slightly more
powerful machines.

Testing has shown that despite a correct word
identification rate of leas that 60% the VOCAL sys-
tem usually correctly interprets even very long
sentences.

Introduction

This paper describes the present state of the
VOCAL speech understanding system. Briefly, VOCAL
is a complete, self-contained speech understanding

system that has undergone sufficient testing to in-
dicate that it has potential both as a practical
voice programming system and as a research tool for

the
ural,

investigation of more general problems of nat-
spoken man/machine communication.

VOCAL interprets a spoken utterance as the
formed, meaningful sentence that sounds most
its acoustic transcription of the input ac-
to a quantitative similarity measure and
demonstrates its understanding by compiling the in-
put into executable machine language code. To ac-
complish this, VOCAL uses several relatively simple
procedures linked by a control structure- The
VOCAL language was designed to be simple and power-
ful in specifying numerical algorithms. Within the
constraints of small vocabulary and simple syntax,
the VOCAL language bears a reasonable similarity to
the special subset of English used by a mathemati-
cian to describe equations he is writing on a
black-board. Finally, VOCAL is fast, efficient,
and portable.

well
like
cording

VOCAL operates on a limited vocabulary, as all
speech understanding systems do [1,15,16,20,21,22,
23]. Sentences are spoken by cooperative subjects
in quiet rooms. The VOCAL syntax is well defined
by a mathematical model and the problem domain is
limited to a specialized task so that heuristics
for semantic analysis are applicable.

VOCAL does not, however,
ous speech input. Our data was recorded under i-
deal conditions and the subjects were required to
articulate clearly. Thus VOCAL can reliably locate

accept truly continu-

Connecticut

499

USA

word boundaries by detecting brief pauses between

words. As a result, VOCAL begins its acoustic
processing at the lexical rather than the phonemic
level.

There are 42 words in the VOCAL lexicon ("to"

and "two" are considered the same word at the a-
coustic level) so that word identification becomes
a difficult but tractable pattern recognition
problem.

At the acoustic level, VOCAL represents lexi-
cal information in the form of a spectrogram. An
extremely efficient Fast Fourier Transform (FFT)
generates the spectrogram, which contains all the
information necessary for word recognition in suf-
ficiently compact form so that the full power of

mathematical pattern recognition techniques can be
brought to bear. (Very early work by Potter,
Kopp, and Kopp [14] and recent verification by
Klatt and Stevens [7] demonstrate that a spectro-
gram can contain all this information, although
the more recent trend in acoustic signal process-
ing has been toward digital filtering [17] and
predictive coding [8,12,23] for spectral estima-
tion.)

In order to solve the grammatical problem of

parsing unreliably transcribed input strings [11,
22], the parser is permitted to insert hypotheti-
cal words or strings based on acoustic and seman-
tic information while processing the input.

The difficulty often encountered is providing
a speech understanding system with semantic capa-
bilities was partly solved by the choice of prob-
lem domain. Cherry [3] defines semantics as the
relationship between the symbols of a language and

the real objects or concepts for which they stand.
For the VOCAL system the objects to which the sym-
bols are related are sets of machine language in-

structions that cause the computer to perform the
operations specified by those symbols. The seman-
tic relationships are those required by an ordin-
ary compiler for the VOCAL language.

im-

The control structure of VOCAL has two

portant properties. First, information extracted
at each level of processing is used by every other
level. Second, the actual strategy used by VOCAL

to understand a sentence is largely determined by
that utterance of that sentence. In this process,
no absolute quantitative criteria (e.g. empirical-

levels) are used and no
(e.g. exhaustive searches)

ly determined confidence
unbounded computations
are performed.

the matter of the cost of
in processing

Finally, there is
speech understanding computations

time and resources. Because VOCAL is coded in
FORTRAN at a level very close to the machine and
uses efficient FFT, pattern recognition, and pars-
ing algorithms, it has only modest core require-
ments and will run on-line in real time on large
minicomputers or medium-size machines. If the

is performed by an easily con-
the

spectral analysis
structed bank of five analog bandpass filters,

system can run on-line in real time even on a small
minicomputer. This opens up avenues for testing,
evaluation, and development that are closed to lar-
ger systems.

The VOCAL System

VOCAL is currently organized into one main
program and six subroutines. The main program,
called CNTRL, governs (and records for subsequent
analysis) all of the operations of the subroutines.
The subroutines and their tasks are listed below.

(1) SPGRM generates the spectrogram of single-
word utterances.

