
LINGOL - A PROGRESS REPORT

A new parsing algorithm is described. It is
intended for use with advice-taking (or augmented) phrase
structure grammars of the type used by Woods, Simmons.
Heidorn and the author. It has the property that it is
guaranteed not to propose a phrase unless there exists a
continuation of the sentence seen thus far, in which the
phrase plays a role in some surface structure of that
sentence. The context in which this algorithm constitutes a
contribution to current issues in parsing methodology is
discussed, and we present a case for reversing the current
trend to ever more complex control structures in natural
language systems.

L I N T R O D U C T I O N

L I N G O L (LINGuistics Oriented programming Language)
is a language to facilitate the writing of natural language
processing programs. In a previous paper [Pratt 19731 the
L I N G O L system was described, examples of output from several
small-scale L I N G O L programs were given, and the reader was
led through a console session as a trivial-scale French
translator was developed. That paper sought to establish
L INCOL ' s credentials as a pedagogical device for newcomers
to the art of writing natural language "front ends".

L I N G O L was originally conceived as a language
intended for use by serious researchers Due to its
author's preoccupation with more mathematical pursuits
dur ing the past few years, L INGOL has not been exercised
unt i l recently with anything but small-scale
student-generated programs Since the appearance of [Pratt
1973), several more such small-scale L INGOL programs have
been written. More recently, the author has
begun work on a large-scale program to see whether L INGOL
really can be used as the research tool it was originally
designed to be, without compromising those features that
made it attractive to beginners (ease of use and low
resource consumption) In this paper we concentrate on the
implementation of the current version of L INGOL. This
discussion wil l complement the one in [Pr.tt 1973], which
concerned the motivation for the L INGOL language, that part
of the L I N G O L system accessible to the user. Primarily, we
shall present a new context-free parsing algorithm that,
paradoxically perhaps, is responsible for the efficiency of
the very context-dependent parser in LINCOL's cognitive
component. The idea behind this algorithm is one that may
be of value in other structure-eliciting type problems
besides parsing

An issue that still seems to haunt computational
linguistics is that of the syntax/semantics dichotomy.
Quite clearly, L I N G O L takes approximately the same point of
view as [Woods 1969], that surface structure is worth
eliciting, and that context-free grammars (or their
transition-net equivalent) can play a non-trivial role in
parsing. In section 24 we discus a relatively new

We have already discussed elsewhere [Pratt 1973] the
rationale for those features of L INGOL available to the
user. In this section we shall talk about what goes on
behind the scenes The distinction being drawn here is
exactly that of the programmer's manual for a language
versus the implementation of a particular compiler for that
language In the case of L INGOL the author has found, on
occasion, people who are unwilling or unable to draw the
distinction, the result is a misconception of what the
L I N G O L user has to put up with in writing his programs, as
opposed to what performance he may expect when running his
programs. The distinction has in fact to be drawn even more
carefully for L I N G O L than for conventional programming
languages because for the latter, the usuat choice of
operations (arrays, lists, block structure, arithmetic and
other operations with well-understood implementations)
suggests, to within details of little interest to the
programmer, the appropriate implementation of the run-time
support Since the programs one writes for L INGOL are highly
non-deterministic, and are organized as modules (actors, to
use a term in vogue) that do not know with whom they wil l be
communicating until L INGOL connects them together during the
processing of a sentence, the L INGOL run-time system's task
is appreciably more diff icult than that of FORTRAN or A L G O L .
The burden of control has been shifted from the grammarian
to the system, leaving the grammarian free to concentrate on
linguistics. So far, no one has proposed an "obviously"
good way to tackle this problem for English, and L INGOL
users should be prepared to accept radical changes in
L I N C O L ' s internal operation (i.e. parsing algorithm) as
progress is made in this area (Since the only legitimate
effect of such changes is to improve overall resource
consumption, not to compromise correctness of the user's
program, this is not really a burden on the user.)

For the benefit of non-readers of [Pratt 1973] we
describe briefly the overall organization of LINGOL. The
L I N G O L system is envisaged as a translator from some natural
source language to some target language (natural or
art i f icial) of the user's choice, not necessarily a
different language from the source language. There are two
phases, one that elicits the surface structure of a sentence
and one that produces the desired translation(s). The
intention is that issues relevant to determining the
intended surface structure versus those of translation
should be separated out This corresponds to the
recommended practice when translating from English to
French, say, of understanding each sentence (naturally
taking into account previous sentences) before attempting
the translation. No restrictions are made on where the
L I N G O L programmer draws this boundary, or to what extent

Vaughan R. P r a t t
Massachusetts I n s t i t u t e o f Technology

Cambridge, MA, U.S.A.

422

perspective on this issue which puts this style of parsing
in a more favorable liight than people have been willing to
view it of late [Riesbeck 1975, Marcus 19751

2 _ _ T H E _ C U R R E N T L l G O l .
L M P L X M X N T A T 1 Q K

2-1—G ene ra l Q v e r v i e w

A b s t r a c t

the information in the two components is duplicated In
fact, he can omit the generative component entirely and put
everything in the cognitive component, though at some cost
in resource consumption At run time, no f i rm commitment is
made by the cognitive component to a particular choice of
surface structure of an ambiguous sentence, allowing the
generative component to pick and choose when the cognitive
component has not had enough information to decide At
present L I N C O L users are encouraged to try to make their
cognitive component intelligent enough to make the right
decision, and so far no L I N C O L programs have attempted
disambiguation in the generative component. One would expect
this to change as people attempt more sophisticated
programs.

A L I N C O L program is a set of rules each having
three components: a context-free rule, a cognitive function
and a generative function Their respective roles are as
follows The CF rule specifies a general English
construction, the cognitive component (or "critic") supplies
the expertise about that construction and the generative
component supplies the information about the target language
that may be relevant to this English construction. (Our
tacit assumption of English as the source language reflects
L I N G O L ' s applications to date)

It is fashionable these days to want to avoid alt
reference to context-free grammars beyond warning students
of computational linguistics that they are unfit for
computer consumption as far as computational linguistics is
concerned In L I N C O L , as in ATN's [Woods 1969], their role
is dif ferent from that in, say, the Harvard Predictive
Analyzer [Kuno 1965]. Instead of being used to encode all
information about English, they form the basis of a
pattern-directed non-deterministic programming language.
Th i s strategy has several advantages

(i) It allows the programmer to structure his program as
a set of relatively self-contained modules, thereby
decreasing the number of things he has to keep in his head
at once when looking at a particular part of his program.

(i i) It eliminates much of the testing-for-cases control
structure the programmer would need in a non-pattern-driven
language.

(i i i) Flow of control between modules is confined to the
surface structure, radically simplifying the controlling and
tracing of computations This is in contrast to systems that
require the user to supply considerably more information to
control the flow of computation [Riesbeck 1975. Marcus
19751 The apparent subtlety of this advantage belies its
importance, and we discuss it further in section 2.1

(iv) Instead of having to identify each possible source
of ambiguity and think up a way to deal with it, the user
writes "critics" of individual situations and lets L INCOL
compare the results of the criticisms as applied to
competing situations when an ambiguity arises. This reduces
the order of magnitude of programming effort in the

resolution of ambiguity from possibly order n2 to
order n, where n is the number of situations that may need
to be compared. This is in contrast to the notion of
"di f ferent ial diagnosis" presented in [Marcus, 1975]

(v) L I N G O L can optimize the user's program much more
effectively if it can identify the context-free component by
itself If this component were to be incorporated into the
cognitive component, a popular practice these days, the
system would not be able to do its own optimization as
effectively, and the burden would fall back on the user

The reader wanting more information on items (i) to
(i i i) is referred back to [Pratt 1973] The worked example
illustrates each of these advantages The remaining two
items are covered in the following sections

2 . 2 _ T h e - C o g n i l i v e C o m p o n e n t

In this section we describe the L INGOL parser We
f irst present the algorithm on which it is based, and then
show how to use this algorithm to assemble the user's
modules and set up communication between them.