(2) SWIFFT is a special purpose Fast Fourier
Transform algorithm used to compute short duration
spectra.

(3) KNN3 is the pattern recognition algorithm.
It uses a generalized k-nearest-neighbor scheme
with preprocessing [13].

(A) PAUSE is a push-down automaton that not
only accepts well formed sentences but also makes
hypothetical insertions where the acoustic tran-
scription leads to an ungraramatical string.

(5) SEMANT forms hypotheses about the meaning
of a sentence from clues it finds in the acoustic
transcription and grammatical structure.

(6) COMPIL generates machine language code
corresponding to the final interpreted meaning of
input sentences. Unfortunately this routine is
machine-dependent, so it now stops short of gener-
ating the actual machine language code and merely
sets up the internal form representation from which
the code can be generated.

Acoustic Processing

SPGRM performs all of the signal processing re-
quired to segment the speech along word bounaries
and produce a compact representation of the spec-
trograms of each of the words.

Word boundaries are located by a simple
thresholding technique. When the signal drops to a
relative minimum and remains at that level for sev-
eral consecutive samples, a word boundary is as-
sumed .

The first stage in the generation of a spec-
trogram is the sampling of the short duration spec-
trum of the speech waveform every 3.2 msec, and
storing the results in a matrix S *= (S,,) given by
equation (1).

-j27rkn
1 N- l N
(1) 5rl'm - ﬁk kx'k+(m-1)N ¢
m=1,2,..
n=1,2, ...(N-l)/2 = 3]
§ = A1
where :

contiguous samples of the speech waveform
for 0 < k < 31

{Xkl -
Q0 for 32 = k = &3

{Wk] are the prolate spheroidal weighting coeffi-
clents of Eberhard [4].

The computation of equation (1) continues for in-
creasing m until all the samples within the word
boundary are used.

The matrix S defined by equation (1) is then

reduced to a more compact form §' (Smn) by aver-
aging its entries over predetermined time and fre-
quency intervals according to equation (2).

b t

1 'm n l<«<m<35$
(2) s§' = = ¢ L S B
mn c j=b_ .41 ket _+1 jk 1l <n < 10
m-1 n-1
where
c = [(b-b +1)(t -t +1}]; by = t, =1
and where ty =~ [IM/10) 1 = 1,2,...,10; [*] 1is the

greatest integer function and {by} = 3,7,12,20,32
This choice of {bj} resules in band pass filtering
the original speech waveform with a bank of con-
tiguous filters having cutoff frequencies of 450,
900, 1800, 3000, and 5000 hz. The cholce of {ty)}
simply partitions the spectrogram into ten equal
time segments.

Finally, the S' matrix is normalized by 1its
largest entry to produce the matrix $" = (Sgp)
given by equation (3).

1 if Sn'm
(3 s = g

mn m
n
————— otherwise.
max {S' }
mn

= max {S;n} . . 5

1A

The result of these transformations is a 5*10
matrix that represents the normalized time and
frequency smoothed spectrogram of a single spoken
word.

The discrete Fourier Transform (DFT) implicit
in equation (1) is actually performed by the
special-purpose FFT algorithm of subroutine
SWIFFT. The desired speed is achieved in this al-
gorithm by employing all of the following tech-
nigues :

1) Real transform of length N computed as a com-
plex transform of length N/2

2) Mixed radix representation of subscripts [2,19]

3) Pruning the first stage to account for the =zero
padding [9]

4) Elimination of all trivial operations (e.g.
multiplication by 0, =*1)

5) In-line coding with no loops and no address
calculations

6) No explicit binary sort.

Pattern Recognition

KNN3 is the pattern recognition subroutine. It
performs two separate operations, feature selec-
tion and nearest neighbor ordering, implicit in
which is the identification process.

The feature selection process is accomplished
by means of a Karhunen Loeve expansion applied to
feature selection problems according to methods
described by Meisel [10] and Patrick [13]. Recall
that the spectrogram for each word is represented
by the 5*10 matrix, S", of equation (3). Let Y be
a 50-vector whose components, yi. 1 < i < 50, are
the elements of S" ordered columnwise. We reduce
this vector, Y, to a ten-dimensional vector, X, by
the linear transformation T.

(A) X = TY.

T is a matrix whose rows are the eigenvectors cor-
responding to the ten largest eigenvalues of an
estimate of the covariance matrix U of the training
set. That is.

(5} U= (@) =gt Oy =¥y =Y

1, = 1,2,...,50.
The ;i are estimates of the mean of Yy computed
from

(6)

— 1 . .
y1=§?.yi 1 <1 5 S0.
In equations (5) and (6) the summation is over all

M samplas in the training set.