Before immersing ourselves in the technical details
of the algorithm, let us consider the options open to us
The goal for the parser is to build the surface structure
intended by the sentence's speaker All it has to go on is
the top and bottom of this tree, and the rules (grammar)
constraining plausible surface structures A decision must
be made as to where growth should begin Two extremes are
the top-down approach, in which the tree is grown from its
root, and the bottom-up, where growth begins from the
bottom, that is, from the words of the sentence. Methods
with the flavor of either (or both) of these extremes
inherit their name(s). These methods have other aliases in
the literature Any scheme that claims to be doing
"predictive" analysis, that is, that has expectations about
what is coming next and uses those expectations as
hypotheses to "drive" the program is essentially a top-down
method A program that finds substructures (say conceptual
dependency structures [Schank 1970]) and uses them to build
bigger structures is a bottom-up method. Terms suggested to
the author by R. Moore are "hypothesis-driven" for
"top-down" and "data-driven" for "bottom-up" These
concepts transcend phrase-structure grammars and may be
applied to any system responsible for building an
hierarchically organized structure

No matter where the construction begins, we do not
know how to carry it out in any straightforward way, even if
we want nothing more than to satisfy the context-free rules
of our grammar. We always run the risk of letting the
construction wander down blind alleys For some grammars and
some sentences, the top-down method is less likely to run
into cul-de-sacs, but the dual case can also arise It Is
hardly surprising, given this state of affairs, to hear
people wish that they could build structures both top-down
and bottom-up in a way that somehow reduced the overhead.
One form of this wish is to request a single algorithm that
builds no node a bottom-up method would not consider, nor
anything a top-down method would not build. An alternative
desideratum might be that no node N be built unless that
part of the text seen to date is part of som? sentence
having a surface structure in which N participates. For a
backup-less parser like LINGOL's present one, this is the
strongest possible thing one could ask for as far as
exploring cul-de-sacs is concerned One might add to the
above the requirement that the parser be able to cooperate

423

wi th other processes such as tuuiines written by the user

The current implementation of L INGOL achieves all of
the above goals To be more precise, every node it builds
is built by both the Cocke-Kasami-Younger bottom-up
algori thm and the ingenious Earley top-down algorithm, the
two algorithms cited in [Aho and Ullman 1972] as the
canonical methods for parsing general context-free
languages That is, the work performed n the intersection
of the work done by each of these methods, at least with
respect to proposed phrases Moreover, as each phrase is
discovered, L I N G O L is able to accept advice from other
sources (namely the user's cognitive component) and use it
to guide the parse

Roughly speaking, the minimization of searching is
accomplished by running the Cocke-Kasami-Younger algorithm
and as each phrase is discovered asking an "oracle" whether
the Earley algorithm would have discovered it The
remarkable thing is that this question can be answered in
t ime independent of the length of the input, without having
to go and actually run the Earley algorithm to see what it
would have done (The time is proportional to the size of
the grammar, but in the L INGOL implementation, asking the
question involves no more than forming the logical and of
N/36 36-bit vectors for a grammar of N non-terminals.
Unl ike the large grammars Kuno worked with, a large L INGOL
grammar should have only from 100 to 200 non-terminals,
L I N G O L grammars are not expected to have much information
encoded in the context-free component. We are at present
exploring a dichotomy for non-terminals, known only to
L INGOL ' s internals and not to the grammarian, that would
permit having goals for only very few non-terminals, thereby
ensuring that N/36 would remain negligible.)

Before discussing the construction of the oracle,
let us sketch the version of the Cocke-Kasami-Younger
algori thm we shall use We assume that all rules are of the
form either A -> B or A ■> B C . where A . B and C are
non-terminals, or of the form A -> a where a is a terminal.
T h e presence of A -> B means that this is not really
Chomsky normal form, and allows either the user or some
preprocessor to turn an arbitrary grammar into this form
using only the trick of replacing all but the first item on
the r ight side of a rule having three or more items by a
non-terminal which is itself rewritten to be the replaced
non-terminals, and so on until all rules have right sides of
length I or 2. The most recent version of L INGOL
incorporates a preprocessor for this task, so this normal
form ts now a feature solely of the implementation, not of
the user's language (In [Earley 1968] the notion of
"state" is introduced, which elegantly plays the role of
these introduced non-terminals In EM ley's notation, the
state AB.CDE plays the role of the nonterminal that
replaces the CDE Everything we say in terms of our
restricted grammars can be rephrased more elegantly in terms
of Earley's states The mam advantage of our notation is
that the description of the algorithm is less complicated
if the reader is not required to think about arbitrarily
"long" states) W i th this form of grammar we can talk about
the left and right sons of binary nodes and the "only" sons
of unary nodes. For our purposes it will be convenient to
refer to only sons as left sons.

In the following version of the algorithm, we use

wi l l print all pairs of numbers summing to 5. This avoids
cluttering up the algorithm with details of searching that
the programming reader wil l have no difficulty f i l l ing in.

We shall employ "between-word" notation for
positions rather than "at-word" That is, rather than saying
that the first word in the sentence is at position I, we
wi l l say it lies between positions 0 and I. This avoids any
possible ambiguity when referring to the string lying
between positions i and j, and also simplifies naming the
common boundary of two concatenated strings. It is also the
preferred notation in more recent string processing papers.

A more detailed description of this algorithm
appears in [Aho and Ullman 1972] We are concerned here
wi th extending the algorithm

The above suffices for context-free recognition.
For parsing, nodes must record (in addition to the three
items type, start and end) two additional items, namely
which rule was invoked when noting that node, and which
phrases are its sons. The former allows us to access the
cognitive and generative components associated with the rule
at a later date, while the latter allows us to recover the
surface structure (Having the rule present makes the
syntactic category of the node redundant, and in fact L I N G O L
omits it.)

We now introduce the oracle. Two things are
required to construct this oracle a readily accessible
representation of the left-most-character relation, and the
notion of a goal We first deal with the goals. Associated
with each position in the sentence is a set of goats. A
goal is a desired non-terminal. If a phrase of the same
type as some goal is discovered starting in the position

424

To see that the algorithm as modified does no less
than it has to (i.e that it overlooks nothing), suppose we
have an init ial segment of a sentence of the language of the
given grammar Then in any tree for this sentence, we claim
that all phrases in the tree contained within the initial
segment wil l have been proposed by the time we have reached
the end of the segment We also claim that every right son
in the tree wil l have been generated as a goal just before
the parser reached the starting position of that phrase
(The induction proofs of these claims are messy and probably
inappropriate for this paper - the interested reader is
encouraged to f i l l in his own details.) It follows from
these two claims that the oracle will always answer in the

af f i rmat ive when a phrase thai appears in the tree Is
proposed to the oracle, because every phrase is the
left-most character of either some non-left-son or of the
root, and all such possible goals will have been created by
the time we propose this phrase Hence the phrase is
correctly built.

To see that no node is built thai could not
participate in some surface structure of some completion of
the sentence, we must assume that for each non-terminal of
the grammar there exists a derivation starting with that
non-terminal and ending with a string of all terminals.
T h i s follows immediately if we require that every
non-terminal appear in at least one surface structure of
some sentence of the language, a perfectly reasonable
requirement. Suppose that we have just built some node
(B . I . J) Then there exists some goal (A.i) such that

AR*B holds Hence there exists a tree with A at the
root and B on the left edge We can therefore extend the
sentence so that the part starting with the B reduces to A
One more reduction is now possible, using the rule that gave
rise to the goal in the first place We continue up the
tree in this fashion, progressively extending the sentence
and satisfying more goals, unti l we satisfy the Sentence
goal At this point we have the desired sentence. This
completes the proof of the claim that every node built has a
chance of being used in the fina.1 surface structure.

What does this fancy algorithm buy as far as the
practically minded user ts concerned' One thing we do not

claim is any improvement over the traditional 0 (n)
speed limit for parsing sentences of length n. (See
[Val iant 1974] for an improvement to this situation - he

2 81 offers 0 (n), though practical considerations
make it much worse than most 0 (n) algorithms with
respect to both speed and ability to take advice when
parsing "typical" English sentences.) However, we do claim
what amounts to an even better improvement in practice than
going f rom namely an
improvement proportional to the number of non-terminals in
the grammar. That is, there exist grammars for which the
Earley algorithm may generate large state sets in Its
operation when our algorithm builds very much fewer nodes.
(However, there do not exist any grammars where Ear ley's

algorithm runs in time while ours runs in time

There do exist such grammars when
comparing our algorithm with the Cocke-Kasami-Younger
a lgor i thm)