Finally we take U computed from equation (5)
and solve the eigenvalue praoblem.

e]]
(7) Uq = Akq k =1,2,...,10.
The A, are estimates of the variances of the kih

feature in the direction of the kih eigenvector,
qx, and are the eigenvalues of U. The matrix T is
then expreassed as

1
E_l where qp is the elgenvector
(8) T = |92 corresponding to the kth largest
. eigenvalue 1 = k < 10.
-
10

Of course, the computations described by equations
(5), (6), (7), and (8) are done only once in an
off-line step and the matrix T is stored in KNN3,
which simply uses the transformation according to
equation (4) to get a ten-feature representation
of a spectrogram.

An examination of the eigenvalues of U from

equation (7) reveals that the intrinsic dimension-
ality of the feature space is between 6 and 16.

That is, »g becomes very small for k » 16. But in
order to keep the implicit estimates of the proba-
bility distribution function of the feature values
consistent with the number of samples in the train-

ing data, we restricted ourselves to a ten-dimen-
sional approximation.

a The next function of KNN3 is to use the vector
X from equation (4) in the generalized K Nearest

Neighbor decision rule of Patrick [13] to classify
an utterance.
(9a) £(X) = n
K 10
ez 51 (x, - x®(K)),y2
k=l §=1 I J
K 10
< I L (X, - xfl"‘“‘)))2 for all m
k=1 2=}

where n is the class ladex, Xy is the jth component

of the vector i., j=1,2,...,10, and xn(k) ig the
ith compounent of the vector of the kth nearest
neighbor to X in the nth class. We have fixed k =
7 and 1 s n - 42,

The decision rule of equation (9) simply says
assign the vector X to class n if and only if_the
total distance (in the Euclidean sense) from X to
its k nearest neighbors in the nth class is less
than its total distance to its k nearest neighbors
in any other class.

Ln order to use the decision rule of_ eguation
(9a) a set of discriminant functions {dn(x))
1 < n - &2 are evaluated where

501

k 10
(9b) 4 () = 1 2 ox - x(pk))y2

k=1 j=] -
Then the [dn(§3} are sorted in ascending order so
that

9y d X cd K)o« ... d X

" 2 %42
The significance of the ordering (9c) is that)Z.
is classified as nj, but n, is the next most

likely candidate, followed by n3, etc. This in-

formation is stored for later use by PARSE and
SEMANT.
The naive implementation of this algorithm

requires one distance calculation for each train-
ing sample. But carefully reordering samples
within each class and storing their positions on
each axis can eliminate many distance calcula-
tions because it is known in advance that they
cannot be candidates for nearest neighbors. This
preprocessing technique outlined by Shustek et al.

[18] greatly reduces the computation cost of im-
plementing equation (9a).

Syntax

PARSE is the subroutine that performs the neces-
sary analysis for understanding a sentence.
PARSE also serves as a "front end" for the final

compilation of subroutine COMPIL.

VOCAL has 43 symbols and eleven different
sentence schemata, most of which have two forms.
The first form permits the use of line numbers,

which COMPIL treats as instruction addresses.

The second form is a "stand alone" form in which
each sentence is a complete program unto itself.
These command structures are of three types,
executive (e.g. start, stop, edit), minor utility
(e.g. unconditional branching, subroutine linking,
input), and major utility (e.g. conditional
branching, assignment, indexing). The third are
the real work horses of the language and contain
arithmetic expressions composed of variables that
may or may not be subscripted, floating-point con-

and all the usual arithmetic operators,
and elementary functions.

stants,
delimiters,

The VOCAL language L{C) is generated by a
context-free grammar, G(Vn,Vt,S,P), where

Vp 18 a set of non~terminal symbols

Ve is the set of terminal symbols (i.e. the VOCAL
alphabet)

S d1s a start symbol 5 ¢ Vp

P 1s a set of production rules of the form

(10) p: a + Ab

for all pe¢ P, a ¢« V., A e V , b e VK
n n

t'
where V* implies the set of all strings of ele-
ments of V.

There are 192 productions of the form of e-
quation (10) in the VOCAL language so that the
language is specified in the Greibach normal {orm
[5}. In addition, we have the constrainat

(11) for every plipz ¢« P
there exists no py: & *

A,B ¢ VL; n,B e V:.

Aa A Pyi 8’ BR .