In even more practical terms, how does this affect
parsers working with a purported grammar of English? We
conducted an experiment to compare our algorithm with the
Cocke-Kasami-Younger algorithm by the simple expedient of
suppressing the test in the procedure "note" that makes our
algorithm different from the other Working with the grammar
of English used in the "9-hour" French translator exhibited
in [Pratt 1973). we found an improvement of a factor of f ive
in the number of nodes built altogether! In fact, with the
new algorithm almost all of the nodes built were used in the
f ina l surface structures of the sentences we tried Lack of
a local implementation of Earley's algorithm has prevented
us f rom comparing it with ours in an actual machine simulation.
However, it does nor require a machine simulation to see

425

that the sort of thing that makes our parser better than
Ear ley's in some grammars is exactly what arises in English
grammars. For example, if one has the rules
Sentence -> Np Vp, Sentence -> Wh Vp and Sentence -> Vp ,
then Earley's algorithm will generate states corresponding
to each of these rules even when the sentence begins with,
say, " W h y . " Earleys algorithm is not smart enough to
realize that the first and third rules can be ruled out here
(we are making some obvious assumptions about what the rest
of this simple grammar might look like).

2 . 3 . . T a k i n g A d v i c e

One attractive feature of the above technique is
that we did not need to "compile" the grammar; we retained
the interpretive nature of the Earley and Cocke algorithms.
Th i s makes it simple for the user to contribute to the
operation of the parser, since all the parser is doing at
each step is recognizing that some combination of phrases
forms a new phrase The user is given the opportunity at
each step to look at the constituents of those phrases, to
consult his model of the world, or to perform deductions
His conclusions are summarized numerically for LINGOL's
benefit, and in pursuing any particular structure, L INGOL
accumulates these numbers as a measure of its confidence in
that structure. These confidence numbers are used to choose
between alternative ambiguous structures. The winning
structures are made readily available to the generative
component while the losing structures are kept around (on
the end of a list of alternatives) in case the generative
component becomes dissatisfied with the choice made by the
cognitive component and wants to try some of the others.

The style of programming used in the cognitive
component is analogous to that described in [Pratt 1973] for
the generative component The primary difference is that,
since the structures are being built bottom-up at the time
the cognitive component is being built, it is not possible
to declare variables high up in the tree for use by routines
lower down, a facility that gives the generative component
considerable power This inability is inherent in the
nature of any system that wants to do criticism on the spot
without waiting for the rest of the sentence If you don't
know what's coming, you can't (other than by guessing) make
assumptions about what the higher nodes using the one in
question wil l look like (This is not altogether true - if

the relation R* were represented explicitly as a
collection of paths in R, it might be possible to set up
variables on high as the goals are being generated, provided
nodes being discovered below set their own sights on only
one goal It is likely that this would add substantially to
the overhead of the system, however)

2 . 4 — U s i n g , the.algori th.m_as a contcal device

The emphasis of this section is on nsight rather
than mechanics The p r o g r a m p a r a d i g m discussed in [Pratt
1973, p 377) supplies the mechanical details of how modules
are assembled and how they communicate. Briefly, the
surface structure chosen by the algorithm is taken to be the
skeleton for a program whose substantive components are LISP
functions (the g e n e r a t i v e component). These functions are
associated with the nodes of the tree The tree is then
itself taken to be a large expression, and is evaluated.

T w o types of communication are provided for: functions may
"return" values, which are received by their immediate
superiors in the tree, and variables (declared local to some
subtree) may be used as "mailboxes" for communication up,
down or sideways w i t h i n t h a t subu.ee (reflecting an apparent
locality in many linguistic phenomena) A more detailed
account of these mechanics is in [Pratt, 1973]

We have here a somewhat unusual programming
environment The user is told that he may write arbitrary
LISP code for the function at each vertex; provided the
or ig inal sentence can be reconstructed from the surface
structure information, he is no worse off in principle than
if he started from scratch However, this easily made point
is not the real issue Rather, the user is supposed to
assume that the surface structure the parser found is what
he thought it would be The insight is that, although a
considerable amount of Enguistic processing of the sentence
may still remain to be done after the structure is found,
that processing will be of the form "what to reply when you
see a ..." rather than "where to search for a . " That is,
there is no longer the emphasis on control (backup
techniques, depth-first vs breadrh-first issues, passing
environments around, and so on) that characterizes many papers
on parsing Instead, the user has to decide, for each of
many local situations, what the answer is