Equation insures that the grammar

(11)

G(Vn,Ve,5,P) 18 deterministic and can therefore be
accepted by a deterministic push-down automaton.
M{V¢ ,Vn, S,8) where

Vi 1s the VOCAL alphabet

Vhp 1s a set of stack symbols

S 1is the initial stack symbol

& 1s a transitiom function | &: (V x vyt Ve

80 that vhenever p: a *+ Aa, there is an entry in §
of the form:

(12) 6(A,a) = a.

Equation (12) then defines the operation of M as
follows. On scanning input symbol A with non-
terminal symbol a on top of the stack, accept A
and replace a by the string a. If the stack is
empty after the input sentence has been scanned,
it is a well formed sentence in L(G). This opera-
tion is the heart of PARSE.

The transition function of equation (12) s
stored in the form of a table with two levels of
pointers. One is for internal use and insures
that the table will be scanned efficiently accord-
ing to an algorithm described by Gries [6], The
second level provides a link to SEMANT, which we
shall describe shortly.

In addition to determining whether a sentence
is well formed, PARSE is also capable of inserting
words according to the ordering of (9c) in a sen-
tence to replace grammatically incorrect ones.
This replacement routine involves a link to the
acoustic and semantic levels and will therefore be
discussed when we consider the control structure.

Semantic Analysis

The function of SEMANT is to determine the meaning
(in terms of what COMPIL can understand) of well
formed sentences. SEMANT generates these hypothe-
ses on the basis of acoustic and grammatical clues
plus some tabulated knowledge of its own.

SEMANT treats phrases and sentences as mean-
ingful if COMPIL can either make appropriate en-

tries in its symbol table (e.g. data or instruction

addresses) or can generate code (e.g. to compute
the value of an arithmetic expression). For ex-
ample, the word "seven" by itself is semantically
meaningless but the phrase "X seven" is a variable
for which COMPIL would assign a storage location.
Or the phrase "three point seven" could be a line
number for which COMPIL would assign an entry ad-
dress. SEMANT scans the input strings for clues
and uses acoustic information to form the best
phrase (the smallest metric computed from equation
(9b)) having the assumed meaning.
cerning the grammatical structure of the phrase is
contained in the transition function of equation
(12). The appropriate set of production rules are
located by the second level of pointers in PARSE
described above. For example, the words "three"
and "one" in the phrase

three (?) one (?) (7?)

would serve as a clue to SEMANT that a floating-

point constant was present. SEMANT would then go
to the transition table and look up the production
rules for the formation of floating-point numbers.

Then, referring to the values of the distance func-

tion computed by KNN3 according to equation (9b),

the best such phrase would be formed and the result

might be

Information con-

three point one four one.

SEMANT forms four hypothetical command
structures (since there are four major utility
Instructions). The arguments of the command

structure are resolved (e.g. variable names, line
numbers), and finally arithmetic expressions are
determined including proper parenthesizing. If

the chosen command structure cannot contain an
arithmetic expression, of course, SEMANT does not
look for clues for one.

COMPIL is not a necessary part of the speech
understanding process but rather provides a means
by which VOCAL can demonstrate that It has indeed
understood a sentence. Unfortunately a subrou-
tine that produces machine language code is nec-
essarily machine-dependent. For that reason,
COMPIL has been purposely left unfinished. In
its present state, COMPIL simply puts a sentence
in a convenient internal form from which the ap-
propriate subroutines could generate the object
code.

Control Structure

The organization of VOCAL is shown in figure 1.
In this diagram the single lines represent logic
paths and the double lines, data paths. The re-
quired control of its operation is performed by
the main program, CNTRL, and may be described as
follows.

Digitized speech is processed to produce the
nearest neighbor ordering for each word in the
sentence according to equations (9b) and (9c).
These results are stored for later use.

The sentence is then parsed. If the acous-
tic transcription of the sentence is grammatical-
ly well formed then all processing ends since no
better interpretation for the sentence can be
found.

Most often, however, misclasslificatlons do
occur, and they result in ungrammatical strings.
In this case the parser replaces the incorrect
word by other words in the vocabulary In the or-
dering (9c) for the offending word. The values
of the discriminant functions of (9b) are added
up as the sentence is parsed. When the entire
sentence has been scanned this total is a measure
of the similarity of the modified string to the
acoustic transcription. For example, let the a-
coustic transcription of the sentence Hy be rep-
resented by vl,nl’ v2.nl' cur vp,nl where each

is a member of Vt. Suppose that after this

Vi 3
string was parsed it had been modifled to H| =

v » v rvesyg V . Th th imil
l'nkl 2'“k2’ p'“k en e 8 arity
P

of Hp to Hy ts given by:
(13) p(H,.H,))

D o,) - o
- I lA) - 9)
1=1 1
i
il
where d(l(i) 16 the value of the first discrim-

b4
1
inant function in the ordering (9c) for the 1th
word, V , in Ho and d(){:l) is the value of

i,n
1 i

SPGRM
AND
SWIFFT

KNN3

NEAREST \

NEIGHBOR
CORDERING

PARSE

(raooucnou
‘:::lk RULES

y
YES /

REPLACE k‘

COMPUTE |,
METRIC -
_NO YES SAVE
SENTENCE
i L oy
£ MAKE NEXT .
YES OUND NO HTPOTHE"CM. - N
COMMAND COMMAND ;
TRUCT, STRUCTURE
? (SEMANT)
ANY
.No ARITHMETIC YES MAKE NEXT
EXPR. HYPOTHETICAL
? ARITHMETIC
» EXPRESSION
(SEMANT) NO
NO 4 YES {ﬁ HYPOTHESIS
COMMANDS
n;zn CLUES FOR
ARITHMETIC
EXPRESSIONS
HELP 270 NO ZSEMANTICES, TES !
O.K
?
COMPIL
> EXIT -
FIGURE 1 FLOW CHARTY OF THE VOCAL SYSTEM

503

the nkz‘.:h discriminant function for the correspond-

ing word, V y Iin H,.
1,n.k 1

1

After the acoustic transcription has been
processed, PARSE only operates on sentences that
have been generated by SEMANT. First SEMANT
chooses the best (in the sense of equation (13))
command structure. Then it builds a sentence
around this command structure by replacing words
or groups of words with well formed, meaningful

strings. Replacements are always made in the or-
der of (9c) and a total of the replacement simi-
larities is kept. The resulting string, Ha, is

returned to PARSE for syntactic analysis and then
sent back to SEMANT for refinement. This loop is
executed until SEMANT cannot offer any more infor-

mation (i.e. Hi = Hi—l)' Then the next command

structure is tried and the process is repeated.
The best four command structures are tried in this
way.

When PARSE is called to analyze the ith hy-
pothesis, Hy, it computes P(H,H,) according to
equation (13). At the ilh iteration, ¢ (Hp,Hi) is
compared to (HO,Hi_l); the sentence <correspond!ng

to the smaller metrie is retained and the smaller
metric is stored for comparison at the i+lst stage.

When this process terminates, the well formed
sentence corresponding to the smallest metric is
compiled and executed. If no such sentence is
found, VOCAL asks for help, indicating which parts
ot the sentence it finds confusing.

In the course of the understanding procedure
VOCAL may generate and test twenty hypotheses for
a short sentence or fifty for a long, complicated
one. In theory, there is no limit to the number
of times it may try to refine a hypothesis. In
practice, however, the maximum observed has been
twelve.

Test Data and Results

Testing of VOCAL thus far has been on a data
set of 1266 words divided into a training set of
887 words and a test set of 22 sentences contain-

ing a total of 384 words. The training set con-
-sts of 21 spoken samples of each of the 42 words
in the VOCAL lexicon. The test set sentences are

spoken by eleven different speakers, four of whom
were not subjects for the training set.

The speed) was recorded in an anechoic room
on a NACRA IV scientific recorder on low-noise
tape at 15 ips. The analog signals were then low
pass filtered at 5 Khz, sampled to 10 bits at 10
Khz, and stored on magnetic tape.

The training set was, of course, used to com-
pute T of equation (4) and then the transformed,
labeled training samples and T were stored in KNN3.

The acoustic recognition score on the test set
was 210 correct identifications out of 384 words.
This resulted in transcribing two sentences cor-
rectly. The number of correct Identifications rose
to J17 for the full VOCAL system. This resulted in
an exactly correct understanding of eight sentences
a nearly correct understanding of thirteen more,

and a poor interpretation of one sentence. The
meaning of "nearly correct" and "poor" will be
clear from the examples below. In each, the actual

sentence appears first, followed by its acoustic

504

transcription and

tion.

perfect;
the third, poor.