It should be obvious from the above that we are
advocating:

(i) un i fo rm control of search, using some linguistic
informat ion (the context-free component plus the cognitive
component) plus a smart parsing algorithm;

(u) non-uniform modular treatment of the remainder of the
user's linguistic information

T h e second of these reflects the structure of a typical
grammar written in English for consumption by humans (at
least those grammars written before linguistics became
confused with mathematics). The phenomena are treated one
at a time in the grammar, and the notions of procedure,
control, for-loops, recursion, searching and so on never
appear Everything is very modular, even isolated much of
the time (By "isolated" we mean that the phenomenon does
not depend on some other phenomenon for its fu l l
explanation, "modular" only refers to the degree of
organization and does not exclude inter-module
communication.)

It is our hope that this modularity is what makes it
easy for grammarians to write large grammar books for human
consumption, rather than that the grammars are written In
English If so, it may make more efficient the process of
tell ing English to computers, which has been proceeding
slowly to date

Al l this assumes, of course, that we have a reliable
structure finder We snnd by our claim in [Pratt 1973. p.
376] that considerably less linguistic information is needed
to get the surface structure than for subsequent processing.

426

2 . 5 R o l e o f t h e C o n t e x t - f r e e c o m p o n e n t .
Since the trend these days is away from explicit

context-free grammars and towards encoding all syntactic
information in other ways, it is reasonable to ask why
have a separate context-free component The issue is one of
efficiency, among other things It has yet to be
demonstrated that English is easy to parse As far as we
know, a program with a lot of expertise about English Is
going to discover a lot of things to say abou' a sentence,
most of them presumably being of the form "it can't be this
interpretation because. * There is much
wishfu l thinking these days [Marcus 1975. Riesbeck 1975]
about being able to ignore entirely the sorts of parses
discovered by the Harvard Predictive Analyzer [Kuno 1965]
for reasonable English sentences To this author's
knowledge, no such wishful thinking has been realized as a
program having the linguistic competence of, say, Sager's
system [Sager J973). or for that matter the Predictive
Analyzer The problem may be that one cannot dismiss these
obscure parses on tr ivial grounds without also eliminating
perfectly good parses of other sentences where the
corresponding structure is not so peculiar. Unfortunately,
there is no evidence to support this one way or the other,
and the author wishes to sit on the fence for the time being
as far as whether the above wishful thinking can be put into
practice (He would like to put it into practice himself,
but along with the rest of the world has no idea how.)

Given that one's program can be expected to
encounter many competing interpretations of a sentence, and
that in many cases it wil l have to pass non-trivial judgment
on rhese cases, it can be very diff icult to write a program
to deal with much of English L INGOL allows the user to
organize his program so that the burden of the book-keeping
associated with discovering and comparing all these
possibilities is shifted to the system, allowing the user to
concentrate on writing code to criticize individual
situations M Marcus has suggested to the author that in
so doing he is allowing the user to concentrate on the
competence aspects of English by supplying him with packaged
performance The context-free rules and the critics encode
the sort of information one finds in a grammar book, which
is competence, while the system knows about good parsing
strategies, which is performance

A long range goal in this regard is to develop a
high level language version of L INGOL such that grammars
may be given to either computers or people Then if the
computer "understood" English on the bas's of that grammar,
and if people could read it painlessly. It would make an
ideal theory of English Since people read procedures
painful ly slowly if at all. the high level language will
have to be considerably less procedural than at present

In our approach, the CF rules function as a crude
approximation to English that permits L INGOL to rapidly
select f rom a huge set of possible structures for the
sentence a smalt plausible set for more detailed (and
expensive) criticism by the cognitive component. The
context-free representation for the "crude approximation" is
chosen partly because it is not diff icult to construct quite
good approximations using context-free grammars, and partly
because there exist remarkably efficient algorithms for
exploring the space of possible surface structures for
sentences of context-free grammars, yet that can accept
advice on a step by-step basis

Th is situation of having the system do one's
book-keeping was what obtained in the hey-day of
context-free parsers, of course One side-effect of the
later disenchantment with and abandonment of context-free
grammars was to throw the baby out with the bath-water by
reverting to doing much or all of the book-keeping oneself
Not only does this require an indefinitely larger
programming effort, it a ho requires of the programmer
considerable sophistication in parsing techniques if his
code is to operate as efficiently as one of the better
context-free parsing algorithms, especially when that
algori thm can cooperate effectively with the user's code in
assisting it to reduce the search space even further.