Actual

In the first

in the s

sentence:

One point three r

Acoustic
One close three r

Perceived

One point three read X

Actual

then by
example, the understanding is
econd, nearly correct;

its final interpreta-

ead X two two next.

transcription;
ead X two two scratch.

sentence:

sentence:

Let X one five su

one times E
sine X
close close to the

eight

three five

Acoustic

Scratch X one

b three

two point oh
two close plus cosine X two sub three
two point seven eight

next.

transcription:

minus X one times

term sine X

three point oh to
three five

eight

Perceived

Let X one

E two point
two close log
the two close sine

read.

sentence;

five sub three

one times E two point oh

sine X

three

Actual
Four

two close plus
close close to the

flve next.

point five six step X seven from

sentence:

oh to eight point

close let X nine

close next.

Acoustic transcription:

Four point by eight

equal eight point

oh log log X log

close log norm.

Perceiih'd sentence:

Four point five eight

equal eight point one flve one

nine plus X nine
next.

close

about

three equal

cosine X two sub
two point one three one eight

two two next.

close close over

and in

three equal term minus X

term

one

five scratch three three equal sine
oh close point over

cosine X two scratch

close close over

three one

sine minus X

term

three

three point

one by sine three of point oh
equal arctan X eight sub

from X sine oh begin

norm five norm three oh

equal arctan X

The 22 sentences of

six minutes of
IBM 370/158 computer,
for VOCAL

required

[1]

[2]

[3]

[4]

[6]

J.

Barnett.

let X one of)

speech.

sub

seven

close oh

point

link scratch

sub one oh
three oh one oh
to the arctan X eight

seven

the test set represent

References

A vocal

data management

On Yale University's
just under six minutes was
to process them.

system.

IEEE Transactions on Audio and Electroacous-
tics AU-21(3), 1973.

C.

D. Bergla

nd. A guided tour of the Fast

Fourier Transform.

C. Cherry.
Press, 1968.

A.

the calculation of

Eberhard.

IEEE Spectrum 6(7), 1969.

On Human Communication.

An optimal

MIT

discrete window for
power spectra. IEEE

Transactions on Audio and Electroacoustics

AU

S. A. Greibach.
free phrase

for

-2K1),

context

JACM 12(1) ,

D.

Gries.

1973.

1965.

Compiler

Construction for

A new normal form theorem
structure grammars.

Digital

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Computers. John Wiley & Sons, 1971.

D. H. Klatt & K. N. Stevens. On the automatic
recognition of continuous speech: implications
from a spectrogram reading experiment. IEEE
Transactions on Audio and Electroacoustics
AU-2K3), 1973.

J . Makhoul. Spectral analysis of speech by
linear prediction. IEEE Transactions on Audio
and Electroacoustics AU-21(3), 1973.

J. D. Markel. FFT pruning. IEEE Transactions
on Audio and Electroacoustics AU-19(4), 1971.

W. S. Meisel. Computer Oriented Approaches to
Pattern Recognition. Academic Press, 1972.

P. L. Miller. A locally organized parser for
spoken input. CACM 17(11), 1974.

A. Newell et al. Speech Understanding Sys-
tems. American Elsevier, 1973.

E. A. Patrick. Fundamentals of Pattern Rec-
ognition. Prentice-Hall, 1972.

R. K. Potter, C. A. Kopp, & H. G. Kopp. Vis-
ible Speech. Dover, 1966.

R. D. Reddy, L. D. Erman, & R. B. Neely. A
model and a system for machine recognition of
speech. IEEE Transactions on Audio and Elec-
troacoustics AU-21(3), 1970.

R. D. Reddy, L. D. Erman, R. D. Fennell, &

R. B. Neely. The Hearsay speech understanding
system; an example of the recognition process.
3rd IJCAI, Stanford University, 1973.

R. W. Schafer and L. R. Rablner. Design of
digital fliter banks for speech analysis.
BSTJ 50(10), 1971.

1.. J. Shustek, F. Baskett, & J. H. Friedman.
A relatively efficient algorithm for finding
nearest neighbors. SLAC-PUB-1448, 1974.

R. C. Singleton. An algorithm for computing
the mixed radix Fast Fourier Transform. IEEE
Transactions on Audio and Electroacoustics
AU-17(3), 1969.

R. B. Thosar. Recognition of continuous
speech: segmentation and classification using
signature table adaptation. Stanford Artifi-
cial Intelligence Laboratory Memo AIM-213,
19 73.

D. E. Walker. Speech understanding through
syntactic and semantic analyses. 3rd IJCAI,
Stanford University, 1973.

W. A. Woods & J. Makhoul. Mechanical infer-
ence problems in continuous speech understand-
ing. 3rd IJCAI, Stanford University, 1973.

W. A. Woods et al. Speech understanding re-
search: collected papers. BBN Report 2856,
1974.