A comparison of our system with that of Woods [1969]
is inevitable Where Woods has augmented transition
networks, we have augmented context-free grammars. Since
basic (i.e. unaugmented) TN's are exactly equivalent to
context-free grammars in strong generative capacity, there
should in principle be no difference In practice, there
are a number of differences One difference is in our
parsing algorithm, a property of the implementation rather
than of the L I N G O L language, which assumes a larger
responsibility for determining the flow of control than does
Woods'. Another difference is in the language - we take a
static view of English inasmuch as we use the seemingly
declarative CF notation, whereas Woods uses the seemingly
procedural transition networks The procedural flavor
becomes substantive when the augments are introduced. Our
augments are intended to be mere grammatical critics; Woods'
have considerably more to say about the flow of control. As
argued earlier, we feel that the static view is more
conducive to efficient writing of grammars, so long as the
system can take over the efficiency considerations One
notable difference is that the L INGOL language has far fewer
pr imi t ive concepts than does Woods', without losing any of
the features of Woods' system The idea here is that the
constructs provided explicitly in Woods system have LISP
analogues, so why duplicate them? Another difference is our
separation of the cognitive and generative components, which
we feel is a plus since then the target language issues can
be cleanly separated from the cognitive issues This
separation does not preclude the sort of interaction with
world knowledge advocated in [Winograd 1971]

3 . S Y N T A X A N D E F F I C I E N C Y :

L I N G O L has had a chronic identity crisis over the
issue of whether it should predominantly rely on syntax in
its in i t ia l phase This brief section addresses the issue of
whether syntax is a necessary part of a computational
linguistics program We have in mind here R. Schank's claim
that "syntax is not needed to do parsing" For some variety
in the usual replies to this sort of claim, we propose that
even if Schank is right (thts assumption is local to this
section) syntax may be of value in improving the efficiency
of the parsing process This point can be easily overlooked
both in informal introspection about whether one felt one
needed any syntax to parse the sentence and in formal
experiments, eg. with the tachistoscope, designed to show
that scrambled sentences shown briefly are recalled in their
unscrambled form. What is being overlooked here is how long
it took to unscramble the sentence

427

Given grammars language's sentence's initial
segment assumed given in order to see no less overlooked
than necessary (Translation: To see that no less is
overlooked than necessary, assume we are given an initial
segment of a sentence of the language of the given grammar.)
If you stumbled over this sentence then perhaps it is
because the syntax is not there to speed things up for you.
Conventional groupings of words have been rearranged in
relatively unfamil iar, though not entirely ungrammatical or
meaningless, ways and some "noise" words have gone.
Nevertheless, with a tittle extra effort you should at least
be able to parse the sentence correctly, and after a few
passes you wi l l begin to wonder why you ever had any trouble
with it at all. Moreover, there seems no obvious reason why
a program that could handle the original sentence could not
equally welt handle the above version. (I had difficulty
restraining myself f rom replacing it with a more diff icult
sentence by the time I had typed it up.) The claim is that
in the original version, part of the reason why you had less
trouble with it was that it was phrased in a very
conventional style that you have encountered frequently,
allowing you to go straight to the places where you expect
to f i nd the information in the sentence There are "noise"
words all along the way, but to see that they are not really
all that noisy, try replacing them with other noise words;
the effect wilt be somewhat like switching all the street
signs when navigating in one's car.

Thus white it is conceivable that one can get by
without syntax (though what this means exactly is surely
open to debate), even if one does so one is faced with
cull ing out the structure desired from a huge choice without
the benefit of syntactic information to reduce the search
space.

428

